当前位置:文档之家› 非线性抛物型方程(王明新著)思维导图

非线性抛物型方程(王明新著)思维导图

抛物型方程的计算方法

分类号:O241.82 本科生毕业论文(设计) 题目:一类抛物型方程的计算方法 作者单位数学与信息科学学院 作者姓名 专业班级2011级数学与应用数学创新2班 指导教师 论文完成时间二〇一五年四月

一类抛物型方程的数值计算方法 (数学与信息科学学院数学与应用数学专业2011级创新2班) 指导教师 摘要: 抛物型方程数值求解常用方法有差分方法、有限元方法等。差分方法是一种对方程直接进行离散化后得到的差分计算格式,有限元方法是基于抛物型方程的变分形式给出的数值计算格式.本文首先给出抛物型方程的差分计算方法,并分析了相应差分格式的收敛性、稳定性等基本理论问题.然后,给出抛物型方程的有限元计算方法及理论分析. 关键词:差分方法,有限元方法,收敛性,稳定性 Numerical computation methods for a parabolic equation Yan qian (Class 2, Grade 2011, College of Mathematics and Information Science) Advisor: Nie hua Abstract: The common methods to solve parabolic equations include differential method, finite element method etc. The main idea of differential method is to construct differential schemes by discretizing differential equations directly. Finite element scheme is based on the variational method of parabolic equations. In this article, we give some differential schemes for a parabolic equation and analyze their convergence and stability. Moreover, the finite element method and the corresponding theoretical analysis for parabolic equation are established. Key words: differential method, finite element method, convergence, stability

(完整版)大连理工大学高等数值分析抛物型方程有限差分法

抛物型方程有限差分法 1. 简单差分法 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。

现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T = τ为时间步长,其中N ,M 是 自然数, jh x x j ==, ()N j ,,1,0Λ=; τ k y y k ==, ()M k ,,1,0Λ= 将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。其中 ()j i y x ,表 示网格节点; h G 表示网格内点(位于开矩形G 中的网格节点)的集合; h G 表示位于闭矩形G 中的网格节点的集合; h Γ表示h G -h G 网格边界点的集合。 k j u 表示定义在网点()k i t x ,处的待求近似解,N j ≤≤0,M k ≤≤0。 注意到在节点()k i t x ,处的微商和差商之间的下列关系 ((,)k j k j u u x t t t ????≡ ? ????): ()() ()ττ O t u t x u t x u k j k j k j +??? ????=-+,,1 ()() ()2112,,ττ O t u t x u t x u k j k j k j +??? ????=--+ ()()()h O x u h t x u t x u k j k j k j +??? ????=-+,,1 ()() ()h O x u h t x u t x u k j k j k j +??? ????=--,,1 ()() ()2112,,h O x u h t x u t x u k j k j k j +??? ????=--+ ()()() ()2 222 11,,2,h O x u h t x u t x u t x u k j k j k j k j +???? ????=+--+ 可得到以下几种最简差分格式

几类非线性抛物方程的整体解和爆破解

太原理工大学硕士研究生学位论文 目录 第一章绪0 (1) 1.1 研宄背景及意义 (1) 1.2 国内外研宄现状 (1) 1.3 本文主要研宄内容 (3) 第二章一类反应扩散方程的整体解和爆破解 (7) 2.1弓丨言 (7) 2.2 整体解的存在性结论 (8) 2.3 爆破解的存在性结论 (13) 2.4 应用 (15) 第三章一类含有梯度项抛物方程在Neumann边界条件下的整体解和爆破解 (19) 3.1 弓言 (19) 3.2 整体解的存在性结论 (20) 3.3 爆破解的存在性结论 (26) 3.4 应用 (28) 第四章一类具有梯度项和边界流的抛物方程整体解和爆破解 (31) 4.1 引言 (31) 4.2 整体解的存在性结论 (32) 4.3 爆破解的存在性结论 (38) 4.4 应用 (40) v 万方数据

太原理工大学硕士研究生学位论文 _文献 (43) 顏 (47) 攻读学位期间发表的学术论文 (49) vi 万方数据

太原理工大学硕士研究生学位论文 第一章绪论 1.1研究背景及意义 非线性抛物方程的爆破理论是偏微分方程研宄的重要内容之一,其问题来源于物理、化学和环境保护等诸多领域,主要描述这些领域中物质扩散和热传导等问题.爆破理论的研宄主要包括整体解和爆破解两个方面,其中整体解反映了系统处于稳定状态,爆破解反映了系统处于不稳定状态.在实际问题中,有时既要考虑系统处于稳定状态,也要研宄系统不稳定状态.例如,输电导管在一定的温度条件下一直具有导电的稳定状态,反映了系统存在整体解;利用高温爆破法清理炉灶废弃物,反映了系统存在爆破解. 上述实际问题都是非线性抛物方程的整体解和爆破解的研宄范畴,因此,本文选题具有重要的实际意义. 非线性抛物方程的爆破理论应用于实际问题中,通常方程的整体解对应系统处于稳定状态,而爆破解对应系统处于不稳定状态.在实际系统运转中,有时需要稳定状态工作,那么需要我们研宄系统处于稳定状态的条件,而转化为抽象的数学模型,需要研宄方程整体解存在的充分条件;有时,系统状态需要发生变化,则需要研宄系统处于不稳定状态的条件,进而转化为数学模型需要研宄方程爆破解存在的充分条件.因此,研宄非线性抛物方程的整体解和爆破解在理论和应用中都具有非常重要的意义. 1.2国内外研究现状 近半个世纪,国内外数学界对爆破理论的研宄非常活跃,并取得了许多研宄成果. 自19世纪60年代,国外以S.Kaplan、H.F u jita和 A.Friedm an等为代表的专家学者开始了关于抛物方程的整体解和爆破解问题的研宄(见文献[1]- [3]). 80年代,美国数学家R.P.Sperb在文献[4]中得到了重要的极值原理,为研宄抛物方程爆破问题提供了非常重要的方法.近年来,国内外很多学者应用这种方法研宄了一系列的爆破问题,得到了很多重要的研宄成果(见文献[5]- [17]). 1 万方数据

抛物型方程求解

22 10,01,01(,0),01(0,),(1,),01 (,)x t t x t u u x t t x u x e x u t e u t e t u x t e ++??-=<<<≤??=≤≤==<≤= 运行:前向euler 法 [xx,tt,uh]=equationepaowu2('myfun','myfun1','myfun1','myfun2',1,[0,1],[0,1],[1/10,1/200]); function [xx,tt,uh]=equationepaowu2(myfun,myfun1,myfun2,myfun3,a,xxx,ttt,step) %利用差分方法求抛物型方程数值解; %myfun--方程右端f(x,t); %myfun1--u(x,0); %myfun2--u(t1,t); %myfun3--u(t2,t); %[x1,x2]--x 的取值范围; %[t1,t2]--t 的取值范围; %a-正常数 %h,tao-分别是x,t 方向的步长。 %—————————————————————— %激活函数 f=fcnchk(myfun); f1=fcnchk(myfun1); f2=fcnchk(myfun2); f3=fcnchk(myfun3); x1=xxx(1);x2=xxx(2); t1=ttt(1);t2=ttt(2); h=step(1);tao=step(2); %__________________________________ %划分网格,x1-nt+1行,nx+1列。 x=linspace(x1,x2,round((x2-x1)/h)+1); t=linspace(t1,t2,round((t2-t1)/tao)+1); nx=size(x,2); nt=size(t,2); [xx,tt]=meshgrid(x,t); %________________________________________ %赋初值及边值 size(x1) size(x) U0=zeros(size(xx));

具变指数的非线性抛物和椭圆方程弱解、重整化解和熵解的存在性

具变指数的非线性抛物和椭圆方程弱解、重整化解和熵解的存在 性 最近十几年来, 越来越多的数学工作者开始关注具有变指数的偏微分方程, 部分工作可参见专著[44] 以及其中的文献. 究其主要原因是这类问题在物理学中的重要应用. 带有变指数的偏微分方程模型主要来源于电流变流体(electro-rheological fluids) [99]; 它为某些带有粘性的电流变流体的电力学性质提供了更好的数学解释. 这种模型主要描述了向导体施加外界电场时,导体能够承受电流剧烈改变的电力学性质. 这种性质在现代科学技术上有重要应用, 例如医疗恢复器械、激波吸收器、电动制动器、离合器等等. 带有变指数的偏微分方程模型所描述的Newton 流体还可以描述应用热动力学中的一些演化现象、非齐次媒质的热与物质交换以及非Newton 流体的热对流效应[9]. 这类偏微分方程模型还可应用于弹性力学[116], 变分方法[35] 以及图像去噪、图像恢复[34] 等方面.特别地, 在数字图像恢复中, 考虑非标准增长条件更为合理并且有很多优点,其中的一个重要方面就是所谓的‘阶梯效应' .确切地讲,研究带有非标准增长条件的泛函, 一方面可以保留原始图像的边缘部分,另一方面又可以形成原始图像中所没有的边缘. 这样就大大有利于图像恢复的实现. 本论文主要研究带有变指数的抛物型和椭圆型方程的弱解、重整化(renormalized) 解或熵(entropy) 解的存在性问题.我们在变指数Sobolev 空间框架下讨论解的存在性, 研究的主要内容包括带有非局部项的双重退化抛物型方程的弱解、带有一阶梯度项且梯度增长阶为p(x) 的抛物型p(x)-Laplace 方程弱解以及重整化解、带有零阶项且主部退化强制的椭圆型p(x)-Laplace 方程的重整化解以及熵解等. 第1章主要是对本论文主要内容的介绍以及关于变指数Sobolev 空间的一些预备知识. 重点讲述

抛物线法非线性方程求解

《MATLAB 程序设计实践》课程考核 抛物线法非线性方程求解算法说明: (1)选定初始值210,,x x x ,并计算)(),(),(210x f x f x f 和以下差分: ],[12x x f = 1212) ()(x x x f x f -- 10101) ()(],[x x x f x f x x f --= 20112012] ,[],[],,[x x x x f x x f x x x f --= 一般取b x a b x a x <<==210,,。注意不要使三点共线。 (2)用牛顿插值法对三点))(,()),(,()),(,(221100x f x x f x x f x 进行插值得到一条抛物线,它有两个根: ,242 23C AC B B x x -± -+ = 其中 。 )](,,[],[], ,,[),(12012120102x x x x x f x x f B x x x f C x f A -+=== 两个根中只取靠近2x 的那个根,即±号取于B 同号, 即 AC B B B A x x 4)sgn(22 23-+- = (3)用321,,x x x 代替210,,x x x ,重复以上步骤,并有以下递推公式: n n n n n n n n C A B B B A x x 4)sgn(221-+- =+, 其中 。 )](,,[],[], ,,[),(121121-------+===n n n n n n n n n n n n n n x x x x x f x x f B x x x f C x f A (4)进行精度控制。

一类非线性伪抛物型方程的初边值问题

第25卷 第3期 2008年6月   黑龙江大学自然科学学报 JOURNAL OF NAT URAL SC I E NCE OF HE I L ONGJ I A NG UN I V ERSI TY   Vol 125No 13June,2008 一类非线性伪抛物型方程的初边值问题 孙明丽, 刘亚成 (哈尔滨工程大学理学院,哈尔滨150001) 摘 要:研究了一类非线性伪抛物型方程的初边值问题。首先利用了经典的Galerkin 方法的思想,构造了原问题的近似解,并对非线性伪抛物型方程中的非齐次项函数限定了如下条件:f ′下方有界且g ′上方有界,得到了近似解的几个先验估计;然后证明了原问题整体弱解的存在性与唯一性;最后利用Poincare 不等式及Gr onwall 不等式,得到了问题整体广义解的渐近性质。 关键词:非线性伪抛物方程;初边值问题;整体弱解;存在唯一性;渐近性 中图分类号:O175126文献标志码:A 文章编号:1001-7011(2008)03-0343-04 收稿日期: 2007-07-01 基金项目:国家自然科学基金资助项目(10271034);哈尔滨工程大学基础研究基金资助项目(HE UF04012) 作者简介:孙明丽(1982-),女,硕士研究生,主要研究方向:非线性发展方程,E -mail:sunm ingli1221@yahoo https://www.doczj.com/doc/a04530775.html, 通讯作者: 刘亚成(1942-),男,教授 1 引 言 非线性Sobolev -Gal pern 型方程是从实际问题中提出的一类重要的伪抛物型方程,这类方程出现在许多数学物理领域,例如用于模拟热力学过程,岩石裂缝中渗流,土壤中湿气的迁移,以及固体中的扩散问题。因此,对此类方程的研究具有重要的理论与实际意义。 在文献[1-2]中研究的是如下拟抛物方程的初边值问题 u t -Δu t =f (u ),x ∈ Ω,t >0u (x,0)=u 0(x ) u |5Ω=0 其方法是利用Galerkin 方法,利用嵌入定理对f 限定条件后得到了问题的W k,p 解。 在文献[3]中研究的是一维Sobolev -Gal pern 方程的初边值问题,所用的方法是先将问题化为一个非线性积分方程,利用压缩映像原理得到局部解,再用先验估计得到整体解。 在文献[4]中研究的是多维Sobolev -Gal pern 方程的初边值问题u t -Δu t =σ(u x )x ,x ∈ Ω,t >0u (x,0)=u 0(x ) u |5Ω=0 利用Galerkin 方法,要求σ∈C 1 ,σ′ (s )下方有界,得到了整体解的存在和唯一性。而本文研究下述一类非线性伪抛物方程 [5] 的初边值问题 u t -u xx t -u xx =f (u x )x +g (u ) (1)u (x,0)=u 0(x )(2)u (0,t )=u (1,t )=0 (3) 利用Galerkin 方法,证明了若f ∈C 1,f ′ (s )下方有界;g ∈C 1,g ′(s )上方有界,且u 0(x )∈H 2(Ω)∩H 1 0(Ω).则对任一T >0,问题(1)-(3)存在Ω×[0,T ]上的弱解u (x,t ),并且得到了解的渐近性质,本文所研 究的方程是一般的拟抛物方程与Sobolev -Gal pern 型方程的综合,从实质上推广和改进了已有的结果。

具有非线性记忆的抛物型方程解的Blow up

第!"卷第#期纺织高校基础科学学报$%&’!"()%’# *++,年!*月-./01/102312/45673.859:2;:082630<27/0:0 = ============================================================= 2/>?@’(*++,文章编号A!++"B C,#!D*++,E+#B+,+,B+, 具有非线性记忆的抛物型方程解的F&%GH I 容跃堂!(成涛!(* D!’西安工程科技学院理学院(陕西西安J!++#C K*’西安交通大学理学院(陕西西安J!++#L E 摘要A讨论了N D O E不具单调性的条件下(具有非线性记忆的抛物型方程解的F&%GH I’ 关键词A非线性记忆K抛物型方程K F&%GH I 中图分类号A P!J Q’*L文献标识码A R 文献S!T曾考虑了半线性抛物型方程 U O V W U X Y D U E 混合问题解的F&%GH I(在此基础上(文献S*T对如下的具有非线性记忆的抛物型方程 U O V W U X Z O+N D O[\E Y D U D](\E E^\X_D]E 在一定条件下(讨论了解的F&%GH I问题(并对某特殊的Y D U E给出了解的F&%GH I估计(而文献S,T去掉文献S*T中N D O E单调下降的条件(允许N D O E单调增加(在一定条件下(讨论了解的F&%GH I(并给出了解的F&%GH I估计’本文中讨论在N D O E不具单调性时(解的F&%GH I问题’ 假设‘ O V ab D+(O E(c O V d ab D+(O E’ 考虑如下的抛物型方程混合问题 U O V W U X Z O+N D O[\E Y D U D](\E E^\X_D]E(D](O E e‘f(D!E U D](+E V U+D]E(]e a(D*E U D](O E V+(D](O E e c f’D,E 假定 Y e g!(Y D+E h+(Y i D j E h+(Y k D j E h+(j l+(D#E Ne g!(N D j E h m h+(且存在+n O!n O*n o n O*p(使得 N i D O E V l+(+n O n O!( n+(O!n O n O*( oo n+(O*p[!n O n O*p( l+(O*p q r s n O’ D Q E _e g!(_l+(]e a(D"E U+e g*D a t E(U+l+(]e a(U+u d a V+’D J E 且v w h+(使得 M收稿日期A*++,B+L B+, 基金项目A陕西省教育厅专项基金资助项目D+!x y!,J E 作者简介A容跃堂D!L"!B E(男(陕西省宝鸡市人(西安工程科技学院教授’ 万方数据

一类二维抛物型方程的ADI格式

【摘要】本文针对一类二维抛物型方程,建立了一个在空间和时间方向上均具有二阶精度的adi格式,并分析其稳定性. 比较以往算法,此格式具有精度较高,无条件稳定等优点,同时,该方法通过求解两个线性代数方程得到原问题的解,避免了非线性迭代运算,提高了计算效率. 【关键词】二维抛物型方程;adi格式;稳定性;截断误差 1.引言 抛物型偏微分方程在研究热传导过程、一些扩散现象及电磁场传播等许多问题中都有广泛的应用,对这一类方程数值解法的研究一直是科研工作者关注的热点问题之一,其中高精度的有限差分方法更是受到了越来越多的重视. 考虑如下的初边值问题[1]:其中,为常数. 在文献[1]中对问题(1)建立了差分格式,格式的截断误差阶为.本文将在文献[1]的基础上进一步研究问题(1)的高效差分格式,建立了一个高精度的交替方向隐式差分格式(即adi格式),提高了时间方向上的精度,并给出相应的稳定性分析。 2.差分格式的建立 为了得到问题(1)的有限差分格式,首先将求解区域进行网格剖分,结点为. 选取正整数l和n,并令为方向上的网格步长,为方向上的网格步长,记 假定第层的已知,则由第(ⅰ)步,通过解一个三对角线性代数方程组求出,再由第(ⅱ)步,再解一个三对角线性代数方程组即可求出. 所以,只要利用追赶法求解两个三对角线性代数方程组即可,此时计算量与储存量都较小. 另外,在处理边界条件时,为了提高精度,采取中心差分,这样会出现虚拟值,此时,只要再与格式中的方程联立,即可消去虚拟值[2]. 3. 稳定性分析 利用taylor展开式求误差,可知此处建立的d格式的截断误差阶为. 参考文献: [1]管秋琴.一类二维抛物型方程的有限差分格式[j]. 赤峰学院学报(自然科学版). 2010,26(1):7. [3]戴嘉尊,邱建贤. 微分方程数值解法[m]. 南京:东南大学出版社 .2002. 作者简介: 舒阿秀(1977―),女,安徽旌德人,硕士,安庆师范学院数学与计算科学学院副教授,主要从事偏微分方程数值解的研究。

相关主题
文本预览
相关文档 最新文档