高二下期中数学(文)试卷(有答案)
- 格式:doc
- 大小:631.50 KB
- 文档页数:12
河南省实验中学2022-2023学年下期期中试卷高二 数学(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数()sin cos f x x x x =+,则()(f x '= ) A .cos x xB .cos x x -C .2sin cos x x x +D .sin x x2.已知等比数列{}n a 的各项均为正数,且3781a a =,则313539log log log (a a a ++= ) A .3B .4C .5D .63.将3名男生和2名女生排成一队照相,要求女生相邻,共有( )排法. A .120B .24C .48D .964.已知n S 表示等差数列{}n a 的前n 项和,且51013S S =,那么520(=SS ) A .19B .110C .18D .135.若443243210(1)x a x a x a x a x a -=++++,则41032(-+-=+a a a a a ) A .1-B .1C .15D .166.数列{}n a 中,11a =,12(2nn n a a n a +=+为正整数),则(n a = ) A .12n + B .21n + C .21nn + D .12n n+ 7.函数3211()132=++-f x x ax x 存在两个极值点,则实数a 的取值范围是( )A .()()+∞-∞-,,22B .(][)+∞-∞-,,22C .()22,-D .[]22,-8.将4个A 和2个B 随机排成一行,则2个B 不相邻的概率为( ) A .13B .25C .23D .459.函数2()2f x lnx ax =+-在区间(1,4)内存在单调递减区间,则实数a 的取值范围是( ) A .1(,)32-∞-B .1(,)2-∞-C .1(,]32-∞-D .1(,]2-∞-10.数列{}n a 满足14a =,132n n a a +=-,*n N ∀∈,(1)28n n a a λ-<-,则实数λ的取值范围是( ) A .(,9)-∞-B .(,8)-∞-C .(12,9)--D .(12,7)--11.设函数()f x 的定义域为R ,其导函数为()f x ',且满足()()1f x f x >'+,(0)2023f =,则不等式()2022x x e f x e -->+(其中e 为自然对数的底数)的解集是( ) A .(2022,)+∞ B .(,2023)-∞C .(0,2022)D .(,0)-∞12.设1111,tan ,101011a lnb c ===,则( ) A .a b c << B .c b a << C .a c b << D .c a b <<二、填空题(本题共4小题,每小题5分,共20分) 13.在26(21)+x 的展开式中,2x 的系数为 .(用数字作答) 14.设数列{}n a ,{}n b 均为等差数列,它们的前n 项和分别为n S ,n T ,若2339-=+n n S n T n ,则22=a b . 15.在学雷锋志愿活动中,安排3名志愿者完成5项工作,每人至少完成一项,每项工作由一人完成,则不同的安排方式共有 种.16.已知正实数x ,y 满足xe ylnx ylny =+,则-xe lny x的最小值为 .三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17题10分,其 余试题每题12分)17.已知{a n }满足:()*+-∈≥+=N n ,n a a a n n n 2211,11=a ,3235a a =.(1)求a n ; (2)令()*n n n N n a a b ∈⋅=+11,求数列{b n }的前n 项和T n .18.已知函数f (x )=x 2-2x +a ln x ()R a ∈.(1)若函数在x =1处的切线与直线x -y -2=0垂直,求实数a 的值; (2)当a >0时,讨论函数的单调性.19.设数列{}n a 的前n 项和为n S ,且()*∈=+N n a S n n 312. (1)求n a ; (2)求数列{}n na 的前n 项和n T .20.如图,四棱锥P -ABCD 的底面是矩形,PD ⊥底面ABCD ,PD CD AD 22==,M 为BC 的中点.(1)证明:AM ⊥平面PBD ; (2)求二面角P -AM -D 的正弦值.21.已知椭圆()2222:10+=>>x y C a b a b ,离心率12=e ,过点31,2⎛⎫ ⎪⎝⎭. (1)求C 的方程;(2)直线l 过点()10,M ,交椭圆与A 、B 两点,记()30,N ,证明0=+NB NA k k .22.已知函数()1=--x f x e ax .(1)若0>x 时,()0>x f 恒成立,求a 的取值范围; (2)记()221x x g =,讨论函数()x f 与()x g 的交点个数.河南省实验中学2022--2023高二数学期中考试答案13. 12 14.615.150 16.1 9.解:函数2()2f x lnx ax =+-的定义域是(0,)+∞,2121()20+'=+=<ax f x ax x x在()41,有解,即大212⎪⎭⎫⎝⎛-<x a ,即1612-<a ,解得132a <-,所以a 的取值范围是1(,)32-∞-.10.解:数列{}n a 满足132n n a a +=-,则113(1)n n a a +-=-,且113a -=,∴数列{1}n a -是以3为首项,3为公比的等比数列,则11333n n n a --=⨯=,即31n n a =+,又*n N ∀∈,(1)28n n a a λ-<-,转化为3327n n λ<-对*n N ∈恒成立,即2713nλ<-, 又数列27{1}3n -是递增数列,则当1n =时,27(1)83min n-=-,即8λ<-, 故实数λ的取值范围是(,8)-∞-. 11.解:设()1()xf xg x e -=,()()1f x f x >'+,即()()10f x f x '-+<,()()1()0xf x f xg x e '-+∴'=<,()g x ∴在R 上单调递减,又(0)2023f =,∴不等式0()1(0)1()20222022(0)1x x x f x f e f x e f e e ---->+⇔>=-=, 即()(0)g x g >,0x ∴<,∴原不等式的解集为(,0)-∞. 12.解:由11(1)tan 1010a b ln -=+-,令()(1)tan f x ln x x =+-,0x >, 所以211()1cos f x x x '=-+,因为21cos [1,1],(,1]cos x x∈--∈-∞-, 因为0x >,所以11x +>,1011x <<+,故()0f x '<,所以()f x 在(0,)+∞上单调递减, 又(0)(10)tan00f ln =+-=,所以1()(0)010f f <=,所以11(1)tan 01010ln +-<,即111tan 1010ln <,所以a b <. 由11(1)1111a c ln -=---,令()(1)gx l n x x =---,01x <<,所以1()1011xg x x x'=-=>--,所以()g x 在(0,1)上单调递增,所以1()(0)10011g g ln >=--=,所以11(1)01111ln --->,即1111011ln>,所以a c >,综上,c a b <<. 16.解:x e ylnx ylny =+,x e ylnxy ∴=即x xe xylnxy =,设()x f x xe =,则()()f x f lnxy =,且()(1)x f x e x '=+,所以()f x 在(1,)-+∞上单调递增, 正实数x ,y ,01x e ylnxy e ∴=>=,即10l n x y y>>,所以()()f x f lnxy =,等价于x lnxy =, 即=x e y x ,则ln 1⎛⎫-=-=-≥⎪⎝⎭x xx e e e lny ln y y x x x,于是最小值为1. 17.解:(1){a n }满足:()*+-∈+=N n a a a n n n 112,则{a n }为等差数列,11=a ,3235a a =, 即()()d d 21315+=+,解得2=d ,12-=n a n ;......................5分 (2) ()()⎪⎭⎫⎝⎛+--=+-=⋅=+121121*********n n n n a a b n n n ,则12121121121121513131121+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫⎝⎛+--++-+-=n nn n n T n .......................10分 18.解:函数定义域为(0,+∞),求导得f ′(x )=2x -2+ax .(1)由已知得f ′(1)=2×1-2+a =-1,得a =-1...............4分(2)f ′(x )=2x -2+a x =2x 2-2x +a x(x >0),对于方程2x 2-2x +a =0,记Δ=4-8a . ①当Δ≤0,即a ≥12时,f ′(x )≥0,函数f (x )在(0,+∞)上单调递增;②当Δ>0,即0<a <12时,令f ′(x )=0,解得x 1=1-1-2a 2,x 2=1+1-2a 2.又a >0,故x 2>x 1>0. 当 ⎪⎪⎭⎫⎝⎛--∈22110a ,x ⎪⎪⎭⎫⎝⎛+∞-+,a 2211时,f ′(x )>0,函数f (x )单调递增, 当⎪⎪⎭⎫⎝⎛-+--∈22112211a ,a x 时,f ′(x )<0,函数f (x )单调递减. 综上所述,当a ≥12时,函数f (x )在(0,+∞)上单调递增;当0<a <12时,函数f (x )在⎪⎪⎭⎫ ⎝⎛--22110a ,上单调递增,⎪⎪⎭⎫ ⎝⎛-+--22112211a ,a 上单调递减, 在⎪⎪⎭⎫⎝⎛+∞-+,a 2211上单调递增...............12分 19.解:(1)当n =1时,2a 1+1=3a 1,∴a 1=1,又 ,∴可知a n ≠0, 当n ≥2时,由 ,得2S n ﹣1+1=3a n ﹣1, 两式相减得2a n =3a n ﹣3a n ﹣1,∴a n =3a n ﹣1,∴{a n}是以1为首项,以3为公比的等比数列,∴ ...............6分(2)由(1)可得 ,∴ , ∴ , ∴,∴...............12分 20.解: (1)证明:M 为BC 的中点,∴AD ABAB AM==又四棱锥P ABCD -的底面是矩形, ∴2DAB MBA π∠=∠=,Rt DAB Rt ABM ∴∆∆∽,DBA AMB ∴∠=∠, 又2MBD DBA π∠+∠=,∴2MBD ANB AM DB π∠+∠=⇒⊥,PD ⊥底面ABCD ,AM ⊂底面ABCD , PD AM ∴⊥,又DBPB B =,且DB ,PB ⊂平面PBD ,AM ∴⊥平面PBD .........5分(2)PD ⊥平面ABCD ,又AD ,DC ⊂平面ABCD ,PD AD ∴⊥,PD DC ⊥,又四棱锥P ABCD -的底面是矩形,AD DC ∴⊥,∴建立如下图所示的空间直角坐标系,设1=CD :(0,0,0),(0,0,1),D P A M ,∴(2,0,1)=-PA ,2(1,0)2=-MA ,(0,0,1)=DP , PD ⊥平面ABCD ,∴平面AMD 的法向量为(0,0,1)=DP ,设平面APM 的法向量为(,,)n x y z =, 则20202⎧⋅=-=⎪⎨⋅=-=⎪⎩n PA x z n MA x y ,取(2,1,2)n =, ∴二面角P -AM -D 的余弦值为:||4|cos ,|||||27DP n DP n DP n ⋅<>===,于是二面角P -AM -D 的正弦值为721...............12分21.解:(1)由题得22222191412⎧+=⎪⎪⎪==⎨⎪⎪=+⎪⎩a b c e a a b c ,解得32==b ,a ,于是22:143+=x y C ;..............4分(2)直线l 的斜率不存在时,易得0=+NB NA k k ;直线l 的斜率存在时,可设为1+=kx y :l ,联立方程即221431⎧+=⎪⎨⎪=+⎩x y y kx , 消y 可得()0884322=-++kx x k ,易得0>∆,设()()2211y ,x B ,y ,x A , 韦达定理可得221221438438k x x ,k k x x +-=+-=+; 212121221122112211222233x x x x k x x k x kx x kx x y x y k k NB NA +-=⎪⎪⎭⎫ ⎝⎛+-=-+-=-+-=+, 韦达代入得08822222221212121=---=+-=+-=+kk x x x x k x x x x k k k NB NA ,得证...............12分 22..解:(1)()1=--x f x e ax ,()∴'=-x f x e a .0x >,1x e ∴>,当1a …时,()0x g x e a '=-…,()g x 单调递增,()(0)0g x g ∴>=,不等式成立, 当1a >时,()0g lna '=.(0,)x lna ∴∈,()0g x '<,()g x 单调递减,()(0)0g x g ∴<=,这与题设矛盾.综上,a 的取值范围为(-∞,1]...............5分(2) 记()()()2112=-=---x F x f x g x e x ax ,则()00=F ,()'=--x F x e x a . 记()()'==--x h x F x e x a ,则()1'=-x h x e ,()'h x 单调递增,且由唯一零点0,于是()h x 在()0,∞-单调递减,()∞+,0单调递增,()h x 在0处取得最小值()01=-h a .当()010=-≥h a ,即1≤a 时,()0≥h x ,故()F x 在R 上单调递增,()F x 在R 上有唯一零点0;当()010=-<h a ,即1>a 时,()()lim lim →+∞→+∞=--→+∞x x x h x e x a ,()()lim lim →-∞→-∞=--→-∞x x x h x e x a ,于是()h x 有两个零点,且210x x <<,于是()F x 在()1x ,∞-单调递增,()21x x ,单调递减,()∞+,2x 单调递增, 又()00=F ,则()10>F x ,()20<F x ,()21lim lim 12→+∞→+∞⎛⎫=---→+∞ ⎪⎝⎭x x x F x e x ax ,()21lim lim 12→-∞→-∞⎛⎫=---→-∞ ⎪⎝⎭x x x F x e x ax ,则由零点存在定理可得()F x 在()1x ,∞-存在唯一零点,()F x 在()∞+,2x 存在唯一零点,故此时有三个零点. 综上可得1≤a 时,有一个交点;1>a 时,有三个交点...............12分。
洛阳市2019——2020学年第二学期期中考试高二数学试卷(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答题前,考生务必将自己的姓名、考号、考试科目涂写在答题卷上.2.考试结束,将答题卷交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足1i z i ⋅=+,则z 的共轭复数的虚部是( ) A. iB. i -C. 1D. 1-【★答案★】C 【解析】 【分析】由题意结合复数的除法法则可得1z i =-,再根据共轭复数、复数虚部的概念即可得解. 【详解】由题意()()21111i ii z i i i i +⋅+===--=-, 所以z 的共轭复数1z i =+,则z 的共轭复数的虚部为1. 故选:C.【点睛】本题考查了复数的运算,考查了共轭复数及复数虚部的概念,属于基础题. 2.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,反设正确..的是( ) A. 假设三内角都不大于60° B. 假设三内角都大于60° C. 假设三内角至多有一个大于60° D. 假设三内角至多有两个大于60°【★答案★】B 【解析】 【分析】“至少有一个”的否定变换为“一个都没有”,即可求出结论. 【详解】“三角形的内角中至少有一个不大于60°”时, 反设是假设三内角都大于60︒. 故选:B.【点睛】本题考查反证法的概念,注意逻辑用语的否定,属于基础题.3.对下列三种图像,正确的表述为()A. 它们都是流程图B. 它们都是结构图C. (1)、(2)是流程图,(3)是结构图D. (1)是流程图,(2)、(3)是结构图【★答案★】C【解析】试题分析:根据流程图和结构图的定义分别判断三种图形是流程图还是结构图.解:(1)表示的是借书和还书的流程,所以(1)是流程图.(2)表示学习指数函数的一个流程,所以(2)是流程图.(3)表示的是数学知识的分布结构,所以(3)是结构图.故选C.点评:本题主要考查结构图和流程图的识别和判断,属于基础题型.4.有线性相关关系的变量,x y有观测数据(,)(1,2, (15)i ix y i=,已知它们之间的线性回归方程是ˆ511y x=+,若15118 iix ==∑,则151iiy ==∑()A. 17B. 86C. 101D. 255【★答案★】D【解析】【分析】先计算181.215x==,代入回归直线方程,可得5 1.21117y=⨯+=,从而可求得结果.【详解】因为15118 iix ==∑,所以18 1.215x==,代入回归直线方程可求得5 1.21117y=⨯+=,所以1511715255 iiy==⨯=∑,故选D.【点睛】该题考查的是有关回归直线的问题,涉及到的知识点有回归直线一定会过样本中心点,利用相关公式求得结果,属于简单题目.5. 分析法是从要证的不等式出发,寻求使它成立的( ) A. 充分条件 B. 必要条件C. 充要条件D. 既不充分又不必要条件【★答案★】A 【解析】试题分析:本题考查的分析法和综合法的定义,根据定义分析法是从从求证的结论出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.我们易得★答案★. 解:∵分析法是逆向逐步找这个结论成立需要具备的充分条件; ∴分析法是从要证的不等式出发,寻求使它成立的充分条件 故选A点评:分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法,也称为因果分析,从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”. 6.有一段演绎推理:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线∥平面,则∥”的结论显然是错误的,这是因为( )A. 大前提错误B. 小前提错误C. 推理形式错误D. 非以上错误【★答案★】A 【解析】演绎推理,就是从一般性的前提出发,通过推导,得出具体陈述或个别结论的过程,演绎推理一般有三段论形式,本题中直线平行于平面,则平行于平面内所有直线是大前提,它是错误的. 考点:演绎推理.7.如图:图O 内切于正三角形ABC ,则3ABCOABOACOBCOBCSSSSS=++=⋅,即11||3||22BC h r BC ⋅⋅=⋅⋅⋅,3h r =,从而得到结论:“正三角形的高等于它的内切圆的半径的3倍”;类比该结论到正四面体,可得到结论:“正四面体的高等于它的内切球的半径的a 倍”,则实数a =( )A. 5B. 4C. 3D. 2【★答案★】B 【解析】 【分析】利用等体积,即可得出结论.【详解】解:设正四面体的高为h ,底面积为S ,内切球的半径为r , 则11433V Sh Sr ==⋅, 4h r ∴=,则4a =. 故选:B.【点睛】本题考查类比推理,考查等体积方法的运用,考查学生的计算能力,比较基础. 8.观察下列各式,1a b +=,223a b +=,334a b +=,447a b +=,5511a b +=,…,则99a b +=( ) A. 47 B. 76 C. 121 D. 123【★答案★】B 【解析】 【分析】根据题目所给等式,归纳出正确结论.【详解】根据题目所给等式可知:667771118,111829a b a b +=+=+=+=,88182947a b +=+=,99294776a b +=+=.故选:B【点睛】本小题主要考查合情推理,属于基础题. 9.若5P a a =++,23Q a a =+++(0a ≥),则P ,Q 的大小关系是( )A. P Q <B. P Q =C. P Q >D. P ,Q 的大小由a 的取值确定 【★答案★】A 【解析】∵()()()22222525[252232556P Q a a a a a a a a a a -=+++-++++=+-++()且22556a a a a +<++ ,∴22P Q <,又,0P Q >,∴P Q <,故选C.10.阅读如图所示的程序框图,若输入2020m =,则输出S 为输出( )A. 22020B. 21009C. 21010D. 21011【★答案★】D 【解析】 【分析】运行程序,根据循环结构程序框图计算出输出的结果.【详解】运行程序,2020m =,0,1S i ==,1S =,判断是,3,13i S ==+,判断是,……,2019,0132019i S ==++++,判断是,2021,132021i S ==+++,判断否,输出212021132021*********S +=+++=⨯=. 故选:D【点睛】本小题主要考查根据程序框图计算输出结果,属于基础题.11.部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.若在图④中随机选取-点,则此点取自阴影部分的概率为( ) A.928B.1928C.2764D.3764【★答案★】C 【解析】 【分析】根据图①,②,③归纳得出阴影部分的面积与大三角形的面积之比,再用几何概型的概率公式可得★答案★.【详解】依题意可得:图①中阴影部分的面积等于大三角形的面积,图②中阴影部分的面积是大三角形面积的34, 图③中阴影部分的面积是大三角形面积的916, 归纳可得,图④中阴影部分的面积是大三角形面积的2764, 所以根据几何概型的概率公式可得在图④中随机选取-点,则此点取自阴影部分的概率为2764. 故选:C【点睛】本题考查了归纳推理,考查了几何概型的概率公式,属于基础题.12.已知复数z 满|12||2|22z i z i ---++=(i 是虚数单位),若在复平面内复数z 对应的点为Z ,则点Z 的轨迹为( )A. 双曲线B. 双曲线的一支C. 两条射线D. 一条射线【★答案★】B 【解析】 【分析】利用两个复数的差的绝对值表示两个复数对应点之间的距离,得出等式的几何意义,结合双曲线的定义,即可求解.【详解】因为复数z 满|12||2|22z i z i ---++=(i 是虚数单位), 在复平面内复数z 对应的点为Z ,则点Z 到点(1,2)的距离减去到点(2,1)--的距离之差等于22, 而点(1,2)与点(2,1)--之间的距离为32,根据双曲线的定义,可得点Z 表示(1,2)和(2,1)--为焦点的双曲线的一支. 故选:B.【点睛】本题主要考查了复数的几何意义及其应用,其中解答中根据复数模的几何意义,结合双曲线的定义求解是解答的关键,着重考查了分析问题和解答问题的能力.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.设复数1z i =+,则22||z z-=___________. 【★答案★】5 【解析】 【分析】利用复数运算化简得到2212z i z-=--,再计算复数模得到★答案★. 【详解】1z i =+,则()()()222211111222i i z i i i i i z -=-+=-+=---=--+, 则2222215z z-=+=.故★答案★为:5.【点睛】本题考查了复数的计算,复数的模,意在考查学生的计算能力和转化能力. 14.我们知道:在平面内,点()00,x y 到直线0Ax By C ++=的距离公式为0022Ax By C d A B++=+,通过类比的方法,可求得在空间中,点()2,4,1到平面2310x y z +++=的距离为___________. 【★答案★】14 【解析】 【分析】利用点到直线的距离公式类比到空间点()000,,x y z 到平面0Ax By Cz D +++=的距离为000222Ax By Cz Dd A B C+++=++,进而可求得点()2,4,1到平面2310x y z +++=的距离.【详解】在平面内,点()00,x y 到直线0Ax By C ++=的距离公式为0022Ax By C d A B++=+,类比到空间中,则点()000,,x y z 到平面0Ax By Cz D +++=的距离为000222Ax By Cz Dd A B C+++=++,因此,点()2,4,1到平面2310x y z +++=的距离为22222431114123d +⨯+⨯+==++.故★答案★为:14.【点睛】本题考查类比推理,考查点到平面的距离的计算,考查推理能力与计算能力,属于基础题. 15.设11()()()()11n ni i f n n i N i+-=+∈-+,则集合{|()}x x f n =的子集个数是___________. 【★答案★】8 【解析】 【分析】化简得到()()()nni f n i =+-,计算结合复数乘方的周期性得到{}{}|()2,0,2x x f n ==-,得到★答案★.【详解】()()()()()()()()22111()()()()()1111111n nn n n n i i i f n i i i i i i i i i -+-=+=+-+-=+-++-+, ()()0(0)2i f i =+-=,()()11(1)0i f i =+-=,()()22(2)2i f i =+-=-, ()()33(3)0i f i =+-=,()()44(4)2i f i =+-=,根据n i 的周期性知{}{}|()2,0,2x x f n ==-,子集个数为328=.故★答案★为:8. 【点睛】本题考查了复数的运算,集合的子集,意在考查学生的计算能力和综合应用能力,周期性的利用是解题的关键. 16.给出下列命题:①线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱; ②用2R 来刻画回归效果,2R 越大,说明模型的拟合效果越好;③根据22⨯列联表中的数据计算得出的2K 的值越大,两类变量相关的可能性就越大; ④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;⑤从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.其中真命题的序号是_______. 【★答案★】②③④ 【解析】 【分析】根据“残差”的意义、线性相关系数和相关指数的意义等统计学知识,逐项判断,即可作出正确的判断.【详解】对①,根据线性相关系数r 的绝对值越接近1,两个变量的线性相关性越强;反之,线性相关性越弱,故①错误;对②,根据用相关指数2R 刻画回归的效果时, 2R 的值越大说明模型的拟合效果就越好,故②正确;对③,2×2列联表中的数据计算得出的2K 越大,“X 与Y 有关系”可信程度越大,相关性就越大,故③正确;对④,根据比较模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果就越好,故④正确;对⑤,新产品没有明显差异,抽取时间间隔相同,故属于系统抽样,故⑤错误. 综上所述,正确的是②③④. 故★答案★为:②③④【点睛】本题解题关键是掌握统计学的基本概念和“残差”的意义、线性相关系数和相关指数的意义,考查了分析能力和计算能力,属于基础题.三、解答题:本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤. 17.已知m 为实数,设复数22(56)(253)z m m m m i =++++-. (1)当复数z 为纯虚数时,求m 的值;(2)当复数z 对应的点在直线70x y -+=的上方,求m 的取值范围. 【★答案★】(1)2-.(2)(,4)(4,)-∞-⋃+∞ 【解析】【分析】(1)直接根据复数的类型得到方程,解得★答案★.(2)直线70x y -+=的上方的点的坐标(),x y 应满足70x y -+<,代入数据解不等式得到★答案★.【详解】(1)由题意得:225602530,m m m m ⎧++=⎨+-≠⎩,解得2m =-.(2)复数z 对应的点的坐标为()2256,253m m m m +++-, 直线70x y -+=的上方的点的坐标(),x y 应满足70x y -+<, 即:22(56)(253)70m m m m +-+-+<+,解得4m >或4m <-, ∴m 的取值范围为(,4)(4,)-∞-⋃+∞.【点睛】本题考查了根据复数的类型和复数的对应点的位置求参数,意在考查学生的计算能力和转化能力.18.(1)已知0a b ≥>,求证:332222a b ab a b -≥-;(2)若x ,y 都是正实数,且2x y +>,用反证法证明:12x y +<与12yx+<中至少有一个成立. 【★答案★】(1)证明见解析.(2)证明见解析 【解析】 【分析】(1)利用作差法即可证明.(2)假设12x y +≥,12yx+≥,从而可得12x y +≥,12y x +≥,两不等式相加即可找出矛盾点,即证.【详解】(1)33222222222()()a b ab a b a a b b a b --+=-+-()()(2)a b a b a b =-++,∵0a b ≥>,∴0a b -≥,0a b +>,20a b +>, 从而:()()()20a b a b a b -++≥,∴332222a b ab a b -≥-.(2)假设12x y +≥,12yx+≥, 则12x y +≥,12y x +≥,所以1122x y y x +++≥+,所以2x y ≥+, 与条件2x y +>矛盾,所以假设不成立,即12x y +<与12yx+<中至少有一个成立. 【点睛】本题考查了作差法证明不等式、反证法,反证法关键找出矛盾,属于基础题.19. 为了研究“教学方式”对教学质量的影响,某高中数学老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.(1)学校规定:成绩不低于75分的为优秀.请画出下面的22⨯列联表. 甲班 乙班 合计 优秀 不优秀 合计(2)判断有多大把握认为“成绩优秀与教学方式有关”.下面临界值表仅供参考:0.15 0.10 0.05 0.025 0.010 0.005 0.0012.072 2.7063.841 5.024 6.635 7.879 10.828参考公式:22()()()()()n ad bcKa b c d a c b d-=++++【★答案★】(1)表格解析;(2)有97.5%的把握认为成绩优秀与教学方式有关.【解析】试题分析:解题思路:(1)根据茎叶图中的数据,按不同区间进行填表即可;(2)利用公式求值,结合临界值表进行判断.规律总结:以图表给出的统计题目一般难度不大,主要考查频率直方图、茎叶图、频率分布表给出;利用列联表判定两个变量间的相关性,要正确列出或补充完整列联表,利用公式求值,结合临界值表进行判断.试题解析:(1)甲班乙班合计优秀 6 14 20不优秀14 6 20合计20 20 40(2)=因此,我们有97.5%的把握认为成绩优秀与教学方式有关. 考点:1.茎叶图;2.独立性检验. 20.数列{}n a 中,11a =,*13()3nn na a a N n +=+∈ (1)求234,,a a a ,猜想数列{}n a 的通项公式; (2)证明:数列1{}na 是等差数列. 【★答案★】(1)234331,,452a a a ===,32n a n =+;(2)证明见解析 【解析】 【分析】(1)根据*1131,()3nn na a n a a +==∈+N ,分别令1,2,3n =,即可求解234,,a a a 的值,猜想得出数列的通项公式; (2)由*13()3n n na a n a +=+∈N ,得到11113n n a a +=+,利用等差数列的定义,即可得到证明. 【详解】(1)由题意,数列{}n a 中,11a =,*13()3nn na a n a +=+∈N , 令1n =,可得1213333314a a a ===++; 令2n =,可得2323335a a a ==+; 令3n =,可得343331362a a a ===+; 所以234331,,452a a a ===, 猜想:数列{}n a 的通项公式32n a n =+.(2)由*13()3n nn a a n a +=+∈N ,可得1131133n n n n a a a a ++==+,即11113n n a a +-=(常数), 又由11a =,所以111a ,所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,以13为公差的是等差数列. 【点睛】本题主要考查了数列的递推公式的应用,以及利用等差数列的定义的应用,考查了推理与运算能力,属于基础题.21.已知点()1,2A 是椭圆C :22221(0)y x a b a b+=>>上的一点,椭圆C 的离心率与双曲线221x y -=的离心率互为倒数,斜率为2直线l 交椭圆C 于B ,D 两点,且A 、B 、D 三点互不重合.(1)求椭圆C 的方程;(2)若12,k k 分别为直线AB ,AD 的斜率,求证:12k k +为定值.【★答案★】(1)22142y x +=(2)详见解析【解析】 【分析】(1)根据椭圆的定义和几何性质,建立方程,即可求椭圆C 的方程; (2)设直线BD 的方程为2y x m =+,代入椭圆方程,设D (x 1,y 1),B (x 2,y 2),直线AB 、AD 的斜率分别为:,AB AD k k ,则12122211AB AD y y x x k k +=--+--,由此导出结果.【详解】(1)由题意,可得e =c a =22,代入A (1,2)得22211a b+=, 又222a b c =+,解得2,2a b c ===,所以椭圆C 的方程22142y x +=. (2)证明:设直线BD 的方程为y =2x +m ,又A 、B 、D 三点不重合,∴0m ≠, 设D (x 1,y 1),B (x 2,y 2),则由22224y x m x y ⎧=+⎪⎨+=⎪⎩得4x 2+22mx +m 2-4=0 所以△=-8m 2+64>0,所以22-<m <22.x 1+x 2=-22m ,21244m x x -⋅=设直线AB 、AD 的斜率分别为:k AB 、k AD , 则k AD +k AB =121212121222222111y y x x m x x x x x x --+-+=+⋅----+=2222222222042142m m m m --+⋅=-=-++ 所以k AD +k AB =0,即直线AB ,AD 的斜率之和为定值.【点睛】该题考查的是有关直线与椭圆的问题,涉及到的知识点有椭圆方程的求解.直线与椭圆的位置关系,直线斜率坐标公式,属于中档题目. 22.已知函数()ln 1f x x ax =-+.(1)若曲线()y f x =在点()1,(1)A f 处的切线l 与直线4330x y +-=垂直,求实数a 的值;(2)若()0f x ≤恒成立,求实数a 的取值范围;(3)证明:()111ln(1)231n n N n *+>++⋅⋅⋅⋅⋅⋅+∈+ 【★答案★】(1)14a =(2) 1.a ≥(3)证明见解析【解析】【详解】试题分析:(1)利用导数的几何意义求曲线在点()1,(1)A f 处的切线方程,注意这个点的切点;(2)对于恒成立的问题,常用到以下两个结论:()a f x ≥恒成立max ()a f x ⇔≥,()a f x ≤恒成立min ()a f x ⇔≤;(3)证明不等式,注意应用前几问的结论. 试题解析:(1)函数的定义域为()10,,()f x a x+∞'=-, 所以()11f a '=-,又切线l 与直线4330x y +-=垂直, 所以切线l 斜率为34,从而314a -=,解得14a = ,(2)若0a ≤,则()10,f x a x->'=则()f x 在()0,∞+上是增函数 而()()11,0f a f x =-≤不成立,故0.a >若0a >,则当10,x a ⎛⎫∈ ⎪⎝⎭时,()10f x a x '=->; 当1,x a ⎛⎫∈+∞⎪⎝⎭时,()10.f x a x -<'=所以()f x 在10,a ⎛⎤ ⎥⎝⎦上是增函数,在1,a⎡⎫+∞⎪⎢⎣⎭上是减函数,所以()f x 的最大值为1ln .f a a ⎛⎫=-⎪⎝⎭要使()0f x ≤恒成立,只需ln 0a -≤,解得 1.a ≥(3)由(2)知,当1a =时,有()0f x ≤在()0,∞+上恒成立, 且()f x 在(]0,1上是增函数,()10f =所以ln 1x x <-在(]0,1x ∈上恒成立 .令1n x n =+,则1ln1,111n n n n n <-=-+++ 令1,2,3......,n n =则有11211ln,ln ,......,ln .223311n n n <-<-<-++ 以上各式两边分别相加, 得12111lnln ......ln .......231231n n n ⎛⎫+++<-+++ ⎪++⎝⎭ 即1111ln......,1231n n ⎛⎫<-+++ ⎪++⎝⎭故()111ln 1 (231)n n +>++++ 考点:(1)求切线方程;(2)函数在闭区间上恒成立的问题;(3)不等式证明.感谢您的下载!快乐分享,知识无限!。
交大附中高二期中数学试卷2022.04一. 填空题1.已知集合{||1|2,}M x x x =-≤∈R ,1{|0,}2x P x x x -=≥∈+R ,则集合M P 中整数 的个数为个2.设向量(1,2)a = ,(0,3)b = ,则a 在b 方向上的数量投影为3.某校有学生1200人,其中高三学生400人,为了解学生的身体素质情况,采用按年级分层随机抽样的方法,从该校学生中抽取一个120人的样本,则样本中高三学生的人数为4.抛掷一枚均匀的骰子两次,得到的数字依次记作a 、b ,则实数a 是方程20x b -=的解的概率为5.已知圆锥的母线10l =,母线与圆锥的轴的夹角30α︒=,则圆锥的表面积为6.极坐标方程10sin()3πρθ=-所表示的曲线围成的图形面积为7.抛物线2:y x Γ=上一点M 到焦点的距离为1,抛物线Γ在点M 处的切线的斜率为8.已知无穷数列{}n a 满足112n n a a +=(*n ∈N ),且21a =,则1i i a +∞==∑9.在参数方程221112x t y t ⎧=+⎪⎨=-⎪⎩(t 为参数,t ∈R )所表示的曲线上任取一点(,)P a b ,则22a b +的最小值为10.若函数2224(e e )x x y x x a --=-++有且只有一个零点,那么实数a =11.虚数z 满足51z =,若存在正整数a 、b 、c 使得a 、b互质,且2(Im )z =,那么a b c ++=12.已知1144,2n n a ta t n a k -=+-≥⎧⎨=⎩是数列{}n a 的一个递推公式,其中0t ≠且1t ≠,若 {|144,}i a x x x ∈≤≤∈Z (1,2,3,4i =),则满足条件的实数k 的所有可能值的和为二. 选择题13. 已知空间两条直线m 、n ,两个平面 β、 α,给出下面四个命题:① m ∥n ,m ⊥ ⇒ αn ⊥ β∥ α ②; α,m α ⊂,n ⇒ β ⊂m ∥n ;③ m ∥n ,m ∥ ⇒ αn ∥ β∥ α ④; α,m ∥n ,m ⊥ ⇒ αn ⊥ β.其中真命题的序号是()A.②③ B.①④ C.①②④ D.①③④14.一个公司有8名员工,其中6位员工的月工资分别为5200、5300、5500、6100、6500、6600,另两位员工数据不清楚,那么8位员工月工资的中位数不可能是()A.5800B.6000C.6200D.640015.函数()y f x =的定义域为(2,2)-,解析式42()41f x x x =-+. 则下列结论中正确的是()A.函数()y f x =既有最小值也有最大值B.函数()y f x =有最小值但没有最大值C.函数()y f x =恰有一个极小值点D.函数()y f x =恰有两个极大值点16. 己知样本空间为Ω,x 为一个基本事件. 对于任意事件A ,定义0,()1,x A f A x A ∉⎧=⎨∈⎩,给出下列结论:① ()1f Ω=,()0f ∅=;② 对任意事件A ,0()1f A ≤≤; ③如果A B =∅ ,那么()()()f A B f A f B =+ ;④ ()()1f A f A +=.其中,正确结论的个数是()A.1个 B.2个 C.3个 D.4个三.解答题17.如图,在正四棱锥P - ABCD 中,PA =AB =a ,E 是棱PC 的中点.(1)求证:PC ⊥BD ;(2)求异面直线BE 与PA 所成角的余弦值.18.已知22()cos ()4f x x x π=+--(x ∈R ). (1)求函数()y f x =在区间[0,2π上的最大值;(2)在△ABC 中,若A B <,且1()()2f A f B ==,求BC AB的值.19.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a 元(35a ≤≤)的管理费,预计当每件产品的售价为x 元(911x ≤≤)时,一年的销售量为2(12)x -万件.(1)求分公司一年的利润L (万元)与每件产品的售价x 的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L 最大,并求出L 的最大值()Q a .20.如图双曲线22:13x y Γ-=的左、右焦点分别为1F 、2F ,过2F 作直线l 交y 轴于点Q . (1)当直线l 平行于Γ的一条渐近线时,求点1F 到直线l 的距离;(2)当直线l 的斜率为1时,在Γ的右支上是否存在点P ,满足110F P F Q ⋅= ?若存在,求出P 点的坐标;若不存在,说明理由;(3)若直线l 与Γ交于不同两点A 、B ,且Γ上存在一点M ,满足40OA OB OM ++= (其中O 为坐标原点),求直线l 的方程.21.若两个函数()y f x =与()y g x =在0x x =处有相同的切线,则称这两个函数相切,切点 为00(,())x f x .(1)判断函数sin y x =与y x =是否相切;(2)设反比例函数1y x =与二次函数2y ax bx =+(0a ≠)相切,切点为1(,)t t . 求证:函数1y x=与2y ax bx =+恰有两个公共点;(3)若01a <<,指数函数x y a =与对数函数log a y x =相切,求实数a 的值;(4)(思考题,本小题不计分)设(3)的结果为0a ,求证:当00a a <<时,指数函数x y a =与对数函数log a y x =的图像有三个公共点.。
(VIP&校本题库)2021-2022学年河南省南阳市南召第一高级中学高二(下)期中数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)A .第一象限B .第二象限C .第三象限D .第四象限1.(5分)已知复数z =i3+i,则复数z 在复平面中对应的点在( )A .1B .2C .3D .42.(5分)设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为̂y =0.85x -85.71.①y 与x 具有正的线性相关关系;②回归直线过样本点的中心(x ,y );③若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;④若该大学某女生身高为170cm ,则其体重必为58.79kg .则上述判断不正确的个数是( )A .0.02B .0.28C .0.72D .0.983.(5分)甲、乙两个雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,飞行目标被雷达发现的概率为( )A .160B .162C .166D .1704.(5分)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为̂y =̂b x +̂a .已知10i =1x i =225,10i =1y i =1600,̂b =4.该班某学生的脚长为23,据此估计其身高为( )A .-1B .12C .−12D .15.(5分)在一组样本数据(x 1,y 1),(x 2,y 2),⋯,(x n ,y n ),(n ≥2,x 1,x 2,…,x n 不相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,⋯,n )都在直线y =−12x +3上,则这组样本数据的样本相关系数为( )A .假设a 、b 、c 都是偶数B .假设a 、b 、c 都不是偶数C .假设a 、b 、c 至多有一个偶数D .假设a 、b 、c 至多有两个偶数6.(5分)用反证法证明:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a 、b 、c 中至少有一个偶数时,下列假设正确的是( )7.(5分)目前国家为进一步优化生育政策,实施一对夫妻可以生育三个子女的政策.假定生男孩和生女孩是等可能的,现随机选择一个有三个小孩的家庭,如果已经知道这个家庭有女孩,那么在此条件下该家庭也有男孩的概率是( )A .12B .23C .34D .67A .使得ni =1[y i -(a +bx i )]最小B .使得ni =1[y i -(a +bx i )2]最小C .使得ni =1[y i 2-(a +bx i )2]最小D .使得ni =1[y i -(a +bx i )]2最小8.(5分)最小二乘法的原理是( )A .1B .2C .3D .49.(5分)下列四个命题:①在线性回归分析中,相关系数r 的取值范围是(-1,1);②在线性回归分析中,相关系数r 的值越大,变量间的相关性越强;③在线性回归分析中,相关系数r >0时,两个变量正相关;④在对两件事进行独立性检验时,用χ2作为统计量,χ2越大,则能判定两件事有关联的把握越大.其中真命题的个数是( )A .9B .16C .23D .3010.(5分)定义[x ]表示不超过x 的最大整数,例如[2]=2,[3.6]=3,执行如图的程序框图,则输出的结果是( )11.(5分)研究发现,任意一个三次函数f (x )=ax 3+bx 3+cx +d (a ≠0)的图象必有一个对称中心,一般地,判断点(x 0,f (x 0))是否是三次函数f (x )图象的对称中心的流程如图所示,则对于函数f (x )=x 3-32x 2+34x +18,其图像的对称中心以及f(12021)+f (22021)+f (32021)+…+f (20202021)的值分别是( )二、填空题(本大题共4小题,每小题5分,共20分)三、解答题(本大题共6小题,共70分。
2019-2020学年安徽省黄山市屯溪一中高二(下)期中数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1.复数的共轭复数是A. B. C. D.2.如表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量吨与相应的生产能耗吨的几组对应数据,根据表提供的数据,求出y关于x的线性回归方程为,则下列结论错误的是x3456y t4产品的生产能耗与产量呈正相关B. t的取值必定是C. 回归直线一定过点D. A产品每多生产1吨,则相应的生产能耗约增加吨3.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为A. 23B. 75C. 77D. 1394.若三角形的周长为L,面积为S,内切圆半径为r,则有,类比此结论,在四面体中,设其表面积为S,体积为V,内切球半径为R,则有A. B. C. D.5.命题结论为:“实数a,b,c,d中存在负数”,则用反证法证明时的假设为A. a,b,c,d中存在正数B. a,b,c,d中全为正数C. a,b,c,d中存在非负数D. a,b,c,d全为非负数6.已知复数z满足:,则的最小值是A. 1B.C.D.7.关于x方程的解集为A. B. ,或C. D.8.不等式的解集是A. B.C. D.9.已知双曲线C:的一条渐近线方程为,且与椭圆有公共焦点,则C的方程为A. B. C. D.10.已知a为函数的极小值点,则A. B. C. 4 D. 211.已知函数在区间上不是单调函数,则实数m的取值范围是A. B.C. D.12.已知函数满足,且当时,成立,若,,,则a,b,c的大小关系是A. B. C. D.二、填空题(本大题共6小题,共30.0分)13.在复平面内,复数与对应的点关于虚轴对称,且,则______ .14.若抛物线的准线经过双曲线的左顶点,则______.15.已知函数,则在点处的切线方程是______16.若函数在区间上存在唯一的极值点,则实数a的取值范围为______.17.将正数作如图排列:则第30组第16个数对为______.18.已知,且,则的最小值是______.三、解答题(本大题共5小题,共60.0分)19.已知复数,其中i为虚数单位求复数;若复数所对应的点在第四象限,求实数m的取值范围.20.“开门大吉”是某电视台推出的游戏节目,选手面对号8扇大门,依次按响门上的门铃,门铃会播放一段音乐将一首经典流行歌曲以单音色旋律的方式演绎,选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:;单位:岁其猜对歌曲名称与否的人数如图所示.写出列联表;判断能否在犯错误的概率不超过的前提下认为猜对歌曲名称与年龄现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,求岁与岁各有几人.参考公式:,其中.21.如图,在四棱锥中,底面ABCD是正方形,E、F分别为PC、BD的中点,侧面底面ABCD.求证:平面PAD;若,求证:平面平面PCD.22.已知函数,.求的最大值m;若,,且,求证:.23.已知椭圆C:的实轴长为4,焦距为.求椭圆C的标准方程;设直线经过点且与椭圆C交于不同的两点M,异于椭圆的左顶点设点Q是x 轴上的一个动点,直线QM,QN的斜率分别为,,试问:是否存在点Q,使得为定值?若存在,求出点Q的坐标及定值;若不存在,请说明理由,-------- 答案与解析 --------1.答案:D解析:解:,复数的共轭复数是.故选:D.利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.2.答案:B解析:【分析】本题考查回归分析的初步应用,考查样本中心点的性质,考查方程思想的应用,是一个基础题,解题时注意数字计算不要出错.先求出这组数据的,把代入线性回归方程,求出,即可得到结果.【解答】解:由题意,,,,,故选B.3.答案:B解析:解:观察每个图形最上边的正方形中的数字规律为1,3,5,7,9,11,左下角数字的变化规律为2,,,,,,右下角的数字等于前图形的两个数字之和,所以,故选:B.根据数字的变化规律即可求出.本题考查了归纳推理的问题,关键值找到规律,属于基础题4.答案:A解析:解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和,则四面体的体积,所以,故选:A.设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和,从而得到,可得R.本题主要考查了合情推理中的类比推理,是基础题.5.答案:D解析:解:“实数a,b,c,d中存在负数”的否定为“a,b,c,d全都为非负数”,由用反证法证明数学命题的方法可得,应假设“a,b,c,d全是非负数”,故选:D.用反证法证明数学命题时,应先假设结论的否定成立.本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.6.答案:C解析:解:设对应的点为,x,,,;即对应的点为在直线上,的最小值是原点到直线的距离:即的最小值等于:;故选:C.设出复数z,根据,求出其满足的条件,进而求得结论.本题考查复数的模的计算、复数的代数表示法及其几何意义等基础知识,考查运算求解能力.7.答案:B解析:解:由题意,,,或,方程的解集为,或,故选:B.利用绝对值的意义,即可得出方程的解集.本题考查绝对值的意义,考查学生解不等式的能力,比较基础.8.答案:C解析:【分析】本题考查解绝对值不等式问题,考查分类讨论思想,属于基础题.通过讨论x的范围,分别求解不等式,最后取并集即可.【解答】解:当时,,解得;当时,,无解;当时,,解得,综上,不等式的解集是,故选:C.解析:【分析】本题考查双曲线方程的求法,属于基础题.求出椭圆的焦点坐标,得到双曲线的焦点坐标,利用双曲线的渐近线方程,即可得出结果.【解答】解:椭圆的焦点坐标为,则双曲线的焦点坐标为,可得,双曲线C:的一条渐近线方程为,可得,即,可得,解得,则,故双曲线C的方程为.故选B.10.答案:D解析:【分析】本题考查函数极小值点的定义,以及根据导数符号判断函数极值点的方法及过程,要熟悉二次函数的图象.可求导数得到,可通过判断导数符号从而得出的极小值点,从而得出a的值.【解答】解:;时,,单调递增,时,,单调递减,时,,单调递增,是的极小值点;又a为的极小值点;.故选:D.11.答案:C解析:解:函数,可得,函数在区间上不是单调函数,可知,在区间上有零点,导函数对称轴为:,只需:,解得求出函数的导数,利用函数在区间上不是单调函数,声明导函数在区间上有零点,转化求解即可.本题考查函数与导数的应用,函数的最值以及函数的极值的求法,考查转化思想的应用.12.答案:B解析:【分析】本题考查了函数的奇偶性,利用导数研究函数的单调性,对数函数及其性质和比较大小,属于较难题.构建函数,利用奇函数的定义得函数为R上奇函数,再利用导数研究函数的单调性得函数在R上为减函数,结合对数函数的性质知,再利用单调性比较大小得结论.【解答】解:根据题意,令,因为对成立,所以,因此函数为R上奇函数.又因为当时,,所以函数在上为减函数,又因为函数为奇函数,所以函数在R上为减函数,因为,所以,即.故选B.13.答案:解析:解:由复数与对应的点关于虚轴对称,且,则,则.故答案为:.直接由复数与对应的点关于虚轴对称,且,求出,然后把,代入,再由复数代数形式的乘法运算化简,则答案可求.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.14.答案:2解析:【分析】本题考查抛物线和双曲线的简单性质,以及抛物线方程中p的意义,属于基础题.先求出的左顶点,得到抛物线的准线,依据p的意义求值.【解答】解:双曲线的左顶点为,故抛物线的准线为,,,故答案为2.15.答案:解析:解:由题意得,,.所以切线方程为:,即.故答案为:.先对函数求导数,然后求出切点处的函数值、导数值,利用直线方程的点斜式写出切线方程.本题考查导数的几何意义以及切线方程的求法.同时考查学生的运算能力.属于基础题.16.答案:解析:【分析】本题考查导数的运用:求函数的极值,考查函数的零点存在定理,注意导数为0与函数的极值的关系,属于易错题,也是中档题.求出函数的导数,由已知条件结合零点存在定理,可得,解出不等式求并集即可.【解答】解:,若在上存在唯一的极值点,则,即,解得:,故答案为:.17.答案:解析:解:,两数的和为2,共1个,,,两数的和为3,共2个,,,,两数的和为4,共3个,,所以第30组的两数的和为31,所以第30组第16个数对为,故答案为:.根据前3组的规律可得第30组的两数的和为31,从而求出第30组第16个数对.本题主要考查了合情推理中的归纳推理,是基础题.18.答案:4解析:解:由已知可得,,当且仅且,即,时,等号成立.故的最小值是4,故答案为:4根据条件进行转化,结合基本不等式的性质进行转化求解即可.本题主要考查不等式最值的求解,结合基本不等式的性质进行转化是解决本题的关键.19.答案:解:复数,,;,复数所对应的点在第四象限,,解得.实数m的取值范围是.解析:本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.由复数,,则,然后利用复数代数形式的乘除运算化简,则复数可求;直接把代入进行化简,再由复数所对应的点在第四象限,列出不等式组,求解即可得答案.20.答案:解:根据所给的二维条形图得到列联表:分类正确错误总计岁103040岁107080总计20100120根据列联表所给的数据代入观测值的公式得到:,因为,所以在犯错误的概率不超过的前提下认为猜对歌曲名称与年龄有关系;按照分层抽样方法可知,岁年龄段抽取:人,岁年龄段抽取:人.在上述抽取的6名选手中,年龄在岁的有2人,年龄在岁的有4人.解析:根据题目所给的数据填写列联表,计算K的观测值,对照题目中的表格,得出统计结论;利用分层抽样的定义即可求出结果.本题考查了独立性检验的应用问题,以及分层抽样,也考查了计算能力的应用问题,是基础题目.21.答案:证明:连结AC,则F是AC的中点,又E为PC的中点,故在中,,平面PAD,平面PAD,平面PAD.由可得,,又,,平面平面ABCD,四边形ABCD为正方形,平面PAD,,又,平面PDC,又平面PAB,平面平面PCD.解析:连结AC,则F是AC的中点,又E为PC的中点,从而,由此能证明平面PAD.由,又,得,从而平面PAD,进而,平面PDC,由此能证明平面平面PCD.本题考查线面平行、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.22.答案:解:,在上单调递增,在上单调递减,;由知,,,,,,,当且仅当时取等号,.解析:去绝对值后判断的单调性,然后求出最大值可得m;由知,可得,然后由可利用“1“的代换转化为利用用基本不等式求最值问题.本题考查了绝对值不等式单调性的判断和利用基本不等式求最值,考查了转化思想和运算能力,属中档题.23.答案:解:椭圆C:的实轴长为4,焦距为.,,又.解得,,椭圆C的标准方程:;假设存在满足条件的点.当过点直线l与x轴垂直时,它与椭圆只有一个交点,不符合题意.当过点直线l的斜率存在时,设其方程为,联立.,设,,则,.当且仅当,即时,为定值.所以存在,使得为定值.解析:可得,,又得a,b即可.假设存在满足条件的点当直线l与x轴垂直时,它与椭圆只有一个交点,不符合题意.当过点的直线l的斜率存在时,设其方程为,联立方程,结合韦达定理可得:,即可得当且仅当,即时,为定值.不本题考查了椭圆的性质,直线与椭圆的位置关系;考查了计算能力,属于中档题.。
期中数学试卷(文科)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.下列说法错误的是()A. 在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法B. 在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好C. 线性回归方程对应的直线至少经过其样本数据点中的一个点D. 在回归分析中,相关指数R2越大,模拟的效果越好2.已知①正方形的对角线相等,②矩形的对角线相等,③正方形是矩形.由①、②、③组合成“三段论”,根据“三段论”推出一个结论,则此结论是()A. 正方形的对角线相等B. 平行四边形的对角线相等C. 正方形是平行四边形D. 以上均不正确3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是()A. 假设三内角都不大于60°B. 假设三内角都大于60°C. 假设三内角至多有一个大于60°D. 假设三内角至多有两个小于 60°4.下列推理是归纳推理的是()A. A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,则P点的轨迹为椭圆B. 由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C. 由圆x2+y2=r2的面积πr2,猜想出椭圆+=1的面积S=πabD. 以上均不正确5.为考察A、B两种药物预防某疾病的效果,进行动物试验,分别得到等高条形图:根据图中信息,在下列各项中,说法最佳的一项是()A. 药物A、B对该疾病均没有预防效果B. 药物A、B对该疾病均有显著的预防效果C. 药物A的预防效果优于药物B的预防效果D. 药物B的预防效果优于药物A的预防效果6.实数m满足集合M={1,2,(m2-3m-1)+(m2-5m-6)i},N={-1,3},且M∩N={3},则实数m的值是()A. 4B. -1C. -1或4D. -1或67.非零复数z1、z2分别对应复平面内的向量、,若|z1+z2|=|z1﹣z2|,则()A. ⊥B. ||=||C. =D. 和共线8.已知命题p:∃x∈R,使sin x=;命题q:∀x∈R,都有x2+x+1>0,给出下列结论:①命题“p∧q”是真命题;②命题“p∧(¬q)”是假命题;③命题“(¬p)∨q”是真命题;④命题“(¬p)∨(¬q)”是假命题.其中正确的是()A. ②④B. ②③C. ③④D. ①②③9.已知=2,=3,=4,=5,…=10,则推测a+b=()A. 1033B. 109C. 199D. 2910.下列选项中不正确的是()A. △ABC中,A>B,则sin A>sin B的逆否命题为真命题B. 若am2<bm2,则a<b的逆命题为真命题C. 若p:x≠2或y≠6,q:x+y≠8,则q是p充分不必要条件D. 若p:∀x∈R,cos x≤1,则¬p:∃x∈R,cos x>111.在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则|AB|2+|AC|2=|BC|2”拓展到空间,类比平面几何的勾股定理,“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两相互垂直,则可得”()A. |AB|2+|AC|2+|AD|2=|BC|2+|CD|2+|BD|2B. S2△ABC×S2△ACD×S2△ADB=S2△BCDC. S△ABC2+S△ACD2+S△ADB2=S△BCD2D. |AB|2×|AC|2×|AD|2=|BC|2×|CD|2×|BD|212.已知函数f(x)=x2,.若∀x1∈[-1,3],∃x2∈[0,2],使得f(x1)≤g(x2),则实数m的取值范围是()A. B. (-∞,-8]C. D. (-∞,-8]∪二、填空题(本大题共4小题,共20.0分)13.如图所示,执行图中的程序框图,输出的S值是______.14.下列四个命题中,正确命题的个数是______.①0比i小②两个复数互为共轭复数,当且仅当其和为实数③x+yi=1+i的充要条件为x=y=1④如果实数a与ai对应,那么实数集与纯虚数集一一对应15.已知,经计算f(4)>2,,f(16)>3,,则根据以上式子得到第n个式子为______.16.若x1,x2∈R,且,则|x1+x2|的最小值为______.三、解答题(本大题共7小题,共82.0分)17.集合,.(1)若,求;(2)已知命题,命题,若命题是命题的充分不必要条件,求实数的取值范围.18.设实部为正数的复数z,满足|z|=,且复数(1+2i)z在复平面上对应的点在第一、三象限的角平分线上.(1)求复数z;(2)若+(m∈R)为纯虚数,求实数m的值.19.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:喜爱打篮球不喜爱打篮球合计男生5女生10合计50已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.(1)请将上面的列联表补充完整;(2)是否有99%的把握认为“喜爱打篮球与性别有关”?说明你的理由.参考公式:独立性检测中,随机变量,其中n=a+b+c+d为样本容量P(K2>k)0.100.050.0250.0100.0050.001 k 2.706 3.841 5.024 6.6357.87910.82820.某公司近年来特别注重创新产品的研发,为了研究年研发经费x(单位:万元)对年创新产品销售额y(单位:十万元)的影响,对近10年的研发经费x i与年创新产品销售额y i(i=1,2,…,10)的数据作了初步处理,得到如图的散点图及一些统计量的值.其中,,,,.现拟定y关于x的回归方程为.(1)求,的值(结果精确到0.1);(2)根据拟定的回归方程,预测当研发经费为13万元时,年创新产品销售额是多少?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线=+u的斜率和截距的最小二乘估计分别为,.21.某少数民族的刺绣有着悠久的历史,如图①、②、③、④为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(1)求出f(5);(2)归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式;(3)求证:.22.以平面直角坐标系原点O为极点,以x轴非负半轴为极轴,以平面直角坐标系的长度单位为长度单位建立极坐标系.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρsin2θ=4cosθ(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设直线l与曲线C相交于A,B两点,求|AB|.23.设函数f(x)=|x+1|+|x-2|,g(x)=|x-3|+|x-2|.(1)求函数f(x)的最小值;(2)若对任意的x∈R,不等式g(a)≤f(x)恒成立,求实数a的取值范围.答案和解析1.【答案】C【解析】【分析】本题考查了回归分析与独立性检验和相关指数的应用问题,是基础题目.根据统计分析的观点,对选项中的命题进行分析、判断即可.【解答】解:对于A,统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法,正确;对于B,残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好,正确;对于C,线性回归方程对应的直线过样本中心点,不一定过样本数据中的点,故C错误;对于D,回归分析中,相关指数R2越大,越接近1,其模拟的效果就越好,正确.故选:C.2.【答案】A【解析】解:由演绎推理三段论可得“三段论”推理出一个结论,则这个结论是:“正方形的对角线相等”,故选:A.三段论是由两个含有一个共同项的性质判断作前提得出一个新的性质判断为结论的演绎推理.在三段论中,含有大项的前提叫大前提,如本例中的“平行四边形的对角线相等”;含有小项的前提叫小前提,如本例中的“正方形是矩形”叫不前提.另外一个是结论.三段论推理是演绎推理中的一种简单判断推理.它包含两个性质判断构成的前提,和一个性质判断构成的结论.一个正确的三段论有仅有三个词项,其中联系大小前提的词项叫中项;出现在大前提中,又在结论中做谓项的词项叫大项;出现在小前提中,又在结论中做主项的词项叫小项.3.【答案】B【解析】证明:用反证法证明命题:“三角形的内角中至少有一个内角不大于60°”时,应假设命题的否定成立,而命题“三角形的内角中至少有一个内角不大于60°”的否定是:三角形的三个内角都大于60°,故选:B.根据命题“三角形的内角中至少有一个内角不大于60°”的否定是:三角形的三个内角都大于60°,由此得到答案.本题主要考查求一个命题的否定,用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题4.【答案】B【解析】解:A选项用的双曲线的定义进行推理,不符合要求.B选项根据前3个S1,S2,S3的值,猜想出S n的表达式,属于归纳推理,符合要求.C选项由圆x2+y2=r2的面积S=πr2,猜想出椭圆+=1的面积S=πab,用的是类比推理,不符合要求.故选:B.本题考查的是选归纳推理的定义,判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一个特殊的推理过程.判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,能否从推理过程中找出“三段论”的三个组成部分.5.【答案】C【解析】【分析】根据两个表中的等高条形图看药物A的预防效果优于药物B的预防效果.本题考查了等高条形图的应用问题,是基础题.【解答】解:根据两个表中的等高条形图知,药物A实验显示不服药与服药时患病的差异较药物B实验显示明显大,∴药物A的预防效果优于药物B的预防效果.故选:C.6.【答案】B【解析】解:∵集合M={1,2,(m2-3m-1)+(m2-5m-6)i},N={-1,3},且M∩N={3},∴,解得m=-1.故选:B.利用交集定义和复数概念求解.本题考查实数的求法,是基础题,解题时要认真审题,注意得复数的概念和交集定义的灵活运用.7.【答案】A【解析】解:在四边形OACB内,,,∵非零复数z1、z2分别对应复平面内的向量、,则由复数加法的几何意义可知,|z1+z2|对应,|z1-z2|对应,则,由,,可知三边长OACB为平行四边形,则四边形OACB为矩形.∴.故选:A.由题意可得,,再由|z1+z2|=|z1-z2|,得到,由,,可知三边长OACB为平行四边形,从而得到四边形OACB 为矩形,有.本题考查复数的模的求法,考查复数对应向量加减法的几何意义,是中档题.8.【答案】B【解析】解:∵|sin x|≤1,∴:∃x∈R,使sin x=错误,即命题p是假命题,∵判别式△=1-4=-3<0,∴∀x∈R,都有x2+x+1>0恒成立,即命题q是真命题,则①命题“p∧q”是假命题;故①错误,②命题“p∧(¬q)”是假命题;故②正确,③命题“(¬p)∨q”是真命题;故③正确,④命题“(¬p)∨(¬q)”是真命题.故④错误,故选:B.先判断命题p,q的真假,结合复合命题真假关系进行判断即可.本题主要考查复合命题真假关系的应用,根据条件先判断命题p,q的真假是解决本题的关键.9.【答案】B【解析】解:由给出的几个等式可以推测:,(n≥2且n是正整数),在,b=102-1=99,于是a+b=109.故选:B.根据题意,分析所给的等式,可归纳出等式,(n≥2且n是正整数),将n=10代入可得答案.本题考查归纳推理,关键是根据题意所给的等式,发现其中的共同点.10.【答案】B【解析】解:根据题意知,A为真命题故逆否命题为真命题;B中命题为若a<b,则am2<bm2,m=0时不合题意;Cp不能得q,由q可得p,正确;D由命题的否定知D正确故选:B.运用四种命题之间的关系判断真假即可.本题考查四种命题之间的关系及命题真假的判断.11.【答案】C【解析】解:由边对应着面,边长对应着面积,由类比可得:S BCD2=S ABC2+S ACD2+S ADB2.故选:C.斜边的平方等于两个直角边的平方和,可类比到空间就是斜面面积的平方等于三个直角面的面积的平方和,边对应着面.本题考查了从平面类比到空间,属于基本类比推理.12.【答案】B【解析】解:由题意可知,f(x)=x2∈[0,9],∵∀x1∈[-1,3],∃x2∈[0,2],使得f(x1)≤g(x2),f(x)max≤g(x)max,∵g(x)在[0,2]上单调递减,故g(x)max=g(0)=1-m∴9≤1-m则实数m的取值范围m≤-8故选:B.由题只要f(x)在[-1,2]上的最小值大于g(x)在[0,2]上的最小值即可求解不等式的恒成立问题常转化为求解函数的最值,注意解题中的量词的区别13.【答案】19【解析】解:A=1,A≤2是,S=1+9=10,A=A+1=2,A=2,A≤2是,S=10+9=19,A=A+1=3,A=3,A≤2否,输出S=19,故答案为:19根据程序框图进行模拟计算即可.本题主要考查程序框图的识别和判断,利用模拟运算法是解决本题的关键.14.【答案】0【解析】解:根据题意知:复数不能比较大小,故①错;由共轭复数的概念知实部相等,虚部互为相反数,两个复数和为实数不一定互为共轭复数故②错误;③不知x,y的范围故错误;由纯虚数的定义知a≠0,故④错误;∴正确命题个数为0.故答案为0.运用复数的有关概念可解决此问题.本题考查复数的有关概念.15.【答案】【解析】解:观察已知中等式:f(4)=f(22)>2=,f(8)=f(23)>=,f(16)=f(24)>3=,f(32)=f(25)>=,…,则f(2n+1)>(n∈N*)故答案为:f(2n+1)>(n∈N*)我们分析等式左边数的变化规律及等式两边数的关系,归纳推断后,即可得到答案归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想)16.【答案】【解析】解:∵∴(2+sin x1)(2+sin2x2)=1,∵-1≤sin x≤1,∴1≤2+sin x≤2,∴2+sin x1=1且2+sin2x2=1,即sin x1=-1,sin2x2=-1,则x1=+2kπ,2x2=+2mπ,即x2=+mπ,k,m∈Z,则x1+x2=++2kπ+mπ,则|x1+x2|=|+(2k+m)π|,则当2k+m=-2时,|x1+x2|取得最小值,最小为|-2π|=,故答案为:.根据方程结合三角函数的有界性得到sin x1=-1,sin2x2=-1,求出对应根的表达式,进行求解即可.本题主要考查三角函数最值的应用,结合三角函数的有界性求出方程的根是解决本题的关键.17.【答案】解:(1)a=1时,A=(1,3),B=(1,2),∴∁R B=(-∞,1]∪[2,+∞).∴A∩(∁R B)=[2,3).(2)∵a>0,∴A=(a,3a),B=(1,2).∵q是p的充分不必要条件,∴B⊊A.由B⊆A得,解得,又a=1及符合题意.∴.【解析】(1)a=1时,A=(1,3),B=(1,2),可得∁R B=(-∞,1]∪[2,+∞).即可得出A∩(∁R B).(2)由a>0,可得A=(a,3a),B=(1,2).根据q是p的充分不必要条件,即可得出B⊊A.本题考查了函数的单调性、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.18.【答案】解:(1)设Z=a+bi(a,b∈R且a>0),由得:a2+b2=10①.又复数(1+2i)z=(a-2b)+(2a+b)i在复平面上对应的点在第一、三象限的角平分线上,则a-2b=2a+b,即a=-3b②.由①②联立的方程组得a=3,b=-1;或a=-3,b=1.∵a>0,∴a=3,b=-1,则Z=3-i.(2)∵为纯虚数,∴,解得m=-5.【解析】(1)设Z=a+bi(a,b∈R且a>0),由条件可得a2+b2=10①,a=-3b②.由①②联立的方程组得a、b的值,即可得到z的值.(2)根据若+(m∈R)为纯虚数,可得,由此求得m的值.本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,虚数单位i的幂运算性质,属于基础题.19.【答案】解:(1)因为在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为,所以喜爱打篮球的总人数为人,2×2喜爱打篮球不喜爱打篮球合计男生15520女生102030合计252550(2)根据列联表可得K2的观测值,所以有99%的把握认为“喜爱打篮球与性别有关”.【解析】本题考查了列联表与独立性检验的应用问题,是基础题.(1)根据题意计算表中数据,补充完整列联表;(2)根据列联表计算观测值,对照临界值得出结论.20.【答案】解:(1)令t=(x-3)2,则,=20.5,,,,,.(2)由(1)知,y关于x的回归方程为,当x=13时,=15.5(十万元)=155万元,故可预测当研发经费为13万元时,年创新产品销售额是155万元.【解析】本题考查了求回归方程的应用,考查运算求解能力,是中档题.(1)令t=(x-3)2,则,求出,,根据题中的数据,代入数据,即可求得的值;(2)由(1)得回归方程,代入求值即可.21.【答案】解:(1)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,∴f(5)=25+4×4=41.(2)∵f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f (4)=4×4,由上式规律得出:f(n+1)-f(n)=4n.∴f(n)-f(n-1)=4(n-1),f(n-1)-f(n-2)=4(n-2).f(n-2)-f(n-3)=4(n-3),……,f(2)-f(1)=4×1,∴f(n)-f(1)=4×[(n-1)+(n-2)+……+2+1]=2(n-1)n,∴f(n)=2n2-2n+1(n≥2),又n=1时,f(1)也适合f(n),∴f(n)=2n2-2n+1(n≥1).(3)当n≥2时,==,∴+++……+=1+=1+=-.∴+++……+.【解析】(1)f(1)=1,f(2)=5,f(3)=13,f(4)=25,可得f(5)=25+4×4=41.(2)由f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f (4)=4×4,由上式规律得出:f(n+1)-f(n)=4n.累加求和即可得出.(3)当n≥2时,==,利用裂项求和即可得出.本题考查了数列递推关系、累加求和方法与裂项求和方法、不等式的性质,考查了推理能力与计算能力,属于中档题.22.【答案】解:(Ⅰ)曲线C的极坐标方程为ρsin2θ=4cosθ,转化为:(ρsinθ)2=4ρcosθ,进一步转化为直角坐标方程为:y2=4x(Ⅱ)把直线l的参数方程(t为参数)化为:2x+3y=1,代入y2=4x得y2+6y-2=0,设A、B的纵坐标分别为y1、y2;则y1y2=-2,y1+y2=-6;则|y1-y2|==2;|AB|=×|y1-y2|=×2=,所以|AB|=.【解析】本题考查的知识要点:极坐标方程与直角坐标方程的互化,一元二次方程根和系数的关系的应用,主要考查学生的应用能力.(Ⅰ)直接把极坐标方程转化为直角坐标方程.(Ⅱ)联立直线与抛物线方程,得到关于y的一元二次方程,进一步利用根和系数的关系求出结果.23.【答案】解:(1)f(x)=|x+1|+|x-2|≥|(x+1)-(x-2)|=3,当且仅当(x+1)(x-2)≤0,即x∈[-1,2]时,取等号,此时f(x)min=3.(2)对任意的x∈R,不等式g(a)≤f(x)恒成立⇔g(a)≤f(x)min=3,或或,⇔1≤a≤2或2<a<3或3≤a≤4⇔1≤a≤4,所以,实数a的取值范围为[1,4].【解析】本题主要考查绝对值三角不等式的应用,函数的恒成立问题,绝对值不等式的解法,属于中档题.(1)利用绝对值三角不等式求得函数f(x)的最小值.(2)g(a)≤f(x)min=3,解此绝对值不等式,求得a的范围.。
2021-2022年高二下学期期中考试数学试题含答案一、填空题(每题4分,共48分)1、抛物线的准线方程为___________.2、若椭圆的长轴长为12,一个焦点是,则椭圆的标准方程为___________.3、经过点且与直线平行的直线的方程为___________.4、过点且与圆相切的直线的方程是___________.5、如果双曲线的两个焦点分别为、,一条渐近线方程为,那么双曲线的标准方程为___________.6、已知点是椭圆上任意一点,过点作轴的垂线,垂足为,则线段的中点的轨迹方程为___________.7、已知椭圆的两个焦点为、,点在此椭圆上,且,则的面积为___________.8、椭圆上点到两焦点距离之积为,则最大时点的坐标为___________.9、已知双曲线的左支上有一点到右焦点的距离为18,是的中点,为坐标原点,则=___________.10、设为抛物线的焦点,为抛物线上三点,若点,的重心与抛物线的焦点重合,则边所在直线的方程为___________.11、已知过点的直线与抛物线交于不同的两点、,则的值为___________.12、下列四个命题:①直线的斜率,则直线的倾斜角;②直线与以、两点为端点的线段相交,则或;③如果实数满足方程,那么的最大值为;④直线与椭圆恒有公共点,则的取值范围是.其中正确命题的序号是___________.二、选择题(每题4分,共16分)13、点在直线上,则到原点距离的最小值是( )(A ); (B ); (C ); (D ).14、若椭圆与双曲线有相同的焦点,则实数为( )(A ); (B ); (C ); (D )不确定.15、直线的倾斜角的取值范围是( )(A ); (B );(C ); (D ).16、直线与圆2222410x y mx my m +--+-=的位置关系是() (A )相交但不过圆心; (B )相交且肯定过圆心;(C )相交或相切; (D )相交或相切或.三、简答题(8+10+12+12+14,共56分)19、从射出一条光线,经过轴反射后过点,求反射点的坐标.18、已知抛物线截直线所得弦长为.(1)求的值;(2)在轴上求一点,使的面积为39.19、已知双曲线.(1)求与双曲线有相同的焦点,且过点的双曲线的标准方程;(2)直线分别交双曲线的两条渐近线于两点.当时,求实数的值.20、已知,,若过点、以为法向量的直线与过点、以为法向量的直线相交于动点. (1)求直线和的方程;(2)求直线和的斜率之积值,并证明动点的轨迹是一个椭圆;(3)在(2)的条件下,设椭圆的两个焦点为.若是上两个不同的动点,且,试问当取最小值时,向量与是否平行,并说明理由.21、点分别是椭圆长轴的左右端点,是其右焦点.点在椭圆上,位于轴上方,且. (1)求点坐标;(2)点是椭圆长轴上的点,到直线的距离等于,求椭圆上的点到点距离的最小值.上外附属大境中学xx第二学期期中考试高二年级数学试卷(考试时间:90分钟满分:120分)班级______________姓名______________学号________________成绩______________一、填空题(每题4分,共48分)1、抛物线的准线方程为____.2、若椭圆的长轴长为12,一个焦点是,则椭圆的标准方程为____.3、经过点且与直线平行的直线的方程为____.4、过点且与圆相切的直线的方程是__或__.5、如果双曲线的两个焦点分别为、,一条渐近线方程为,那么双曲线的标准方程为____.6、已知点是椭圆上任意一点,过点作轴的垂线,垂足为,则线段的中点的轨迹方程为____.7、已知椭圆的两个焦点为、,点在此椭圆上,且,则的面积为__8__.8、椭圆上点到两焦点距离之积为,则最大时点的坐标为____.9、已知双曲线的左支上有一点到右焦点的距离为18,是的中点,为坐标原点,则=__4__.10、设为抛物线的焦点,为抛物线上三点,若点,的重心与抛物线的焦点重合,则边所在直线的方程为____.11、已知过点的直线与抛物线交于不同的两点、,则的值为____.12、下列四个命题:①直线的斜率,则直线的倾斜角;②直线与以、两点为端点的线段相交,则或;③如果实数满足方程,那么的最大值为;④直线与椭圆恒有公共点,则的取值范围是.其中正确命题的序号是__②③__.二、选择题(每题4分,共16分)13、点在直线上,则到原点距离的最小值是( B )(A ); (B ); (C ); (D ).14、若椭圆与双曲线有相同的焦点,则实数为( C )(A ); (B ); (C ); (D )不确定.15、直线的倾斜角的取值范围是( A )(A ); (B );(C ); (D ).16、直线与圆2222410x y mx my m +--+-=的位置关系是( A )(A )相交但不过圆心; (B )相交且肯定过圆心;(C )相交或相切; (D )相交或相切或.三、简答题(8+10+12+12+14,共56分)19、从射出一条光线,经过轴反射后过点,求反射点的坐标.关于轴的对称点为,则直线方程为,则反射点即为直线与轴交点,.18、已知抛物线截直线所得弦长为.(1)求的值;(2)在轴上求一点,使的面积为39.(1)2242202y x y y b y x b⎧=⇒-+=⎨=+⎩,AB ===,解得.(2)由得,设,则由点到直线距离公式可得:,解得或,即或.19、已知双曲线.(1)求与双曲线有相同的焦点,且过点的双曲线的标准方程;(2)直线分别交双曲线的两条渐近线于两点.当时,求实数的值.(1)(2)的两条渐近线分别为,则交点分别为和,从而由题意224333m m OA OB m ⋅=-+=⇒=20、已知,,若过点、以为法向量的直线与过点、以为法向量的直线相交于动点.(1)求直线和的方程;(2)求直线和的斜率之积值,并证明动点的轨迹是一个椭圆;(3)在(2)的条件下,设椭圆的两个焦点为.若是上两个不同的动点,且,试问当取最小值时,向量与是否平行,并说明理由.(1);(2),椭圆方程为(3),设.由得,即,则当且仅当时,取到最小值为,此时(2,EM FN +=+=,与是平行的.21、点分别是椭圆长轴的左右端点,是其右焦点.点在椭圆上,位于轴上方,且. (1)求点坐标;(2)点是椭圆长轴上的点,到直线的距离等于,求椭圆上的点到点距离的最小值.(1);(2),椭圆上的点到点距离的最小值为,此时椭圆上点的横坐标为40338 9D92 鶒Yt?24795 60DB 惛24880 6130 愰N30153 75C9 痉36851 8FF3 迳39976 9C28 鰨26304 66C0 曀27921 6D11 洑。
深圳市高级中学(集团)2022-2023学年第二学期期中测试高二数学(满分150分.考试时间120分钟.)注意事项:1.答卷前,考生务必将自己的个人信息填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}22A x xx =+≤,{}1,B a =,若B A ⊆,则实数a 的取值集合为( )A.{}2,1,0−−B.{}21x x −≤≤C.{}21x x −≤<D.{}2,1,0,1−−2.函数()y f x =的图象如图所示,它的导函数为()y f x ′=,下列导数值排序正确的是( )A.()()()1230f f f ′′′>>>B.()()()1230f f f ′′′<<<C.()()()0123f f f ′′′<<<D.()()()1203f f f ′′′>>>3.某种品牌手机的电池使用寿命X (单位:年)服从正态分布()()24,0N σσ>,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为( ) A.0.9 B.0.7 C.0.3 D.0.1 4.已知等差数列{}n a 中,35a =,109a =−,n S 是数列{}n a 的前n 项和,则n S 最大值时n 的值为( ) A.4 B.5C.6D.75.已知1x =是函数()332f x x ax =−+的极小值点,那么函数()f x 的极大值为( ) A.1−B.1C.2D.46.有2男2女共4名大学毕业生被分配到A ,B ,C 三个工厂实习,每人必须去一个工厂且每个工厂至少去1人,且A 工厂只接收女生,则不同的分配方法种数为( )A.12B.14C.36D.72 7.若曲线()e xxf x =有三条过点()0,a 的切线,则实数a 的取值范围为( ) A.210,e B.240,eC.10,eD.40,e8.已知随机变量ξ的分布列为:ξ x yPyx则下列说法正确的是( ) A.存在x ,()0,1y ∈,()12E ξ>B.对任意x ,()0,1y ∈,()14E ξ≤ C.对任意x ,()0,1y ∈,()()D E ξξ≤D.存在x ,()0,1y ∈,()14D ξ>二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.某校1000名学生在高三一模测试中数学成绩的频率分布直方图如图所示(同一组中的数据用该组区间的中点值作代表).分数不低于X 即为优秀,已知优秀学生有80人,则( )A.0.008a =B.120X =C.70分以下的人数约为6人D.本次考试的平均分约为93.610.已知数列n a 的前n 项和为n S ,()7213,1631,6n n n n a n −−≤≤ = −−> ,若32k S =−,则k 可能为( ) A.4 B.8 C.9 D.1211.一口袋中有除颜色外完全相同的3个红球和2个白球,从中无放回的随机取两次,每次取1个球,记事件1A :第一次取出的是红球;事件2A :第一次取出的是白球;事件B :取出的两球同色;事件C :取出的两球中至少有一个红球,则( ) A.事件1A ,2A 为互斥事件 B.事件B ,C 为独立事件 C.()25P B =D.()234P C A =12.已知函数()1sin 2cos 2f x x x =,则下列结论正确的是( ) A.()f x 的图象关于点,02π对称 B.()f x 在区间,66ππ−上单调递增C.()f x 在区间[]1,10内有7个零点D.()f x 三、填空题:本题共4小题,每小题5分,共20分.13.若nx+的展开式中含有常数项,则正整数n 的一个取值为______.14.大气压强p =压力受力面积,它的单位是“帕斯卡”(Pa ,21Pa 1N/m =),已知大气压强()Pa p 随高度()m h 的变化规律是0e kh p p −=,其中0p 是海平面大气压强,10.000126m k −=.梧桐山上一处大气压强是海平面处大气压强的13,则高山上该处的海拔为______米.(答案保留整数,参考数据ln 3 1.1≈)15.设函数()1ln f x x k x x=−−,若函数()f x 在()0,+∞上是单调减函数,则k 的取值范围是______.16.已知函数()e e xxf x x x −−的两个零点为1x ,2x ,函数()ln lng x x x x x =−−的两个零点为3x ,4x ,则12341111x x x x +++=______. 四、解答题:本题共6小题,共70分。
广东省河源市龙川第一中学2023-2024学年高二下学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________四、解答题15.按要求列出式子,再计算结果,用数字作答.(1)在12件产品中,有10件正品,2件次品,从这12件产品中任意抽取3件.(i)共有多少种不同的抽法?(ii)抽出的3件中恰有1件次品的抽法有多少种?(iii)抽出的3件中至少有1件次品的抽法有多少种?(2)现有甲、乙等5人排成一排照相,按下列要求各有多少种不同的排法,求:(i)甲、乙不能相邻;(ii )甲、乙相邻且都不站在两端.16.已知函数()2ln f x x x =+.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()()3h x f x x =-的单调增区间.17.已知各项均为正数的等差数列{}n a 的首项11a =,2a ,4a ,62a +成等比数列;(1)求数列{}na 的通项公式;(2)若33n a n n b a =-,求数列{}nb 的前n 项和n T .18.2022年,是中国共产主义青年团成立100周年,为引导和带动青少年重温共青团百年光辉历程,某校组织全体学生参加共青团百年历史知识竞赛,现从中随机抽取了100名学生的成绩组成样本,并将得分分成以下6组:[40,50)、[50,60)、[60,70)、¼、[90,100],统计结果如图所示:(1)试估计这100名学生得分的平均数;(2)从样本中得分不低于70分的学生中,用分层抽样的方法选取11人进行座谈,若从座谈名单中随机抽取3人,记其得分在[90,100]的人数为x ,试求x 的分布列和数学期望.19.为铭记历史,缅怀先烈,增强爱国主义情怀,某学校开展了共青团知识竞赛活动.在最后一轮晋级比赛中,甲、乙、丙三名同学回答一道有关团史的问题,每个人回答正确与。
高二期中考试(数学)(考试总分:150 分)一、单选题(本题共计12小题,总分60分)1.(5分)1.2i12i-=+()A.1 B.−1 C.i D.−i2.(5分)2.函数f(x)=x4﹣2x3的图象在点(1,f(1))处的切线方程为()A.y=﹣2x﹣1B.y=﹣2x+1C.y=2x﹣3D.y=2x+13.(5分)3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.(5分)4.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56%C.46% D.42%5.(5分)5.设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01B.0.1C.1D.106.(5分)6.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[)[)[)[]5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10B.18C .20D .367.(5分)7.在5(2)x -的展开式中,2x 的系数为( ).A .5-B .5C .10-D .108.(5分)8.要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A .2种B .3种C .6种D .8种9.(5分)9.北京2022年冬奥会和冬残奥会色彩系统的主色包括霞光红、迎春黄、天霁蓝、长城灰、瑞雪白;间色包括天青、梅红、竹绿、冰蓝、吉柿;辅助色包括墨、金、银.若各赛事纪念品的色彩设计要求:主色至少一种、至多两种,间色两种、辅助色一种,则某个纪念品的色彩搭配中包含有瑞雪白、冰蓝、银色这三种颜色的概率为( ) A .8225B .245C .115D .21510.(5分)10.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( ) A .5B .8C .10D .1511.(5分)11.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名B .18名C .24名D .32名12.(5分)12.已知定义在(0,+∞)上的连续函数()y f x =满足:()()x xf x f x xe '-=且(1)3f =-,(2)0f =.则函数()y f x =( )A .有极小值,无极大值B .有极大值,无极小值C .既有极小值又有极大值D .既无极小值又无极大值二、 填空题 (本题共计4小题,总分20分)13.(5分)13.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.14.(5分)14.262()x x+的展开式中常数项是__________(用数字作答).15.(5分)15.设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -=__________.16.(5分)16.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.三、 解答题 (本题共计6小题,总分70分)17.(10分)17.(10分)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围.18.(12分)18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i iy y =-=∑(,201))800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.19.(12分)19.(12分)已知函数3()6ln f x x x =+,()'f x 为()f x 的导函数.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅰ)求函数9()()()g x f x f x x'=-+的单调区间和极值; 20.(12分)20.(12分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n . (1)求p 1、q 1和p 2、q 2;(2)求X 2的分布列和数学期望E (X 2) .21.(12分)21.(12分)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,22.(12分)22.(12分)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点; (Ⅰ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:(Ⅰ0x ≤≤; (Ⅰ)00(e )(e 1)(1)x x f a a ≥--.答案一、 单选题 (本题共计12小题,总分60分) 1.(5分)1D 2.(5分) 2B 3.(5分) 3 C 4.(5分) 4C 5.(5分) 5C 6.(5分)6B 7.(5分) 7C 8.(5分) 8 C 9.(5分) 9 B 10.(5分) 10C 11.(5分) 11 B 12.(5分) 12 A二、 填空题 (本题共计4小题,总分20分) 13.(5分)13.1 14.(5分) 14. 24015.(5分) 15. 16.(5分) 16.45三、 解答题 (本题共计6小题,总分70分)17.(10分)17.(10分)【解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.……(5分)(2)()()()()22222121211f x x a x a x a x a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.……(10分)18.(12分)18.(12分)【答案】(1)12000;(2)0.94;(3)详见解析【解】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯=……(4分) (2)样本(,)i i x y (i =1,2,…,20)的相关系数为20()()0.943iix x y y r --===≈∑……(4分)(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性, 由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大, 采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计. ……(4分)19.(12分)19.(12分) 【答案】(Ⅰ)98y x =-;(Ⅰ)()g x 的极小值为(1)1g =,无极大值;【解】(Ⅰ) ∵()36ln f x x x =+,()26'3f x x x=+.可得()11f =,()'19f =, ∴曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-.…4分 (Ⅰ) 依题意,()()32336ln ,0,g x x x x x x=-++∈+∞. 从而可得()2263'36g x x x x x =-+-,整理可得:323(1)(1)()x x g x x '-+=,令()'0g x =,解得1x =.当x 变化时,()()',g x g x 的变化情况如下表:,+∞); g (x )的极小值为g (1)=1,无极大值. ……(12分)20.(12分)20.(12分)【答案】(1)112212716,,332727p q p q ====;;(2);详见解析【解】(1)11131232,333333p q ⨯⨯====⨯⨯, 211131211227++3333333927p p q ⨯⨯=⨯⨯=⨯⨯=⨯⨯, 211231122222516+0+3333333927q p q ⨯⨯+⨯=⨯⨯+=⨯⨯=⨯⨯.……(8分) (2)227(2)27P X p ===;2216(1)27P X q ===;22124(0)33327P X ==⨯⨯=;∴2X 的分布列为故210()9E X =.;……(12分) 21.(12分)21.(12分)【答案】(1)0.64;(2)答案见解析;(3)有.【解】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=;……(4分) (2)由所给数据,可得22⨯列联表为:(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>,因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. ……(12分)22.(12分)22.(12分)【答案】(I )证明见解析,(II )(i )证明见解析,(ii )证明见解析. 【解】(I )()1,0,1,()0,()x x f x e x e f x f x ''=->∴>∴>∴在(0,)+∞上单调递增,2212,(2)240,(0)10a f e a e f a <≤∴=--≥->=-<,所以由零点存在定理得()f x 在(0,)+∞上有唯一零点;……(4分) (II )(i )000()0,0xf x e x a =∴--=,002000012(1)xxx e x x e x ≤⇔--≤≤--,令22()1(02),()1(02),2xxx g x e x x x h x e x x =---<<=---<<一方面:1()1(),xh x e x h x '=--= 1()10x h x e '=->,()(0)0,()h x h h x ''∴>=∴在(0,2)单调递增,()(0)0h x h ∴>=,2210,2(1)2xx x e x e x x ∴--->-->,另一方面:1211a a <≤∴-≤,所以当01x ≥0x ≤成立,因此只需证明当01x <<时2()10x g x e x x =---≤,因为11()12()()20ln 2x x g x e x g x g x e x ''=--==-=⇒=, 当(0,ln 2)x ∈时,1()0g x '<,当(ln 2,1)x ∈时,1()0g x '>, 所以()max{(0),(1)},(0)0,(1)30,()0g x g g g g e g x ''''''<==-<∴<,()g x ∴在(0,1)单调递减,()(0)0g x g ∴<=,21x e x x ∴--<,综上,002000012(1),x xex x e x x ∴--≤≤--≤≤(8分)(ii )0000000()()()[(1)(2)]xa a t x x f e x f x a x e x a e ==+=-+-,00()2(1)(2)0a a t x e x a e '=-+->0x ≤,0()(2)](1)(1)2)a a a a t x t e a e e a e ∴≥=--=--+-,因为12a <≤,所以,2(1)ae e a a >≥-,0()(1)(1)2(2)a t x e a a e ∴≥--+--,只需证明22(2)(1)(1)a a e e a --≥--, 即只需证明224(2)(1)(1)ae e a -≥--, 令22()4(2)(1)(1),(12)as a e e a a =----<≤, 则22()8(2)(1)8(2)(1)0aas a e e e e e e '=---≥--->,2()(1)4(2)0s a s e ∴>=->,即224(2)(1)(1)a e e a -≥--成立,因此()0x 0e (e 1)(1)x f a a≥--.……(12分)。
第1页 共12页 高二下期中数学(文)试卷(有答案) 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,第Ⅰ卷为1-12题,共60分,第Ⅱ卷为13-22题,共90分. 全卷共计150分. 考试时间为120分钟. 注意事项: 1、答第一卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2、每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑. 如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上. 3、考试结束,监考人员将答题卡收回. 附:(1)回归直线方程:yabx ;
(2)回归系数:1221niiiniixynxybxnx,aybx,11niixxn ,11niiyyn.
第I卷 (本卷共计60 分) 一、选择题:(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,
只有一项是符合题目要求的) 1.若p是q的必要不充分条件,则p是q的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分且必要条件 D.既不充分也不必要条件 2.下列函数中,定义域是R且为增函数的是 ( )
A.xye-= B.3 yx= C. ylnx= D.yx= 3.有一段“三段论”推理是这样的:对于可导函数()fx,如果0()0fx,那么0xx是函
数()fx的极值点,因为函数3()fxx在0x处的导数值(0)0f,所以,0x是函数3()fxx的极值点。以上推理中 ( )
A.结论正确 B.大前提错误 C.小前提错误 D.推理形式错误
4.若复数21(1)()zaaiaR是纯虚数,则1za的虚部为 ( ) 第2页 共12页
A.25 B.25i C.25 D.25i 5.定义集合运算:|,,ABzzxyxAyB.设1,2,0,2AB,则集合AB的所有元素之和为 ( ) A.0 B.2 C.3 D.6 6.函数243,[0,3]yxxx的值域为 ( ) A. [0,3] B. [1,0] C. [1,3] D. [0,2]
7.如图所示,圆O的直径6AB,C为圆周上一点, 3BC过C作圆的切线l, 过A作l的垂线AD,垂足为D,则DAC =( )
A.15 B.30 C.45 D.60 8.已知()fx、()gx均为[]1,3-上连续不断的曲线,根据下表能判断方程()()fxgx有实数解的区间是 ( ) x -1 0 1 2 3
()fx -0.677 3.011 5.432 5.980 7.651
()gx -0.530 3.451 4.890 5.241 6.892
A. ()1,0- B.(1,2) C. (0,1) D.(2,3)
9.直线12(t)2xtyt是参数被圆229xy截得的弦长等于( ) A.125 B. 9105 C. 925 D. 1255 10.若,{1,0,1,2}ab,则函数2()2fxaxxb有零点的概率为 ( ) A.316 B. 78 C.34 D.58 11.若32()33(2)1fxxaxax有极大值和极小值,则a的取值范围是 ( ) A.12a B.2a或1a C.2a或1a D.12aa或 12. 已知()fx是定义在R上周期为4的奇函数,当(0,2]x时,2()2logxfxx,则 (2015)f ( ) 第3页 共12页
A.2 B.21 C.2 D.5 第II卷 (本卷共计90 分) 注意事项: 请用黑色墨水签字笔在答题卡...上作答,在试题卷上答题无效.
二、填空题:(本大题共4小题,每小题5分,满分20分)
13.在极坐标系中,点20P ,与点Q关于直线32sin对称,则PQ .
14.已知复数122,34,zmizi若12zz为实数,则实数m的值为 。 15.如图,AD为圆O直径,BC切圆O于点E,,ABBCDCBC , 4,1ABDC,则AD等于 .
16.下列命题中,错误命题的序号有 。 (1)“1a”是“函数21fxxxa ()xR为偶函数”的必要条件; (2)“直线l垂直平面内无数条直线”是“直线l垂直平面”的充分条件; (3) 若0xy,则||||0xy ;
(4)若2:220pxRxx,,则 2:220pxRxx,>。
三、解答题:(本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步
骤) 17.(10分)已知集合A={|(2)[(31)]0}xxxa,B=22{|0}(1)xaxxa. (1)当a=2时,求AB; (2)求使BA的实数a的取值范围. 18.(10分)已知椭圆的两焦点为10()1,F-、21,0F,p为椭圆上一点,且122FF=
12.PFPF+ (1)求此椭圆的方程; (2)若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.
19.(12分)口袋中装有质地大小完全的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸一个球,记下编号,放回后乙再摸一个球,记下编号。如果两个编第4页 共12页
号的和为偶数就算甲胜,否则算乙胜。 (1) 求甲胜且编号的和为6的事件发生的概率; (2) 这种游戏规则公平吗?说明理由。
20.(12分)已知定义域为R的奇函数()fx满足()()11fxfx+=-,且当)1(0x,时,2121xxfx=
(1)求()fx在区间[1,1]上的解析式; (2)若存在)1(0x,,满足()fxm,求实数m的取值范围.
21.(12分)一台机器由于使用时间较长, 生产的零件有一些会缺损, 按不同转速生产出来的零件有缺损的统计数据如下表:
转速x (转/秒) 16 14 12 8
每小时生产缺损零件数y (件) 11 9 8 5
(1) 作出散点图; (2) 如果y与x线性相关, 求出回归方程; (3) 若实际生产中, 允许每小时的产品中有缺损的零件最多为10个, 那么机器的运转速度应控制在什么范围?
22.(14分)已知函数()lnfxxax,在1x处的切线l与直线20xy垂直,函数21()().2gxfxxbx
(1) 求实数a的值; (2) 若函数()gx存在单调递减区间,求实数b的取值范围;
(3) 设1212,()xxxx是函数()gx的两个极值点,若72b,求12()()gxgx的最小值。 第5页 共12页
第二学期期中测试 高二文科数学答题卷
一、选择题:(本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只
有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 第Ⅱ卷(本卷共计90分)
二、填空题:(本大题共4小题,每小题5分,共20分)
13. ; 14. ; 15. ; 16. ; 三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程,或演算步
骤) 17.(本小题10分)
18.(本小题10分) 第6页 共12页
19.(本小题12分)
20.(本小题12分) 第7页 共12页 21.(本小题12分) 第8页 共12页 22.(本小题14分) 第9页 共12页 高级中学2014—2015学年第一学期期中测试 高二文科数学参考答案
一、 选择题:(本大题共12题,每小题5分,共60分)
1-5:ABBAD 6-10:CBCDC 11-12:BA 二、 填空题: (本大题共4题,每小题5分,共20分)
13. 23 14. 32 15. 5 16.(1)、(2)、(3)
三、 解答题(本大题共6小题,共70分) 17、(10分) 解:(1)当a=2时,A=(2,7),B =(4,5)∴ AB=(4,5) (2)∵ B=(2a,2a+1),
当a<13时,A=(3a+1,2)。 要使B A,必须223112aaa,此时a=-1;
当a=13时,A=,使BA的a不存在; 当a>13时,A=(2,3a+1)要使B A,必须222131aaa,此时1≤a≤3. 综上可知,使B A的实数a的取值范围为[1,3]∪{-1}
18.(10分) 第10页 共12页
解(1)依题意得|F1F2|=2, 又2|F1F2|=|PF1|+|PF2|, ∴|PF1|+|PF2|=4=2a.∴a=2,c=1, b2=3. ∴所求椭圆的方程为x24+y23=1. (2)设P点坐标为(x,y),∵∠F2F1P=120°, ∴PF1所在直线的方程为y=(x+1)·tan 120°, 即y=-3(x+1).
解方程组 y=-3x+1,x24+y23=1,并注意到x<0,y>0,
可得 x=-85,y=335. ∴12PFFS=12|F1F2|·335=335. 19.(12分)解:(1)设“甲胜且两个编号的和为6”为事件A,甲编号x,乙编号y,(x,y)表示一个基本事件,则两人摸球结果包括(1,1),(1,2),……(1,5),(2,1),(2,
2),……(5,4),(5,5)共25个基本事件;A包含的基本事件有(1,5),(2,4),(3,3),
(4,2),(5,1)共5个,所以P(A)=5 25 = 1 5 。
答:编号之和为6且甲胜的概率为1 5 。 (2)这种游戏不公平。 设“甲胜”为事件B,“乙胜”为事件C。甲胜即两编号之和为偶数所包(含基本事件数为以下13个:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,