高中数学第2章概率第6课时二项分布1导学案苏教版选修23
- 格式:doc
- 大小:68.50 KB
- 文档页数:3
第二章第二章 概率概率概率2.1 2.1 随机变量及其概率分布随机变量及其概率分布随机变量及其概率分布学习目标(1)(1)理解随机变量的含义理解随机变量的含义理解随机变量的含义(2)(2)理解掌握概率分布列和分布表的含义,并能解决简单的问题理解掌握概率分布列和分布表的含义,并能解决简单的问题理解掌握概率分布列和分布表的含义,并能解决简单的问题 (3)(3)理解两点分布的概率模型理解两点分布的概率模型理解两点分布的概率模型 学习过程 一、课前准备预习教材P45-48,P45-48,找出疑惑之处找出疑惑之处找出疑惑之处,,并试试解决以下问题并试试解决以下问题: : 问题1. 1. 掷一粒骰子,出现得点数可能是掷一粒骰子,出现得点数可能是掷一粒骰子,出现得点数可能是_____,_____,_____,出现偶数的概率是出现偶数的概率是出现偶数的概率是_____. _____. 问题2.2.掷硬币这一最简单的随机试验,其可能的结果是掷硬币这一最简单的随机试验,其可能的结果是掷硬币这一最简单的随机试验,其可能的结果是_______,________________,________________,_________两个事件两个事件两个事件. . 二、新课导学【学习探究】一、在掷硬币的试验中,其结果可以用数来表示吗?再举一个例子试试? 我们确定一种对应关系,使得每一个试验结果都用一个我们确定一种对应关系,使得每一个试验结果都用一个_____________________表示,在这种对应下,数表示,在这种对应下,数字随着试验结果的变化而变化。
字随着试验结果的变化而变化。
新知1:随机变量的定义一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母通常用大写拉丁字母__________________________________________来表示,来表示,而用小写拉丁字母而用小写拉丁字母____________________________________等表示随机变等表示随机变量取的可能值量取的可能值. .试试:在含有10件次品的100件产品中,任意抽取4件,可能含有次品的件数X 将随着抽取结果的变化而变化,取结果的变化而变化,是一个随机变量,则是一个随机变量,则X 的取值集合为的取值集合为________________________________________________;;{}0X =表示_____________________,{}3X <表示______________________________.P({}0X =)表示_____________________________.【学习探究】二、抛掷一粒骰子,向上一面的数字是随机变量记为X ,其可能取的值是________,它取各个值的概率P 为多少?请填写下表:X P新知2 概率分布列 概率分布表一地般地,假,假定定机随机变变量X 有n 个不同的,取值,它它分们分别别是12,,,n x x x ×××,且(),1,2,,,i i P X x p i n ===××× ①① 则称①为随机变量则称①为随机变量X 的概率分布列,简称为X 的分布列.我们将下表我们将下表X 1x 2xn x P1p2pn p称为随机变量X 的概率分布表,它和①都叫做随机变量X 的概率分布.15x 0 1 2P3131 61,-,-X0 1 2 lP_________78P AB与BB,A与与B,AB,A与与B,AC D B A M A 与A 展开式中第展开式中第 项系数及其类似,此时项系数及其类似,此时a= ,b= ,x= .11. 甲、乙、丙三台机床各自独立地加工同一种零件,丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92(1)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.2.5.1 2.5.1 离散型随机变量的均值离散型随机变量的均值离散型随机变量的均值学习目标:1.1.理解并应用数学期望(均值)来解决具体问题。
第二章概率§二项分布江苏省新海高级中学闫辉一、教学目标:1知识与技能(1)理解n次独立重复试验模型;理解二项分布的概念;(2)能利用n次独立重复试验模型及二项分布解决一些简单的实际问题。
2过程与方法在具体问题的解决过程中,领会二项分布需要满足的条件,培养运用概率模型解决实际问题的能力。
3在利用二项分布解决一些简单的实际问题过程中,深化对某些随机现象的认识,进一步体会数学在日常生活中的广泛运用。
二、教学重点和难点:重点:理解n次独立重复试验模型;理解二项分布的概念;难点:利用二项分布解决一些简单的实际问题。
三、教学方法:自主探究,合作交流和启发式相结合四.教学过程:(一)复习:超几何分布(二)新课引入:,且各次击中目标与否是相互独立的。
用X 引例某射击运动员进行了4次射击,假设每次击中目标的概率均为34表示4次射击中击中目标的次数,求X的分布列。
阅读并回答本节思考交流1一、n次独立重复试验1n次独立重复试验的定义:一般指在同样条件下可以重复进行的,各次之间相互独立的一种试验。
2.n次独立重复试验的特点:⑴每次试验只有两种相互独立的结果,分别可以称为“成功”和“失败”;⑵每次试验“成功”的概率为p ,每次试验“失败”的概率为1p -;⑶各次试验之间是相互独立的。
观察:二项式413()44+ 的二项展开式: 思考:X 的分布列4413()()()44k k k P X k C -== 相当于二项展开式的什么?二、二项分布二项分布的定义:在n 次独立重复试验中,某事件A 在每次试验中“成功”的概率为p 。
若变量X 表示在n 次试验中事件A “成功”的次数。
()(1)k k n k n P X k C p p -==- ,0,1,2,3,k n =⋅⋅⋅ 如果X 的分布列如上所述 ,则称X 服从参数为,n p 的二项分布。
简记为:~(,)X B n p阅读并回答本节思考交流2例1:有N 件产品,其中有M 件次品现从中取出n 件,用X 表示n 次抽取中含有次品的个数 n M ≤,n N M ≤-,M N <⑴采取放回式抽样,求X 的分布列;⑵采取不放回式抽样,求X 的分布列;例2某公司安装了3台报警器,它们彼此独立工作,且发生险情时每台报警器报警的概率均为0.9。
2.4 二项分布学习目标 1.理解n次独立重复试验的模型.2.掌握二项分布公式.3.能利用独立重复试验的模型及二项分布解决一些简单的实际问题.知识点一独立重复试验思考1 要研究抛掷硬币的规律,需做大量的掷硬币试验,试验的条件有什么要求?思考2 试验结果有哪些?思考3 各次试验的结果有无影响?梳理n次独立重复试验的特点(1)由________次试验构成.(2)每次试验____________完成,每次试验的结果仅有____________的状态,即________.(3)每次试验中P(A)=p>0.特别地,n次独立重复试验也称为伯努利试验.知识点二二项分布在体育课上,某同学做投篮训练,他连续投篮3次,每次投篮的命中率都是0.8,用A i(i=1,2,3)表示第i次投篮命中这个事件,用B k表示仅投中k次这个事件.思考1 用A i如何表示B1,并求P(B1).思考2 试求P(B2)和P(B3).梳理一般地,在n次独立重复试验中,每次试验事件A发生的概率均为p(0<p<1),即P(A)=p,P(A)=1-p=q.若随机变量X的分布列为P(X=k)=C k n p k q n-k,其中0<p<1,p+q=1,k=0,1,2,…,n,则称X服从参数为n,p的二项分布,记作X~B(n,p).类型一求独立重复试验的概率例1 甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标相互之间没有影响.(结果需用分数作答)引申探究若本例条件不变,求两人各射击2次,甲、乙各击中1次的概率.(1)求甲射击3次,至少有1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率.反思与感悟独立重复试验概率求法的三个步骤(1)判断:依据n次独立重复试验的特征,判断所给试验是否为独立重复试验.(2)分拆:判断所求事件是否需要分拆.(3)计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.跟踪训练1 9粒种子分别种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为12.若一个坑内至少有1粒种子发芽,则这个坑不需要补种,否则这个坑需要补种种子. (1)求甲坑不需要补种的概率;(2)记3个坑中恰好有1个坑不需要补种的概率为P 1,另记有坑需要补种的概率为P 2,求P 1+P 2的值.类型二 二项分布例2 学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱). (1)求在1次游戏中, ①摸出3个白球的概率; ②获奖的概率;(2)求在2次游戏中获奖次数X 的概率分布.反思与感悟 (1)当X 服从二项分布时,应弄清X ~B (n ,p )中的试验次数n 与成功概率p . (2)解决二项分布问题的两个关注点 ①对于公式P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n ),必须在满足独立重复试验时才能应用,否则不能应用该公式;②判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验是独立重复地进行了n 次.跟踪训练2 袋子中有8个白球,2个黑球,从中随机地连续抽取三次,求有放回时,取到黑球个数的概率分布.类型三 二项分布的综合应用例3 一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)求这名学生在途中遇到红灯的次数ξ的概率分布;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的概率分布; (3)这名学生在途中至少遇到一次红灯的概率.反思与感悟 对于概率问题的综合题,首先,要准确地确定事件的性质,把问题化归为古典概型、互斥事件、独立事件、独立重复试验四类事件中的某一种;其次,要判断事件是A +B 还是AB ,确定事件至少有一个发生,还是同时发生,分别应用相加或相乘事件公式;最后,选用相应的求古典概型、互斥事件、条件概率、独立事件、n 次独立重复试验的概率公式求解. 跟踪训练3 一个口袋内有n (n >3)个大小相同的球,其中3个红球和(n -3)个白球,已知从口袋中随机取出1个球是红球的概率为p .若6p ∈N ,有放回地从口袋中连续4次取球(每次只取1个球),在4次取球中恰好2次取到红球的概率大于827,求p 与n 的值.1.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在1次试验中发生的概率p 的取值范围是________.2.某人进行射击训练,一次击中目标的概率为35,经过三次射击,此人至少有两次击中目标的概率为________.3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3∶2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲队打完4局才胜的概率为____________. 4.下列说法正确的是________.(填序号)①某同学投篮的命中率为0.6,在他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6);②某福彩的中奖概率为p ,某人一次买了8张,中奖张数X 是一个随机变量,且X ~B (8,p ); ③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X 是随机变量,且X ~B ⎝ ⎛⎭⎪⎫n ,12.5.从学校乘汽车到火车站的途中有三个交通灯,假设在各个交通灯遇到红灯的事件是相互独立的,并且概率都是25,设ξ为途中遇到红灯的次数,求随机变量ξ的概率分布.1.独立重复试验要从三方面考虑:第一,每次试验是在相同条件下进行的;第二,各次试验的结果是相互独立的;第三,每次试验都只有两种结果,即事件发生,事件不发生. 2.如果1次试验中某事件发生的概率是p ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为P n (k )=C k n p k(1-p )n -k.此概率公式恰为[(1-p )+p ]n展开式的第k +1项,故称该公式为二项分布公式.答案精析问题导学 知识点一思考1 条件相同.思考2 正面向上或反面向上,即事件发生或者不发生. 思考3 无,即各次试验相互独立.梳理 (1)n (2)相互独立 两种对立 A 与A 知识点二思考1 B 1=(A 1A 2 A 3)∪(A 1A 2A 3)∪(A 1 A 2A 3), 因为P (A 1)=P (A 2)=P (A 3)=0.8,且A 1A 2 A 3、A 1A 2A 3、A 1 A 2A 3两两互斥, 故P (B 1)=0.8×0.22+0.8×0.22+0.8×0.22=3×0.8×0.22=0.096.思考2 P (B 2)=3×0.2×0.82=0.384,P (B 3)=0.83=0.512.题型探究例1 解 (1)记“甲射击3次,至少有1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1-P (A 1)=1-(23)3=1927.(2)记“甲射击2次,恰有2次击中目标”为事件A 2,“乙射击2次,恰有1次击中目标”为事件B 2,则P (A 2)=C 22×(23)2=49,P (B 2)=C 12×(34)1×(1-34)=38,由于甲、乙射击相互独立, 故P (A 2B 2)=49×38=16.引申探究解 记“甲击中1次”为事件A 4,记“乙击中1次”为事件B 4, 则P (A 4)=C 12×23×(1-23)=49,P (B 4)=C 12×34×(1-34)=38.所以甲、乙各击中1次的概率为P (A 4B 4)=49×38=16.跟踪训练1 解 (1)因为甲坑内3粒种子都不发芽的概率为⎝ ⎛⎭⎪⎫1-123=18, 所以甲坑不需要补种的概率为 1-18=78. (2)3个坑恰有1个坑不需要补种的概率为P 1=C 13×78×⎝ ⎛⎭⎪⎫182=21512. 由于3个坑都不需补种的概率为⎝ ⎛⎭⎪⎫783,则有坑需要补种的概率为P 2=1-⎝ ⎛⎭⎪⎫783=169512. 所以P 1+P 2=21512+169512=95256.例2 解 (1)①设“在1次游戏中摸出i 个白球”为事件A i (i =0,1,2,3), 则P (A 3)=C 23C 25·C 12C 23=15.②设“在1次游戏中获奖”为事件B , 则B =A 2∪A 3.又P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710.(2)由题意可知,X 的所有可能取值为0,1,2, 则P (X =0)=(1-710)2=9100,P (X =1)=C 12×710×(1-710)=2150, P (X =2)=(710)2=49100. 所以X 的概率分布如下表:跟踪训练2 解 取到黑球个数X 的可能取值为0,1,2,3.又由于每次取到黑球的概率均为15,所以P (X =0)=C 03⎝ ⎛⎭⎪⎫150·⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫15·⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152·⎝ ⎛⎭⎪⎫45=12125,P (X =3)=C 33⎝ ⎛⎭⎪⎫153·⎝ ⎛⎭⎪⎫45=1125. 故X 的概率分布为例3 解 (1)由ξ~B ⎝ ⎛⎭⎪⎫5,3,则 P (ξ=k )=C k 5⎝ ⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫235-k,k =0,1,2,3,4,5. 故ξ的概率分布如下表:(2)η的分布列为P (η=k )=P (前k 个是绿灯,第k +1个是红灯)=⎝ ⎛⎭⎪⎫3k ·3,k =0,1,2,3,4;P (η=5)=P (5个均为绿灯)=⎝ ⎛⎭⎪⎫235.故η的概率分布如下表:(3)所求概率为P (ξ=1-⎝ ⎛⎭⎪⎫235=211243.跟踪训练3 解 由题设知,C 24p 2(1-p )2>827.∵p (1-p )>0,∴不等式化为p (1-p )>29,解得13<p <23,故2<6p <4.又∵6p ∈N ,∴6p =3,即p =12.由3n =12,得n =6. 当堂训练1.[0.4,1] 2.81125 3.162625 4.①②5.解 由题意知ξ~B (3,25),则P (ξ=0)=C 03(25)0(35)3=27125,P (ξ=1)=C 13(25)1(35)2=54125, P (ξ=2)=C 23(25)2(35)1=36125, P (ξ=3)=C 33(25)3=8125. 所以随机变量ξ的概率分布如下表:。
2.4 二项分布独立重复试验及二项分布1.一般地,由n次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A与A,每次试验中P(A)=p>0,我们将这样的试验称为n次独立重复试验,也称为伯努利试验.2.若随机变量X的分布列为P(X=k)=C k n p k q n-k,其中0<p<1,p+q=1,k=0,1,2,…,n,则称X服从参数n,p的二项分布,记作X~B(n,p).预习交流下列随机变量服从二项分布吗?如果服从,其参数各为多少?(1)100件产品有3件不合格品,每次取一件,有放回地抽取三次,取得不合格品的件数;(2)一个箱子内有三个红球,两个白球,从中依次取2个球,取得白球的个数.提示:(1)服从二项分布,其参数n=3,p=3100;(2)不服从二项分布,因为每次取得白球的概率不相同.一、独立重复试验概率的求法某气象站天气预报的准确率为80%,计算,(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.思路分析:由于5次预报是相互独立的,且结果只有两种(准确或不准确),符合独立重复试验模型.解:(1)记预报一次准确为事件A,则P(A)=0.8.5次预报相当于5次独立重复试验.2次准确的概率为:P=C250.82×0.23=0.051 2≈0.05.(2)“5次预报中至少有2次准确”的反面为“5次预报都不准确或只有1次准确”.其概率为P(X=0)+P(X=1)=C050.25+C150.81×0.24=0.006 72≈0.01.所以所求概率为1-P =1-0.01=0.99. (3)说明1,2,4,5次恰有1次准确.所以P =C 140.8×0.23×0.8=0.020 48≈0.02.所以恰有2次准确,且其中第3次预报准确的概率约为0.02.射击运动员在双向飞碟比赛中,每轮比赛连续发射两枪,击中两个飞碟得2分,击中一个飞碟得1分,不击中飞碟得0分,某射击运动员在每轮比赛连续发射两枪时,第一枪命中率为23,第二枪命中率为13,该运动员进行2轮比赛.(1)求该运动员得4分的概率为多少?(2)若该运动员所得分数为X ,求X 的分布列? 解:(1)记“运动员得4分”为事件A ,则P (A )=23×13×23×13=481.(2)X 的可能取值为0,1,2,3,4.P (X =0)=P (X =4)=481;P (X =1)=P (X =3)=C 12⎝ ⎛⎭⎪⎫23⎝ ⎛⎭⎪⎫133+C 12⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫233=2081;P (X =2)=⎝ ⎛⎭⎪⎫134+⎝ ⎛⎭⎪⎫234+4⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=3381;∴X(1)有关事件的概率保持不变;②各次试验的结果互不影响,即各次试验相互独立.并且独立重复试验的每次试验只有两个可能的结果,发生与不发生、成功与失败等.(2)独立重复试验的实际原型是有放回地抽样检验问题. 二、二项分布的实际应用某大厦的一部专用电梯从底层出发后只能在第18,19,20层可以停靠,若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X 表示这5位乘客在第20层下电梯的人数,求随机变量X 的分布列.思路分析:每位乘客在每一层下电梯的概率都是13,服从二项分布,利用二项分布的概率公式求解.解:考查每一位乘客是否在第20层下电梯为一次试验,5位乘客即5次独立重复试验.即X ~B ⎝ ⎛⎪⎫5,1,也就是P (X =k )=C k 5 ⎛⎪⎫1k ⎛⎪⎫25-k,k =0,1,2,3,4,5.从而X 的分布列如表:某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率.(2)求这名学生在上学路上因遇到红灯停留的总时间至多是4 min 的概率.解:(1)记“这名学生在上学路上到第三个路口时首次遇到红灯”为事件A .因为事件A 等于事件“这名学生在第一和第二个路口都没有遇到红灯,在第三个路口遇到红灯”.所以事件A 发生的概率为P (A )=⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-13×13=427.(2)记“这名学生在上学路上遇到红灯停留的总时间至多是4 min”为事件B ,“这名学生在上学路上遇到k 次红灯”为事件B k (k =0,1,2,3,4).由题意得P (B 0)=⎝ ⎛⎭⎪⎫234=1681,P (B 1)=C 14×⎝ ⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫233=3281,P (B 2)=C 24×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫232=827.由于事件B 等价于事件“这名学生在上学路上至多遇到2次红灯”,所以事件B 发生的概率为P (B )=P (B 0)+P (B 1)+P (B 2)=89.对于概率问题的综合题,首先,要准确地确定事件的性质,把问题化归为某一事件的某一类型,最后选用相应的恰当的公式去求解.1.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,则k =__________.答案:2解析:依题意有C k5×⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫125-k =C k +15×⎝ ⎛⎭⎪⎫12k +1⎝ ⎛⎭⎪⎫125-(k +1),所以C k 5=C k +15,∴k =2. 2.把10个骰子全部投出,设出现6点的骰子的个数为X ,则P (X ≤2)=__________.(用式子表示)答案:⎝ ⎛⎭⎪⎫5610+C 110⎝ ⎛⎭⎪⎫161⎝ ⎛⎭⎪⎫569+C 210⎝ ⎛⎭⎪⎫162⎝ ⎛⎭⎪⎫568解析:由题意知X ~B ⎝⎛⎭⎪⎫10,16, ∴P (X ≤2)=P (X =0)+P (X =1)+P (X =2)=⎝ ⎛⎭⎪⎫5610+C 110⎝ ⎛⎭⎪⎫161⎝ ⎛⎭⎪⎫569+C 210⎝ ⎛⎭⎪⎫162⎝ ⎛⎭⎪⎫568.3.若随机变量X ~B ⎝ ⎛⎭⎪⎫5,13,则P (X =k )最大时,k =__________. 答案:1或2解析:依题意P (X =k )=C k5×⎝ ⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫235-k (k =0,1,2,3,4,5).可以求得P (X =0)=32243,P (X =1)=80243,P (X =2)=80243,P (X =3)=40243,P (X =4)=10243,P (X =5)=1243,故当k =1或2时,P (X =k )最大.4.某处有供水龙头5个,调查表明每个水龙头被打开的概率为110,随机变量X 表示同时被打开的水龙头的个数,则P (X =3)=__________.答案:0.008 1解析:由题意X ~B ⎝ ⎛⎭⎪⎫5,110,∴P (X =3)=C 35⎝ ⎛⎭⎪⎫1103⎝ ⎛⎭⎪⎫9102=0.008 1.5.在甲、乙两个队的乒乓球比赛中,比赛的规则是“五局三胜制”,现有甲、乙两队获胜的概率分别为23和13.(1)若前2局乙队以2∶0领先,求最后甲、乙两队各自获胜的概率; (2)求乙队以3∶2获胜的概率.解:(1)由于前2局乙队以2∶0领先,即乙队已经赢了2局,所以甲队要想获胜,须在余下的3局中全部获胜,才能最终获胜,所以甲队获胜的概率是P 1=⎝ ⎛⎭⎪⎫233=827;从而乙队获胜的概率为P 2=1-P 1=1-827=1927.(2)依题意,乙队以3∶2获胜时,第五局必为乙队获胜,且在前4局中乙队有2局获胜(甲队也有2局获胜),故乙队以3∶2获胜的概率为P =C 24×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132×13=881.。
2.6 正态分布1.概率密度曲线对于某一随机变量的频率分布直方图,若数据无限增多且组距无限缩小,那么频率分布直方图上的频率折线将趋于一条光滑的曲线,我们将此曲线称为概率密度曲线.函数表达式P(x)=12πσe-(x-μ)22σ2,x∈R,其中实数μ(μ∈R)和σ(σ>0)为参数图象的特征(1)当x<μ时,曲线上升;当x>μ时,曲线下降. 当曲线向左右两边无限延伸时,以x轴为渐近线(2)正态曲线关于直线x=μ对称(3)σ越大,正态曲线越扁平;σ越小,正态曲线越尖陡(4)在正态曲线下方和x轴上方范围内的区域面积为13.正态分布若X是一个随机变量,则对任给区间(a,b],P(a<X≤b)恰好是正态密度曲线下方和x 轴上(a,b]上方所围成的图形的面积,我们就称随机变量X服从参数为μ和σ2的正态分布,简记为X~N(μ,σ2).4.标准正态分布正态分布N(0,1)称为标准正态分布.5.正态总体在三个特殊区间内取值的概率值落在区间(μ-σ,μ+σ)上的概率约为68.3%;落在区间(μ-2σ,μ+2σ)上的概率约为95.4%;落在区间(μ-3σ,μ+3σ)上的概率约为99.7%.6.中心极限定理在独立地大数量重复试验时,就平均而言,任何一个随机变量的分布都将趋近于正态分布,这就是中心极限定理.1.在正态分布X~N(μ,σ2)中,μ就是随机变量X的均值,σ2就是随机变量X的方差,它们分别反映X取值的平均大小和稳定程度.2.正态密度曲线的性质(1)曲线位于x轴上方,与x轴不相交;(2)曲线是单峰的,它关于直线x=μ对称;(3)曲线在x=μ处达到峰值1σ2π;(4)曲线与x轴之间的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x轴平移,如图①;(6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“尖陡”;σ越大,曲线越“扁平”,如图②.[例1] 如图所示是一个正态密度曲线.试根据该图象写出其正态分布的概率密度函数的解析式,求出随机变量的均值和方差.[思路点拨] 解答本题可首先借助图象观察该函数的对称轴及最大值,然后结合φμ,σ(x )=12πσe -(x -μ)22σ2可知μ及σ的值. [精解详析] 从给出的正态密度曲线可知,该正态密度曲线关于直线x =20对称,最大值是12π,所以μ=20.12π·σ=12π,解得σ= 2.于是概率密度函数的解析式是f (x )=12π· e -(x -20)24,x ∈(-∞,∞).随机变量的均值是μ=20, 方差是σ2=()22=2.[一点通] 利用图象求正态密度曲线的方程.关键是确定μ,σ.结合图象,利用正态密度曲线的两条性质:一是对称轴,二是最值即可求出μ,σ.相应参数确定了,代入f (x )=12πσe -(x -μ)22σ2即可.1.下列函数是正态密度函数的是________.(1)f(x)=12πσe(x-μ)22σ2,μ,σ(σ>0)都是实数(2)f(x)=2π2πe-x22(3)f(x)=122πe-(x-1)24(4)f(x)=12πex22解析:本题考查正态密度函数,可对照f(x)=12π·σe-(x-μ)22σ2,其中指数部分的σ应与系数的分母处的σ保持一致,系数为正数且指数为负数.(1)有两处错误,分别是2π·σ错为2πσ,指数错为正数.(3)从系数可得σ=2,从而指数处可得σ=2,显然不符.(4)中指数为正,错误.答案:(2)2.若一个正态分布的概率密度函数是一个偶函数,且该函数的最大值为142π.求该正态分布的概率密度函数的解析式.解:由于该正态分布的概率密度函数是一个偶函数,所以其图象关于y轴对称,即μ=0.由于12πσ=12π·4,得σ=4,故该正态分布的概率密度函数的解析式是φμ,σ(x)=142πe-x232,x∈(-∞,+∞).[例2] 关于正态曲线φ(x)=12πσe-(x-μ)22σ2,x∈(-∞,+∞),σ>0有以下命题:①正态密度曲线关于直线x=μ对称;②正态密度曲线关于直线x=σ对称;③正态密度曲线与x轴一定不相交;④正态密度曲线与x轴一定相交;⑤正态密度曲线所代表的函数是偶函数;⑥曲线对称轴由μ确定,曲线的形状由σ决定;⑦当μ一定时,σ越大,曲线越“扁平”,σ越小,曲线越“尖陡”.其中正确的是________(填序号).[思路点拨] 根据正态分布曲线的性质可直接判断.[精解详析] 根据正态分布曲线的性质可得,由于正态密度曲线是一条关于直线x=μ对称,在x=μ处于最高点并由该点向左、右两边无限延伸,逐渐降低的曲线,该曲线总是位于x轴的上方,曲线形状由σ决定,而且当μ一定时,比较若干个不同的σ对应的正态曲线,可以发现σ越大,曲线越“扁平”,σ越小,曲线越“尖陡”.故①③⑥⑦正确.[答案] ①③⑥⑦[一点通] 解决正态曲线的性质问题,应对正态曲线的简单性质要熟练掌握并且能够应用,尤其是对称性,最高点的位置,曲线左右无限延伸并逐渐降低,要结合正态曲线的图象理解并掌握.3.设两个正态分布N(μ1,σ21)(σ1>0)和N(μ2,σ22)(σ2>0)的密度函数图象如图所示.则下列说法正确的是________.①μ1<μ2,σ1<σ2;②μ1<μ2,σ1>σ2;③μ1>μ2,σ1<σ2;④μ1>μ2,σ1>σ2.解析:当μ一定时,曲线的形状由σ确定.σ越大,曲线越“扁平”,表示总体越分散;σ越小,曲线越“尖陡”,表示总体的分布越集中,这个性质可直接判断.由正态曲线性质知μ1<μ2,σ1<σ2.答案:①4.标准正态分布N(0,1)在区间(-2,-1)和(1,2)上取值的概率分别为p1,p2,则p1与p2的大小关系为________.解析:根据正态曲线的特点,关于x=0对称,故在区间(-2,-1)和(1,2)上取值的概率相等,即p1=p2.答案:p1=p2[例3] 若随机变量X~N(0,1),查标准正态分布表,求:(1)P(X≤1.26);(2)P(X>1.26);(3)P(0.51<X≤3.2);(4)P(X<-2.1).[思路点拨] 借助正态密度曲线的性质将问题转化为P(X≤m)的形式,然后查标准正态分布表求值.[精解详析] (1)P(X≤1.26)=0.896 2.(2)P(X>1.26)=1-P(X≤1.26)=1-0.896 2=0.103 8.(3)P(0.51<X≤1.2)=P(X≤1.2)-P(X≤0.51)=0.884 9-0.695 0=0.189 9.(4)P(X<-2.1)=P(X>2.1)=1-P(X≤2.1)=1-0.982 1=0.017 9.[一点通] 由于标准正态分布表是针对X≥0设计的,若X<0,则须转换再查表,在查表前,可画个草图将所求的概率进行转化,然后再查表.5.已知随机变量X服从正态分布N(4,σ2),若P(X>8)=0.4则P(X<0)=________.解析:∵随机变量X服从正态分布N(4,σ2),μ=4,P(X>8)=0.4,∴P(X<0)=P(X>8)=0.4.答案:0.46.已知X~N(3,σ2),若P(X≤2)=0.2,则P(X≤4)等于________.解析:由正态分布知识,因为X~N(3,σ2),所以P(X≤3)=0.5,P(X≤2)=0.2=P(X>4),所以P(X≤4)=1-P(X>4)=1-0.2=0.8.答案:0.81.求随机变量的正态密度函数时,只需求出μσ即可,也就是求出样本的均值及标准差.2.在利用对称性转化区间时,要注意正态曲线的对称性.课下能力提升(十七)一、填空题1.正态曲线关于y轴对称,当且仅当它所对应的正态总体均值为________.解析:正态曲线关于直线x=μ对称,当曲线关于y轴对称时,说明μ=0.答案:02.设随机变量X~N(1,4),若P(X≥a+b)=P(X≤a-b),则实数a的值为________.解析:∵P(X≥a+b)=P(X≤a-b),∴(a+b)+(a-b)2=1.∴a=1.答案:13.已知随机变量X服从正态分布N(0,σ2),若P(X>2)=0.023,则P(-2≤X≤2)=________.解析:∵随机变量X服从标准正态分布N(0,σ2),∴正态曲线关于直线x=0对称,又P(X>2)=0.023.∴P(X<-2)=0.023.∴P(-2≤X≤2)=1-2×0.023=0.954.答案:0.9544. 右图是三个正态分布X~N(0,0.25),Y~N(0,1),Z~N(0,4)的密度曲线,则三个随机变量X,Y,Z对应曲线分别是图中的________、________、________.解析:在密度曲线中,σ越大,曲线越“矮胖”;σ越小,曲线越“瘦高”. 答案:① ② ③5.某中学有1 000人参加高考并且数学成绩近似地服从正态分布N (100,102),则此校数学成绩在120分以上的考生人数约为________(φ(2)≈0.977).解析:用X 表示此中学数学高考成绩,则X ~N (100,102),∴P (X >120)=1-P (X ≤120)=1-φ⎝⎛⎭⎪⎫120-10010≈0.023,∴120分以上的考生人数约为1 000×0.023=23. 答案:23 二、解答题6.如图为某地成年男性体重的正态分布密度曲线图,试根据图象写出其正态分布密度函数,并求出随机变量的均值与方差.解:由图易知,该正态曲线关于x =72对称,最大值为1102π,所以μ=72.再1σ2π=1102π得σ=10, 于是概率密度函数的解析式是f (x )=1102π·e -(x -72)2200,x ∈(-∞,+∞). 总体随机变量的均值是μ=72,方差是σ2=100.7.在某市组织的一次数学竞赛中全体参赛学生的成绩近似服从正态分布N (60,100),已知成绩在90分以上的学生有13人.(1)求此次参加竞赛的学生总数共有多少人?(2)若计划奖励竞赛成绩排在前228名的学生,问受奖学生的分数线是多少? 解:设学生的得分情况为随机变量X ,X ~N (60,100). 则μ=60,σ=10.(1)P (30<X ≤90)=P (60-3×10<X ≤60+3×10)=0.997 4.∴P (X >90)=12[1-P (30<X ≤90)]=0.001 3,∴学生总数为:130.001 3=10 000(人).(2)成绩排在前228名的学生数占总数的0.022 8. 设分数线为x .则P (X ≥x 0)=0.022 8.∴P (120-x 0<x <x 0)=1-2×0.022 8=0.954 4. 又知P (60-2×10<x <60+2×10)=0.954 4.∴x=60+2×10=80(分).即受奖学生的分数线是80分.8.若随机变量X~N(0,1),查表求:(1)P(0<X≤2.31);(2)P(1.38≤x<0);(3)P(|X|<0.5).解:(1)P(0<X≤2.31)=P(X≤2.31)-P(X≤0) =0.989 6-0.5=0.489 6.(2)P(-1.38≤X<0)=P(0<X≤1.38)=P(X≤1.38)-P(X≤0)=0.916 2-0.5=0.416 2.(3)P(|X|<0.5)=P(-0.5<X<0.5)=P(-0.5<X≤0)+P(0<X<0.5)=2P(0<X<0.5)=2[P(X<0.5)-P(X≤0)]=2(0.691 5-0.5)=2×0.191 5=0.383 0.。
2.6 正态分布1.概率密度曲线对于某一随机变量的频率分布直方图,若数据无限增多且组距无限缩小,那么频率分布直方图上的频率折线将趋于一条光滑的曲线,我们将此曲线称为概率密度曲线.3.正态分布若X 是一个随机变量,则对任给区间(a ,b ],P (a <X ≤b )恰好是正态密度曲线下方和x轴上(a ,b ]上方所围成的图形的面积,我们就称随机变量X 服从参数为μ和σ2的正态分布,简记为X ~N (μ,σ2).4.标准正态分布正态分布N (0,1)称为标准正态分布.5.正态总体在三个特殊区间内取值的概率值落在区间(μ-σ,μ+σ)上的概率约为68.3%; 落在区间(μ-2σ,μ+2σ)上的概率约为95.4%; 落在区间(μ-3σ,μ+3σ)上的概率约为99.7%. 6.中心极限定理在独立地大数量重复试验时,就平均而言,任何一个随机变量的分布都将趋近于正态分布,这就是中心极限定理.1.在正态分布X ~N (μ,σ2)中,μ就是随机变量X 的均值,σ2就是随机变量X 的方差,它们分别反映X 取值的平均大小和稳定程度.2.正态密度曲线的性质(1)曲线位于x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x =μ对称;(3)曲线在x =μ处达到峰值1σ2π;(4)曲线与x 轴之间的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x 轴平移,如图①;(6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“尖陡”;σ越大,曲线越“扁平”,如图②.[例1] 如图所示是一个正态密度曲线.试根据该图象写出其正态分布的概率密度函数的解析式,求出随机变量的均值和方差.[思路点拨] 解答本题可首先借助图象观察该函数的对称轴及最大值,然后结合φμ,σ(x )=12πσe -(x -μ)22σ2可知μ及σ的值. [精解详析] 从给出的正态密度曲线可知,该正态密度曲线关于直线x =20对称,最大值是12π,所以μ=20.12π·σ=12π,解得σ= 2.于是概率密度函数的解析式是f (x )=12π· e -(x -20)24,x ∈(-∞,∞).随机变量的均值是μ=20, 方差是σ2=()22=2.[一点通] 利用图象求正态密度曲线的方程.关键是确定μ,σ.结合图象,利用正态密度曲线的两条性质:一是对称轴,二是最值即可求出μ,σ.相应参数确定了,代入f (x )=12πσe-(x-μ)22σ2即可.1.下列函数是正态密度函数的是________.(1)f(x)=12πσe(x-μ)22σ2,μ,σ(σ>0)都是实数(2)f(x)=2π2πe-x22(3)f(x)=122πe-(x-1)24(4)f(x)=12πex22解析:本题考查正态密度函数,可对照f(x)=12π·σe-(x-μ)22σ2,其中指数部分的σ应与系数的分母处的σ保持一致,系数为正数且指数为负数.(1)有两处错误,分别是2π·σ错为2πσ,指数错为正数.(3)从系数可得σ=2,从而指数处可得σ=2,显然不符.(4)中指数为正,错误.答案:(2)2.若一个正态分布的概率密度函数是一个偶函数,且该函数的最大值为142π.求该正态分布的概率密度函数的解析式.解:由于该正态分布的概率密度函数是一个偶函数,所以其图象关于y轴对称,即μ=0.由于12πσ=12π·4,得σ=4,故该正态分布的概率密度函数的解析式是φμ,σ(x)=142πe-x232,x∈(-∞,+∞).[例2] 关于正态曲线φ(x)=12πσe-(x-μ)22σ2,x∈(-∞,+∞),σ>0有以下命题:①正态密度曲线关于直线x=μ对称;②正态密度曲线关于直线x=σ对称;③正态密度曲线与x轴一定不相交;④正态密度曲线与x轴一定相交;⑤正态密度曲线所代表的函数是偶函数;⑥曲线对称轴由μ确定,曲线的形状由σ决定;⑦当μ一定时,σ越大,曲线越“扁平”,σ越小,曲线越“尖陡”.其中正确的是________(填序号).[思路点拨] 根据正态分布曲线的性质可直接判断.[精解详析] 根据正态分布曲线的性质可得,由于正态密度曲线是一条关于直线x=μ对称,在x=μ处于最高点并由该点向左、右两边无限延伸,逐渐降低的曲线,该曲线总是位于x轴的上方,曲线形状由σ决定,而且当μ一定时,比较若干个不同的σ对应的正态曲线,可以发现σ越大,曲线越“扁平”,σ越小,曲线越“尖陡”.故①③⑥⑦正确.[答案] ①③⑥⑦[一点通] 解决正态曲线的性质问题,应对正态曲线的简单性质要熟练掌握并且能够应用,尤其是对称性,最高点的位置,曲线左右无限延伸并逐渐降低,要结合正态曲线的图象理解并掌握.3.设两个正态分布N(μ1,σ21)(σ1>0)和N(μ2,σ22)(σ2>0)的密度函数图象如图所示.则下列说法正确的是________.①μ1<μ2,σ1<σ2;②μ1<μ2,σ1>σ2;③μ1>μ2,σ1<σ2;④μ1>μ2,σ1>σ2.解析:当μ一定时,曲线的形状由σ确定.σ越大,曲线越“扁平”,表示总体越分散;σ越小,曲线越“尖陡”,表示总体的分布越集中,这个性质可直接判断.由正态曲线性质知μ1<μ2,σ1<σ2.答案:①4.标准正态分布N(0,1)在区间(-2,-1)和(1,2)上取值的概率分别为p1,p2,则p1与p2的大小关系为________.解析:根据正态曲线的特点,关于x=0对称,故在区间(-2,-1)和(1,2)上取值的概率相等,即p1=p2.答案:p1=p2[例3] 若随机变量X~N(0,1),查标准正态分布表,求:(1)P(X≤1.26);(2)P(X>1.26);(3)P(0.51<X≤3.2);(4)P(X<-2.1).[思路点拨] 借助正态密度曲线的性质将问题转化为P(X≤m)的形式,然后查标准正态分布表求值.[精解详析] (1)P(X≤1.26)=0.896 2.(2)P(X>1.26)=1-P(X≤1.26)=1-0.896 2=0.103 8.(3)P(0.51<X≤1.2)=P(X≤1.2)-P(X≤0.51)=0.884 9-0.695 0=0.189 9.(4)P(X<-2.1)=P(X>2.1)=1-P(X≤2.1)=1-0.982 1=0.017 9.[一点通] 由于标准正态分布表是针对X≥0设计的,若X<0,则须转换再查表,在查表前,可画个草图将所求的概率进行转化,然后再查表.5.已知随机变量X服从正态分布N(4,σ2),若P(X>8)=0.4则P(X<0)=________.解析:∵随机变量X服从正态分布N(4,σ2),μ=4,P(X>8)=0.4,∴P(X<0)=P(X>8)=0.4.答案:0.46.已知X~N(3,σ2),若P(X≤2)=0.2,则P(X≤4)等于________.解析:由正态分布知识,因为X~N(3,σ2),所以P(X≤3)=0.5,P(X≤2)=0.2=P(X>4),所以P(X≤4)=1-P(X>4)=1-0.2=0.8.答案:0.81.求随机变量的正态密度函数时,只需求出μσ即可,也就是求出样本的均值及标准差.2.在利用对称性转化区间时,要注意正态曲线的对称性.课下能力提升(十七)一、填空题1.正态曲线关于y轴对称,当且仅当它所对应的正态总体均值为________.解析:正态曲线关于直线x=μ对称,当曲线关于y轴对称时,说明μ=0.答案:02.设随机变量X~N(1,4),若P(X≥a+b)=P(X≤a-b),则实数a的值为________.解析:∵P(X≥a+b)=P(X≤a-b),∴(a+b)+(a-b)2=1.∴a=1.答案:13.已知随机变量X服从正态分布N(0,σ2),若P(X>2)=0.023,则P(-2≤X≤2)=________.解析:∵随机变量X服从标准正态分布N(0,σ2),∴正态曲线关于直线x=0对称,又P(X>2)=0.023.∴P(X<-2)=0.023.∴P(-2≤X≤2)=1-2×0.023=0.954.答案:0.9544. 右图是三个正态分布X ~N (0,0.25),Y ~N (0,1),Z ~N (0,4)的密度曲线,则三个随机变量X ,Y ,Z 对应曲线分别是图中的________、________、________.解析:在密度曲线中,σ越大,曲线越“矮胖”;σ越小,曲线越“瘦高”. 答案:① ② ③5.某中学有1 000人参加高考并且数学成绩近似地服从正态分布N (100,102),则此校数学成绩在120分以上的考生人数约为________(φ(2)≈0.977).解析:用X 表示此中学数学高考成绩,则X ~N (100,102),∴P (X >120)=1-P (X ≤120)=1-φ⎝⎛⎭⎪⎫120-10010≈0.023,∴120分以上的考生人数约为1 000×0.023=23. 答案:23 二、解答题6.如图为某地成年男性体重的正态分布密度曲线图,试根据图象写出其正态分布密度函数,并求出随机变量的均值与方差.解:由图易知,该正态曲线关于x =72对称,最大值为1102π,所以μ=72.再1σ2π=1102π得σ=10,于是概率密度函数的解析式是f (x )=1102π·e -(x -72)2200,x ∈(-∞,+∞). 总体随机变量的均值是μ=72,方差是σ2=100.7.在某市组织的一次数学竞赛中全体参赛学生的成绩近似服从正态分布N (60,100),已知成绩在90分以上的学生有13人.(1)求此次参加竞赛的学生总数共有多少人?(2)若计划奖励竞赛成绩排在前228名的学生,问受奖学生的分数线是多少? 解:设学生的得分情况为随机变量X ,X ~N (60,100). 则μ=60,σ=10.(1)P (30<X ≤90)=P (60-3×10<X ≤60+3×10)=0.997 4.∴P (X >90)=12[1-P (30<X ≤90)]=0.001 3,∴学生总数为:130.001 3=10 000(人).(2)成绩排在前228名的学生数占总数的0.022 8. 设分数线为x .则P (X ≥x 0)=0.022 8.∴P (120-x 0<x <x 0)=1-2×0.022 8=0.954 4. 又知P (60-2×10<x <60+2×10)=0.954 4. ∴x =60+2×10=80(分). 即受奖学生的分数线是80分.8.若随机变量X ~N (0,1),查表求: (1)P (0<X ≤2.31);(2)P (1.38≤x <0); (3)P (|X |<0.5).解:(1)P (0<X ≤2.31)=P (X ≤2.31)-P (X ≤0) =0.989 6-0.5=0.489 6.(2)P (-1.38≤X <0)=P (0<X ≤1.38) =P (X ≤1.38)-P (X ≤0) =0.916 2-0.5=0.416 2.(3)P (|X |<0.5)=P (-0.5<X <0.5) =P (-0.5<X ≤0)+P (0<X <0.5) =2P (0<X <0.5)=2[P (X <0.5)-P (X ≤0)] =2(0.691 5-0.5)=2×0.191 5=0.383 0.。
2.4 二项分布学习目标 1.理解n次独立重复试验的模型.2.掌握二项分布公式.3.能利用独立重复试验的模型及二项分布解决一些简单的实际问题.知识点一独立重复试验思考1 要研究抛掷硬币的规律,需做大量的掷硬币试验,试验的条件有什么要求?思考2 试验结果有哪些?思考3 各次试验的结果有无影响?梳理n次独立重复试验的特点(1)由________次试验构成.(2)每次试验____________完成,每次试验的结果仅有____________的状态,即________.(3)每次试验中P(A)=p>0.特别地,n次独立重复试验也称为伯努利试验.知识点二二项分布在体育课上,某同学做投篮训练,他连续投篮3次,每次投篮的命中率都是0.8,用A i(i=1,2,3)表示第i次投篮命中这个事件,用B k表示仅投中k次这个事件.思考1 用A i如何表示B1,并求P(B1).思考2 试求P(B2)和P(B3).梳理一般地,在n次独立重复试验中,每次试验事件A发生的概率均为p(0<p<1),即P(A)=p,P(A)=1-p=q.若随机变量X的分布列为P(X=k)=C k n p k q n-k,其中0<p<1,p+q=1,k=0,1,2,…,n,则称X服从参数为n,p的二项分布,记作X~B(n,p).类型一求独立重复试验的概率例1 甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标相互之间没有影响.(结果需用分数作答)引申探究若本例条件不变,求两人各射击2次,甲、乙各击中1次的概率.(1)求甲射击3次,至少有1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率.反思与感悟 独立重复试验概率求法的三个步骤(1)判断:依据n 次独立重复试验的特征,判断所给试验是否为独立重复试验. (2)分拆:判断所求事件是否需要分拆.(3)计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.跟踪训练1 9粒种子分别种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为12.若一个坑内至少有1粒种子发芽,则这个坑不需要补种,否则这个坑需要补种种子. (1)求甲坑不需要补种的概率;(2)记3个坑中恰好有1个坑不需要补种的概率为P 1,另记有坑需要补种的概率为P 2,求P 1+P 2的值.类型二 二项分布例2 学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱). (1)求在1次游戏中, ①摸出3个白球的概率; ②获奖的概率;(2)求在2次游戏中获奖次数X 的概率分布.反思与感悟 (1)当X 服从二项分布时,应弄清X ~B (n ,p )中的试验次数n 与成功概率p . (2)解决二项分布问题的两个关注点 ①对于公式P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n ),必须在满足独立重复试验时才能应用,否则不能应用该公式;②判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验是独立重复地进行了n 次.跟踪训练2 袋子中有8个白球,2个黑球,从中随机地连续抽取三次,求有放回时,取到黑球个数的概率分布.类型三 二项分布的综合应用例3 一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)求这名学生在途中遇到红灯的次数ξ的概率分布;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的概率分布; (3)这名学生在途中至少遇到一次红灯的概率.反思与感悟对于概率问题的综合题,首先,要准确地确定事件的性质,把问题化归为古典概型、互斥事件、独立事件、独立重复试验四类事件中的某一种;其次,要判断事件是A+B 还是AB,确定事件至少有一个发生,还是同时发生,分别应用相加或相乘事件公式;最后,选用相应的求古典概型、互斥事件、条件概率、独立事件、n次独立重复试验的概率公式求解.跟踪训练3 一个口袋内有n(n>3)个大小相同的球,其中3个红球和(n-3)个白球,已知从口袋中随机取出1个球是红球的概率为p.若6p∈N,有放回地从口袋中连续4次取球(每次只取1个球),在4次取球中恰好2次取到红球的概率大于827,求p与n的值.1.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在1次试验中发生的概率p 的取值范围是________.2.某人进行射击训练,一次击中目标的概率为35,经过三次射击,此人至少有两次击中目标的概率为________.3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3∶2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲队打完4局才胜的概率为____________. 4.下列说法正确的是________.(填序号)①某同学投篮的命中率为0.6,在他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6);②某福彩的中奖概率为p ,某人一次买了8张,中奖张数X 是一个随机变量,且X ~B (8,p ); ③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X 是随机变量,且X ~B ⎝ ⎛⎭⎪⎫n ,12.5.从学校乘汽车到火车站的途中有三个交通灯,假设在各个交通灯遇到红灯的事件是相互独立的,并且概率都是25,设ξ为途中遇到红灯的次数,求随机变量ξ的概率分布.1.独立重复试验要从三方面考虑:第一,每次试验是在相同条件下进行的;第二,各次试验的结果是相互独立的;第三,每次试验都只有两种结果,即事件发生,事件不发生. 2.如果1次试验中某事件发生的概率是p ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k.此概率公式恰为[(1-p )+p ]n展开式的第k +1项,故称该公式为二项分布公式.答案精析问题导学 知识点一思考1 条件相同.思考2 正面向上或反面向上,即事件发生或者不发生. 思考3 无,即各次试验相互独立.梳理 (1)n (2)相互独立 两种对立 A 与A 知识点二思考1 B 1=(A 1A 2 A 3)∪(A 1A 2A 3)∪(A 1 A 2A 3), 因为P (A 1)=P (A 2)=P (A 3)=0.8,且A 1A 2 A 3、A 1A 2A 3、A 1 A 2A 3两两互斥, 故P (B 1)=0.8×0.22+0.8×0.22+0.8×0.22=3×0.8×0.22=0.096.思考2 P (B 2)=3×0.2×0.82=0.384,P (B 3)=0.83=0.512.题型探究例1 解 (1)记“甲射击3次,至少有1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1-P (A 1)=1-(23)3=1927.(2)记“甲射击2次,恰有2次击中目标”为事件A 2,“乙射击2次,恰有1次击中目标”为事件B 2,则P (A 2)=C 22×(23)2=49,P (B 2)=C 12×(34)1×(1-34)=38,由于甲、乙射击相互独立, 故P (A 2B 2)=49×38=16.引申探究解 记“甲击中1次”为事件A 4,记“乙击中1次”为事件B 4, 则P (A 4)=C 12×23×(1-23)=49,P (B 4)=C 12×34×(1-34)=38.所以甲、乙各击中1次的概率为P (A 4B 4)=49×38=16.跟踪训练1 解 (1)因为甲坑内3粒种子都不发芽的概率为⎝ ⎛⎭⎪⎫1-123=18, 所以甲坑不需要补种的概率为 1-18=78. (2)3个坑恰有1个坑不需要补种的概率为P 1=C 13×78×⎝ ⎛⎭⎪⎫182=21512. 由于3个坑都不需补种的概率为⎝ ⎛⎭⎪⎫783,则有坑需要补种的概率为P 2=1-⎝ ⎛⎭⎪⎫783=169512. 所以P 1+P 2=21512+169512=95256.例2 解 (1)①设“在1次游戏中摸出i 个白球”为事件A i (i =0,1,2,3), 则P (A 3)=C 23C 25·C 12C 23=15.②设“在1次游戏中获奖”为事件B , 则B =A 2∪A 3.又P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710.(2)由题意可知,X 的所有可能取值为0,1,2, 则P (X =0)=(1-710)2=9100,P (X =1)=C 12×710×(1-710)=2150, P (X =2)=(710)2=49100. 所以X 的概率分布如下表:跟踪训练2 解 取到黑球个数X 的可能取值为0,1,2,3.又由于每次取到黑球的概率均为15,所以P (X =0)=C 03⎝ ⎛⎭⎪⎫150·⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫15·⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152·⎝ ⎛⎭⎪⎫45=12125,P (X =3)=C 33⎝ ⎛⎭⎪⎫153·⎝ ⎛⎭⎪⎫45=1125. 故X 的概率分布为例3 解 (1)由ξ~B ⎝ ⎛⎭⎪⎫5,3,则 P (ξ=k )=C k 5⎝ ⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫235-k,k =0,1,2,3,4,5. 故ξ的概率分布如下表:(2)η的分布列为P (η=k )=P (前k 个是绿灯,第k +1个是红灯)=⎝ ⎛⎭⎪⎫3k ·3,k =0,1,2,3,4;P (η=5)=P (5个均为绿灯)=⎝ ⎛⎭⎪⎫235.故η的概率分布如下表:(3)所求概率为P (ξ=1-⎝ ⎛⎭⎪⎫235=211243.********灿若寒星竭诚为您提供优质文档*********灿若寒星 跟踪训练3 解 由题设知,C 24p 2(1-p )2>827. ∵p (1-p )>0,∴不等式化为p (1-p )>29, 解得13<p <23,故2<6p <4. 又∵6p ∈N ,∴6p =3,即p =12. 由3n =12,得n =6. 当堂训练1.[0.4,1] 2.81125 3.1626254.①② 5.解 由题意知ξ~B (3,25), 则P (ξ=0)=C 03(25)0(35)3=27125, P (ξ=1)=C 13(25)1(35)2=54125, P (ξ=2)=C 23(25)2(35)1=36125, P (ξ=3)=C 33(25)3=8125. 所以随机变量ξ的概率分布如下表:。
2.4. 二项分布 - 苏教版选修2-3教案一、教学目标1.了解二项分布的概念和特点;2.掌握计算二项分布概率的方法;3.能够运用二项分布解决实际问题。
二、教学重点1.二项分布的概念和特点;2.计算二项分布概率的方法。
三、教学难点二项分布的实际应用。
四、教学内容及时间安排教学内容时间(分钟)二项分布的概念15二项分布的特点10计算二项分布概率的方法25二项分布的实际应用20五、教学过程及课时安排第一课时(40分钟)1. 导入(5分钟)通过小组讨论的方式,复习离散型随机变量的概念,并引出本节课重点内容。
2. 二项分布的概念(15分钟)讲解二项分布的概念,强调其与伯努利分布的关系,并通过实例进行说明。
3. 二项分布的特点(10分钟)讲解二项分布的特点,包括随机试验、重复试验、试验结果的二元性、各次试验相互独立等。
4. 二项分布的计算方法(25分钟)讲解二项分布概率计算的方法,包括公式法和表格法,并提供相应例题进行讲解和练习。
第二课时(40分钟)1. 导入(5分钟)通过回顾上一节课的内容,引出二项分布的实际应用。
2. 二项分布的实际应用(20分钟)以实际例子说明二项分布在实际生活中的应用,并通过实例分析掌握二项分布求解实际问题的方法。
3. 应用题解题方法(15分钟)提供一些常见的应用题,并讲解应用题的解题方法。
4. 总结(5分钟)回顾本次教学内容,强调本节课重点和难点,提出下一节课预习内容。
六、教学方法讲授法、练习法、实验法。
七、教材及参考书目教材苏教版高中数学选修2-3参考书目1.《高中数学课程标准实验教材》(人民教育出版社)2.《高中数学教学参考书》(人民教育出版社)3.《高中数学教学方法与研究》(人民教育出版社)。
2.1 随机变量及概率分布1.随机变量一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X ,Y ,Z (或小写希腊字母ξ,η,ζ)等表示,而用小写拉丁字母x ,y ,z (加上适当下标)等表示随机变量取的可能值.预习交流1随机变量与函数有哪些区别和联系?提示:随机变量和函数都是一种映射,而随机变量是用变量对试验结果的一种刻画,是试验结果和实数之间的一个对应关系,即随机变量把随机试验的结果映射为实数.函数是把实数映射为实数,它们的本质是相同的,在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的范围相当于函数值域.2.概率分布一般地,假定随机变量X 有n 个不同的取值,它们分别是x 1,x 2,…,x n 且P (X =x i )=p i ,i =1,2,…,n ,①,称①为随机变量X 的概率分布列.简称为X 的分布列,也可以将①用表的形式来表示.我们将表称为随机变量的概率分布表.它和①都叫做随机变量的概率分布.显然这里的p i (i =1,2,…,n )满足条件p i ≥0,p 1+p 2+…+p n =1.预习交流2盒中装有6支白粉笔和8支红粉笔,从中任意取出3支,其中所含白粉笔的支数为ξ,那么ξ的可能取值是多少?当ξ=2时表示怎样的试验结果.此时P (ξ=2)是多少?提示:ξ的取值为0,1,2,3,“ξ=2”表示取出2支白粉笔和1支红粉笔.P (ξ=2)=C 26·C 18C 314=3091. 3.两点分布随机变量X 只取两个可能值0和1,我们把这一类概率分布称为0-1分布或两点分布,并记为X ~0-1分布或X ~两点分布.此处“~”表示“服从”.预习交流3试验结果有两种情况的是不是两点分布?提示:不一定.因为两点分布要求试验结果只有两种,且随机变量必须只能为0和1.一、随机变量指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某人射击一次命中的环数;(2)任意掷一枚均匀的硬币5次,出现正面向上的次数;(3)掷一枚质地均匀的骰子出现的点数(最上面的数字);(4)某个人的属相随年龄的变化.思路分析:判断一个变量是否为随机变量,主要看变量的某些值的出现是不是确定,结果不能确定的是随机变量.解:(1)某人射击一次,可能命中的环数是0环,1环,…,10环结果中的一个而且出现哪一个结果是随机的,因此是随机变量.(2)任意掷一枚硬币1次,可能出现正面向上也可能出现反面向上,因此投掷5次硬币,出现正面向上的次数可能是0,1,2,3,4,5,而且出现哪种结果是随机的,所以是随机变量.(3)掷一颗骰子出现的结果是1点,2点,3点,4点,5点,6点中的一个且出现哪个结果是随机的,因此是随机变量.(4)属相是出生时便确定的,不随年龄的变化而变化,因此不是随机变量.从4张已编号(1~4号)的卡片中任取2张,被取出的卡片号之和为X,写出X可能取的值,并说明随机变量所取值表示的随机试验的结果.解:X可取3,4,5,6,7.其中,X=3表示取出分别标有1,2的两张卡片;X=4表示取出分别标有1,3的两张卡片;X=5表示取出分别标有1,4或2,3的两张卡片;X=6表示取出分别标有2,4的两张卡片;X=7表示取出分别标有3,4的两张卡片.①随机试验的结果可用变量ξ来表示;②试验前可以判断其可能出现的所有值;③试验前不能确定取何值.这是随机变量的特征,随机变量的取值一般源于实际问题,且有特定的含义,写随机变量时,一般将值按从小到大排列,做到不重不漏.二、随机变量的概率分布列从装有6个白球,4个黑球和2个黄球的箱中随机地取出两个球,规定每取出一个黑球赢2元,而每取出一个白球输1元,取出黄球无输赢,以X表示赢得的钱数,随机变量X 可以取哪些值呢?求X的分布列.思路分析:要求赢得的钱数X的概率分布列,需先写出X的可能取值,然后求出X中每一个可能值的概率,从而列出分布列.解:从箱中取两个球的情形有以下六种:{2白},{1白1黄},{1白1黑},{2黄},{1黑1黄},{2黑}.当取到2白时,结果输2元,随机变量X=-2,此时P (X =-2)=C 26C 212=522; 当取到1白1黄时,结果输1元,随机变量X =-1,此时P (X =-1)=C 16C 12C 212=211; 当取到1白1黑时,结果赢1元,随机变量X =1,此时P (X =1)=C 16C 14C 212=411; 当取到2黄时,结果无输赢,随机变量X =0,此时P (X =0)=C 22C 212=166; 当取到1黑1黄时,结果赢2元,随机变量X =2,此时P (X =2)=C 14C 12C 12=433; 当取到2黑时,结果赢4元,随机变量X =4,此时P (X =4)=C 24C 212=111;设随机变量X 的分布列P ⎝ ⎛⎭⎪⎫X =k 5=ak (k =1,2,3,4,5), (1)求常数a 的值;(2)求P ⎝ ⎛⎭⎪⎫X ≥35的值. 解:由题意得X(1)由a +2a +3a +4a +5a =1,得a =15; (2)P ⎝ ⎛⎭⎪⎫X ≥35=P ⎝ ⎛⎭⎪⎫X =35+P ⎝ ⎛⎭⎪⎫X =45+P (X =1)=315+415+515=1215=45. 解答此类问题的关键有两点:一是依据试验的所有可能结果写出随机变量的可能取值;二是依据随机变量取值所对应的结果求出随机变量取每一个值的概率.1.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为X ,则“X >4”表示的试验结果为__________.答案:第一枚骰子掷出的为6点,第二枚掷出的是1点解析:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一.由已知得-5≤X ≤5,也就是说“X >4”就是“X =5”.所以,“X >4”表示第一枚掷出的为6点,第二枚掷出的是1点.2.袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回取出的条件下依次取两个球,设两个球号码之和为随机变量ξ,则ξ的可能值有__________个.答案:9解析:两个球的号码之和可能为2,3,4,5,6,7,8,9,10共9个.3.某人进行射击,共有5发子弹,击中目标或打完子弹就停止射击,射击次数为ξ.则前4次均未击中目标用“ξ=k”表示,则k=__________.答案:5解析:ξ=5表示射击5次,即前4次均未击中,否则不可能射击第5次.4.篮球运动员在比赛中,每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.8,求他罚球一次的得分X的分布列,此分布列是两点分布列吗?解:用随机变量X表示“每次罚球得的分值”,根据题意,X可能取值为0,1,且取这两个值的概率分别为0.2,0.8.5.某车间三天内每天生产101件,2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若工厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天,两天分别得1分,2分,设该车间在这两天内总得分为ξ,写出ξ的可能取值.解:ξ的可能取值为0,1,2.ξ=0表示在两天检查中均发现了次品,ξ=1表示在两天检查中有1天没有检查到次品,1天检查到了次品,ξ=2表示在两天检查中都没有发现次品.。
2.4 二项分布1.定义一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中P (A )=p >0.我们将这样的试验称为n 次独立重复试验,也称为伯努利试验.2.概率公式在n 次独立重复试验中,每次试验事件A 发生的概率均为p (0<p <1),即P (A )=p ,P (A )=1-p =q ,则事件A 恰好发生k (0≤k ≤n )次的概率为P n (k )=C k n p k q n -k,k =0,1,2,…,n .它恰好是(q +p )n 的二项展开式中的第k +1项.连续掷一颗骰子三次,就是做三次独立重复试验.用A i (i =1,2,3)表示第i 次出现6点这一事件,用B 1表示“仅出现一次6点”这一事件.问题1:试用A i 表示B 1.提示:B 1=(A 1A -2A -3)+(A -1A 2A -3)+(A -1A -2A 3). 问题2:试求P (B 1).提示:∵P (A 1)=P (A 2)=P (A 3)=16,且A 1A -2A -3,A -1A 2A -3和A -1A -2A 3互斥,∴P (B 1)=P (A 1A -1A -2)+P (A -1A 2A -3)+P (A -1A -2A 3) =16×⎝ ⎛⎭⎪⎫562+16×⎝ ⎛⎭⎪⎫562+16×⎝ ⎛⎭⎪⎫562 =3×16×⎝ ⎛⎭⎪⎫562.问题3:用B k 表示出现k 次6点这一事件,试求P (B 0),P (B 2),P (B 3). 提示:P (B 0)=P (A -1A -2A -3)=⎝ ⎛⎭⎪⎫563, P (B 2)=3×⎝ ⎛⎭⎪⎫162×⎝ ⎛⎭⎪⎫56,P (B 3)=⎝ ⎛⎭⎪⎫163. 问题4:由以上结果你得出何结论? 提示:P (B k )=C k3⎝ ⎛⎭⎪⎫16k ⎝ ⎛⎭⎪⎫563-k ,k =0,1,2,3.若随机变量X 的分布列为P (X =k )=C k np k q n -k ,其中0<p <1,p +q =1,k =0,1,2,…,n ,则称X 服从参数为n ,p 的二项分布,记作X ~B (n ,p ).1.满足以下条件的试验称为独立重复试验: (1)每次试验是在同样条件下进行的; (2)各次试验中的事件是相互独立的;(3)每次试验都只有两种结果,即事件要么发生,要么不发生; (4)每次试验中,某事件发生的概率是相同的.2.独立重复试验的实际原型是有放回地抽样检验问题.但在实际应用中,从大批产品中抽取少量样品的不放回检验,可以近似地看作此类型,因此独立重复试验在实际问题中应用广泛.3.判断一个随机变量是否服从二项分布,关键有二:其一是对立性,即一次试验中,事件发生与否二者必居其一;其二是重复性,即试验是独立重复地进行了n 次.[例1] 某气象站天气预报的准确率为80%,计算:(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率. [思路点拨] 由于5次预报是相互独立的,且结果只有两种(或准确或不准确),符合独立重复试验模型.[精解详析] (1)记预报一次准确为事件A , 则P (A )=0.8.5次预报相当于5次独立重复试验,2次准确的概率为P =C 25×0.82×0.23=0.051 2≈0.05, 因此5次预报中恰有2次准确的概率为0.05.(2)“5次预报中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”,其概率为P =C 05×(0.2)5+C 15×0.8×0.24=0.006 72≈0.01. 所以所求概率为1-P =1-0.01=0.99.所以5次预报中至少有2次准确的概率约为0.99.[一点通] 解答独立重复试验中的概率问题要注意以下几点: (1)先要判断问题中所涉及的试验是否为n 次独立重复试验;(2)要注意分析所研究的事件的含义,并根据题意划分为若干个互斥事件的和. (3)要善于分析规律,恰当应用排列、组合数简化运算.1.种植某种树苗,成活率为0.9,若种植这种树苗5棵,则恰好成活4棵的概率为________.解析:恰好成活4棵的概率为C 45×0.94×0.1≈0.33. 答案:0.332. 将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为________.解析:记“小球落入A 袋中”为事件A ,“小球落入B 袋中”为事件B ,则事件A 的对立事件为B ,若小球落入B 袋中,则小球必须一直向左落下或一直向右落下,故P (B )=⎝ ⎛⎭⎪⎫123+⎝ ⎛⎭⎪⎫123=14,从而P (A )=1-P (B )=1-14=34.答案:343.某城市的发电厂有5台发电机组,每台发电机组在第一季度里停机维修率为14,已知2台以上(不包括2台)发电机组停机维修,将造成城市缺电,计算:(1)该城市在一个季度里停电的概率;(2)该城市在一个季度里缺电的概率.解:(1)若停电,则表示每台发电机组都不能工作,由于每台发电机组停机维修是互不影响的,故每台发电机组停机维修是相互独立的,该城市停电必须5台发电机组都停机维修,所以停电的概率为C 55⎝ ⎛⎭⎪⎫145×⎝ ⎛⎭⎪⎫1-140=11 024.(2)当3台或4台发电机组停机维修时,该城市将缺电,所以缺电的概率为 C 35⎝ ⎛⎭⎪⎫143×⎝ ⎛⎭⎪⎫1-142+C 45⎝ ⎛⎭⎪⎫144×⎝ ⎛⎭⎪⎫1-14=10×143×942+5×144×34=1051 024.[例2] 一名学生骑自行车去上学,从他家到学校的途中有6个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)设X 为这名学生在途中遇到红灯的次数,求X 的概率分布; (2)设Y 为这名学生在首次停车前经过的路口数,求Y 的概率分布; (3)求这三名学生在途中至少遇到一次红灯的概率.[思路点拨] 解答本题可先求出x ,y 的可能数值,再根据二项分布的公式求概率分布.(3)可用对立事件求解.[精解详析] (1)依据已知条件,可将遇到每个交通岗看作一次试验,遇到红灯的概率都是p =13,且每次试验结果都是相互独立的,所以X ~B ⎝ ⎛⎭⎪⎫6,13. ∴P (X =k )=C k6⎝ ⎛⎭⎪⎫13k⎝ ⎛⎭⎪⎫1-136-k=C k6⎝ ⎛⎭⎪⎫13k⎝ ⎛⎭⎪⎫236-k,k =0,1,2,…,6. ∴所求X 的概率分布为(2)由题意知,Y =k (k =0,1,2,…,5)表示前k 个路口没有遇上红灯,但在第k +1个路口遇上红灯,则其概率为P (Y =k )=⎝ ⎛⎭⎪⎫23k·13,Y =6表示路上没有遇上红灯,其概率为P (Y =6)=⎝ ⎛⎭⎪⎫236.∴所求Y 的概率分布为(3)由题意可知,“至少遇到一次红灯”的对立事件是“一次红灯都没有遇到”,因此有P (X ≥1)=1-P (X =0)=1-64729=665729. [一点通] 利用二项分布来解决实际问题的关键是建立二项分布模型,解决这类问题时要看它是否为n 次独立重复试验,随机变量是否为在这n 次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布.4.若随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)=________.解析:P (X =3)=C 36·⎝ ⎛⎭⎪⎫123·⎝ ⎛⎭⎪⎫1-123=516.答案:5165.甲、乙两人参加某高校的自主招生考试,若甲、乙能通过面试的概率都为23,且甲、乙两人能否通过面试相互独立,求面试结束后通过人数X 的概率分布.解析:由题意可知,X 服从二项分布B ⎝ ⎛⎭⎪⎫2,23, 则P (X =0)=C 02⎝ ⎛⎭⎪⎫1-232=19,P (X =1)=C 12×23×⎝⎛⎭⎪⎫1-23=49, P (X =2)=C 22⎝ ⎛⎭⎪⎫232=49.所以X 的概率分布为1.独立重复试验是指在相同条件下可重复进行的各次之间相互独立的一种试验,每次试验都只有两种结果(即某事件要么发生,要么不发生),并且在任何一次试验中,事件发生的概率均相等.2.独立重复试验是相互独立事件的特例,一般有“恰好”“恰有”字样的问题时用独立重复试验的概率公式计算更简捷,要弄清n ,p ,k 的意义.3.二项分布实际上是对n 次独立重复试验从概率分布的角度作了进一步的阐述,与n 次独立重复试验恰有k 次发生的概率对应,是概率论中最重要的几种分布之一.课下能力提升(十四)一、填空题1.某学生通过英语听力测试的概率为13,他连续测试3次,那么其中恰有1次获得通过的概率是________.解析:P =C 13⎝ ⎛⎭⎪⎫131⎝ ⎛⎭⎪⎫1-132=49.答案:492.下列说法正确的是________. ①某同学投篮命中率为0.6,他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6);②某福彩的中奖概率为P ,某人一次买了8张,中奖张数X 是一个随机变量,且X ~B (8,P );③从装有5红球5白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X 是随机变量,且X ~B ⎝ ⎛⎭⎪⎫n ,12. 解析:①②显然满足独立重复试验的条件,而③虽然是有放回地摸球,但随机变量X 的定义是直到摸出白球为止,也就是说前面摸出的一定是红球,最后一次是白球,不符合二项分布的定义.答案:①②3.若X ~B ⎝ ⎛⎭⎪⎫6,13,则P (X ≥2)=________. 解析:P (X ≥2)=1-P (X =0)-P (X =1)=473729.答案:4737294.已知一个射手每次击中目标的概率都是35,他在4次射击中,击中两次目标的概率为________,刚好在第二、三这两次击中目标的概率为________.解析:刚好击中两次目标的概率为C 24⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-352=216625. 在第二、三这两次击中目标的概率为⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫1-352=36625 . 答案:216625 366255.位于直角坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为13,向右移动的概率为23,则质点P 移动五次后位于点(1,0)的概率是________.解析:依题意得,质点P 移动五次后位于点(1,0),则这五次移动中必有某两次向左移动,另三次向右移动,因此所求的概率等于C 25⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫233=80243.答案:80243二、解答题6.某一中学生心理咨询中心的服务电话接通率为34,某班3名同学商定明天分别就同一问题通过电话询问该咨询中心,且每人只拨打一次,(1)求他们三人中恰有1人成功咨询的概率; (2)求他们三人中成功咨询的人数X 的概率分布. 解:每位同学拨打一次电话可看作一次试验,三位同学每人拨打一次可看作3次独立重复试验,接通咨询中心的服务电话可视为咨询成功.故每位同学成功咨询的概率都是34.(1)三人中恰有1人成功咨询的概率为 P =C 13×34×⎝ ⎛⎭⎪⎫1-342=964.(2)由题意知,成功咨询的人数X 是一随机变量,且X ~B ⎝ ⎛⎭⎪⎫3,34. 则P (X =k )=C k3⎝ ⎛⎭⎪⎫34k ⎝ ⎛⎭⎪⎫143-k ,k =0,1,2,3.因此X7.20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各件产品相互独立.(1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的概率分布;(2)求生产4件甲产品所获得的利润不少于10万元的概率. 解:(1)由题设知,X 的可能取值为10,5,2,-3,且 P (X =10)=0.8×0.9=0.72, P (X =5)=0.2×0.9=0.18, P (X =2)=0.8×0.1=0.08, P (X =-3)=0.2×0.1=0.02. 由此得X 的概率分布为(2)设生产的4件甲产品中一等品有件,则二等品有4-件. 由题设知4n -(4-n )≥10,解得n ≥145.又n ∈N ,得n =3,或n =4.所以P =C 34×0.83×0.2+C 44×0.84=0.819 2. 故所求概率为0.819 2.8.在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是23.(1)记教师甲在每场的6次投球中投进球的个数为X ,求X 的概率分布; (2)求教师甲在一场比赛中获奖的概率.解:(1)X 的所有可能取值为0,1,2,3,4,5,6.依条件可知,X ~B ⎝ ⎛⎭⎪⎫6,23, P (X =k )=C k6⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫136-k (k =0,1,2,3,4,5,6).的分布列为:(2)设教师甲在一场比赛中获奖为事件A ,则P (A )=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫234+C 1413⎝ ⎛⎭⎪⎫235+⎝ ⎛⎭⎪⎫236=3281. 故教师甲在一场比赛中获奖的概率为3281.。
二项分布(1)
【教学目标】
(1)理解n 次独立重复试验的模型(n 重伯努利试验)及其意义.
(2)理解二项分布,并能解决一些简单的实际问题.
【问题情境】
1.射击n 次,每次射击可能击中目标,也可能不中目标,而且当射击条件不变时,可以认为每次击中目标的概率p 是不变的;
2.抛掷一颗质地均匀的骰子n 次,每一次抛掷可能出现“5”,也可能不出现“5”,而且每次掷出 “5”的概率p 都是16
; 3.种植n 粒棉花种子,每一粒种子可能出苗,也可能不出苗,其出苗率是67%. 上述试验是由瑞士数学家雅·伯努利首先研究的,所以我们将上述试验称为伯努利试验.伯努利试验有何特征?如何研究随机变量的概率分布?
【合作探究】
问题1. 分析上述3个试验,列出伯努利试验满足的条件.
问题2. 在情境1中,若射击3次,设随机变量X 是射中目标的次数,求X 的概率分布.
问题3. 在n 次独立重复试验中,如果每次试验事件A 发生的概率为p ,那么在这n 次试验中,事件A 恰好发生k (n k ≤≤0)次的概率是多少?与二项式定理有何联系?
1. n 次独立重复试验:
一般地,由____次试验构成,且每次试验____________,每次试验的结果____________,
即A 与A ,每次试验中=)(A P _____,我们将这样的试验称为______________,或________.
2. 二项分布:
若随机变量X 的分布列为==)(k X P __________________,其中10<<p , 1=+q p ,n k ,,2,1,0 =,则称X 服从________________,记作____________.
【展示点拨】
例1:求随机抛掷100次均匀硬币,正好出现50次正面的概率.
体验成功:
随机抛掷一颗质地均匀的骰子n 次,求恰好出现k 次“向上的点数为5”的概率.
例2.某气象站天气预报的准确率为%80,计算:(保留2个有效数字)
(1)5次预报中恰有2次准确的概率;
(2)5次预报中至少有2次准确的概率;
(3)5次预报中恰有2次准确,且其中第三次预报准确的概率.
例3.批量较大的一批产品中有30%的一级品,进行重复抽样检查,共取5个样品,求:
(1)取出的5个样品中恰有2个一级品的概率;
(2)取出的5个样品中至少有2个一级品的概率.
(3)设5个样品中含有一级品的个数为X,求X的概率分布.
【学以致用】
1.某种灯泡使用寿命在1000h以上的概率为0.2,求3个灯泡使用1000h后,至多只坏1个的概率.
2. 甲、乙、丙3人独立地破译一密码,每人译出此密码的概率均为0.25,设随机变量X表示译出此密码的人数.
(1)写出X的分布列;
(2)密码被译出的概率是多少?。