新冀教版九年级数学上册第28章 圆 专训2 圆中常用的作辅助线的方法
- 格式:doc
- 大小:103.50 KB
- 文档页数:6
圆中常用辅助线的添法圆是初中数学重点内容,属中考必考内容,中考中有关圆的问题,大部分需添辅助线解之,那么圆问题中常用的辅助线有哪些呢?现就圆中常用辅助线的添法作一归纳,以期对同学们的学习有所帮助.1.作弦心距.在解决有关弦的问题时,常常作弦心距,以利用垂经定理或圆心角、弦、弦心距之间的关系定理及推论.例1.如图,AB是⊙O 的直径,PO ⊥AB 交⊙O 于P 点,弦PN 与AB 相交于点M , 求证:PM •PN=2PO 2.分析:过O 点作OC ⊥PN 于C ,根据垂经定理 NC=PC ,要证明PM •PN=2PO 2,即证明PM •PC =PO 2,只需证明PM •PC=PO 2,要证明PM •PC=PO 2只需证明Rt △POC ∽Rt △PMO.证明: 过圆心O 作OC ⊥PN 于C ,∴PC= 21PN∵PO ⊥AB, OC ⊥PN ,∴∠MOP=∠OCP=90°.又∵∠OPC=∠MPO ,∴Rt △POC ∽Rt △PMO. ∴PO PC PM PO 即∴PO 2= PM •PC. ∴PO 2= PM •21PN ,∴PM •PN=2PO 2. 2.作直径所对的圆周角在解决有关直径的问题时,常常作直径所对的圆周角,以利用直径所对的圆周角是直角的性质。
例2 如图,在△ABC 中,∠C=90°,以BC 上一点O 为圆心,以OB 为半径的圆交AB 于点M ,交BC 于点N .(1) 求证:BA ·BM=BC ·BN ;(2) 如果CM 是⊙O 的切线,N 为OC 的中点,当AC=3时,求AB 的值.分析:要证BA ·BM=BC ·BN ,需证△ACB ∽△NMB ,而∠C=90°,所以需要△NMB 中有个直角,而BN 是圆O 的直径,所以连结MN 可得∠BMN=90°。
(1) 证明:连结MN ,则∠BMN=90°=∠ACB∴△ACB ∽△NMB ∴BN AB BM BC ∴AB ·BM=BC ·BN(2) 解:连结OM ,则∠OMC=90°∵N 为OC 中点∴MN=ON=OM ,∴∠MON=60°∵OM=OB ,∴∠B=21∠MON=30°∵∠ACB=90°,∴AB=2AC=2×3=63、连结半径 圆的半径是圆的重要元素,圆中的许多性质如:“同圆的半径相等”和“圆的切线垂直于过切点的半径”等都与圆的半径有关,连结半径是常用的方法之一. 例3.已知:如图,△ABC 中,∠B=90°,O 是AB 上一点,以O 为圆心,以OB 为半径的圆切AC 于D 点,交AB 与E 点,AD=2,AE=1.求CD 的长.分析:D 为切点,连结DO ,则∠ODA=90°.根据切线长定理,有CD=CB.DO=EO=半径r ,在Rt △ADO 中根据勾股定理或Rt △ADO~ Rt △ABC ,即可求出CD.证明: 连结DO ∴OD ⊥AC 于D, ∴∠ODA =90°.B∵AB过O点, ∠B=90°. ∴BC为⊙O的切线, ∴CD=CB 设CD=CB=x,DO=EO=y在Rt△ADO中,AO2 =AD2+ DO2,AD=2,AE=1∴2222)1(yy+=+, 解得 y=23在Rt△ABC中,AC2 =AB2+ BC2,即(2+x)2=(1+ y + y)2+x2, ∴x=3 ∴CD=3.4、连结公共弦在处理有关两圆相交的问题时,公共弦像一把“钥匙”,常常可以打开相应的“锁”,因此“遇到相交圆,连接公共弦.”。
莃圆专题一协助线薄 1.碰到弦时(解决相关弦的问题时)蚁经常增添弦心距,或许作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
或许连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。
芈作用: 1、利用垂径定理;肅2、利用圆心角及其所对的弧、弦和弦心距之间的关系;莂3、利用弦的一半、弦心距和半径构成直角三角形,依据勾股定理求相关量。
螁 4、可得等腰三角形;蚈 5、据圆周角的性质可得相等的圆周角。
蒃例:如图,AB是⊙O 的直径 ,PO⊥ AB 交⊙ O 于 P 点,弦 PN 与 AB 订交于点 M ,肁求证: PM?PN=2PO2.袁剖析:要证明PM ?PN=2PO2,即证明PM ?PC =PO 2,袅过 O 点作 OC⊥PN 于 C,依据垂经定理NC=PC ,只需证明芅 PM ?PC=PO2,要证明 PM ?PC=PO2只需证明 Rt△POC∽ Rt△PMO.袀证明 : 过圆心 O 作 OC⊥ PN 于 C,∴ PC=1PN 2羁∵ PO⊥ AB, OC ⊥PN,∴∠ MOP= ∠ OCP=90° . 芆又∵∠ OPC=∠ MPO ,∴ Rt△POC∽ Rt△PMO.蚃∴PO PC即∴ PO2= PM ?PC. ∴ PO 2= PM ? 1PN ,∴ PM?PN=2PO 2.PMPO2袃【例 1】如图,已知△ ABC 内接于⊙ O ,∠ A=45°, BC=2,求⊙ O 的面积。
A羀【例 2】如图,⊙ O 的直径为 10,弦 AB =8, P 是弦 AB 上一个动点,OBC蚇那么 OP 的长的取值范围是 _________.莅【例 3】如图,弦 AB 的长等于⊙ O 的半径,点 C 在弧 AMB 上,蚂则∠ C 的度数是 ________.肀2. 碰到有直径时肈经常增添(画)直径所对的圆周角。
袃作用:利用圆周角的性质,获得直角或直角三角形。
蒁例 如图,在△ ABC 中,∠ C=90 °,以 BC 上一点 O 为圆心,以OB 为半径的圆交 AB 于点 M ,交 BC于点 N .( 1)( 2) 膀求证: BA · BM=BC · BN ;( 3)( 4)葿假如 CM 是⊙ O 的切线, N 为 OC 的中点,当 AC=3 时,求 AB 的值.薅剖析:要证 BA ·BM=BC ·BN ,需证△ ACB ∽△ NMB ,而∠ C=90°,因此需要△ NMB 中有个直角,而 BN是圆 O 的直径,因此连结 MN 可得∠ BMN=90 °。
中考数学圆的辅助线在平面几何中,与圆有关的许多题目需要添加辅助线来解决。
百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。
添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。
下面以几道题目为例加以说明。
1. 有弦,可作弦心距在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。
例1 如图1, O O的弦AB、CD相交于点P,且AC=BD。
求证:PO平分/ APD。
=> OE=OF ]/ OEP= / OFP=90 °=> △OPE^A OPF0OP=OP=> / OPE= / OPF => PO 平分/ APD分析2:如图1-1,欲证PO平分/ APD,即证分析1:由等弦AC=BD可得出等弧AC BD,进一步得出A B = C D,从而可证等弦AB=CD,由同圆中等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线丄CD,易证△ OPE^A OPF,得出PO平分/ APD。
证法1 :作OE丄AB于E, OF丄CD于F(=>(=AB CDAC=BD A C B D=> AB=CDOE丄AB, OF/ OPA= / OPD,可把/ OPA与/ OPD构造在两个三角形中,证三角形全等,于是不妨作辅助线即半径OA,OD,因此易证△ ACP^A DBP,得AP=DP,从而易证△ OPAOPDODP B图1-1证法2:连结OA, OD。
/ CAP= / BDP/ APC= / DPB => △ACP^A DBPAC=BD=>AP=DP、OA=O D => △ OPAOPD => / OPA= / OPD =>PO 平分/ APD OP=OP J2. 有直径,可作直径上的圆周角对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。
初中数学“圆中辅助线”添法探究弦与弦心距,密切紧相连.直径对直角,圆心作半径.已知有两圆,常画连心线.遇到相交圆,连接公共弦.遇到相切圆,作条公切线.“有点连圆心,无点作垂线.”切线证明法,规律记心间.圆是初中数学教学重点内容之一,对培养学生的分析能力、逻辑推理能力、解决问题能力有着重要作用.圆的知识是中考必考内容,从基础知识检测到综合解题能力考察都出现在中考数学试卷中.由圆和直线型图形,圆和函数图象可以组合成一些复杂的几何题;由圆的重要性质和平面直角坐标系、函数、方程、面积等知识就组成了综合性强、涉及面广、图形变化大的中考压轴题.在解决此类问题时,常常需要添加辅助线,才能把题中的已知条件和所求问题联系起来,使问题逐层分解,化繁为简,化难为易,从而使解题简便易行.在圆中如何添辅助线?结合自己的教学实践作一些探究.一、根据垂径定理及其推论,过圆心作弦的垂线.例1 半径为5的圆中,求两条长为8和6的平行弦之间的距离.分析:此题没有说明两条平行弦是在圆心的两旁还是同旁,因此要考虑两种情况.解:第一种情况:如图,弦AB 、CD 在圆心O 的同旁. 过O 作OE ⊥AB 于E ,交CD 于F ,则AE=12 AB=3.连结OA 、OC. ∵AB ∥CD,∴OE ⊥CD 于F ,则EF 是平行弦AB 、CD 间的距离. 在Rt △OEA 中,由OA=5,AE=3得OE=3522=4.同理可得OF=3.∴EF=OE-OF=4-3=1.第二种情况:如图,弦AB 、CD 在圆心O 的两旁. 过O 点作OE ⊥AB 于E ,延长EO 交CD 于F. 连结OA 、OC.∵AB ∥CD ,则EO ⊥CD 于F. ∴EF 是平行弦AB 、CD 间的距离.由垂径定理和勾股定理易得:OE=4,OF=3,则EF=OE+OF=7. 启示:有关圆中弦常添的辅助线是过圆心作垂线,利用勾股定理, 依靠垂径定理及其推论解决有关弦的问题.二、连结圆上的有关点,根据同圆(或等圆)中,圆周角、圆心角、弦、弧之间的转换关系,解决问题.例2 已知:在△ABC 中,AB=AC,BD 平分∠ABC,△ABD 的外接圆交BC 于E.求证:AD=EC.分析:连结DE ,由圆周角∠1=∠2,可得AD=DE. 欲证AD=EC ,只要证DE=EC 即可.证明:连结DE.∵BD平分∠ABC,∴∠1=∠2,∴AD=DE.又∵AB=AC,∴∠ABC=∠C.∵∠3是圆内接四边形ABED的外角,∴∠3=∠ABC.∴∠3=∠C,∴DE=EC,∴AD=EC.启示:有关圆上非特殊点,常作点与点连线.三、当题目中有直径这一条件时,常利用“直径所对的圆周角是直角”添加辅助线.例3 已知:在Rt△ABC中∠ABC=90º,以AB为直径作☉O交AC于D,DE切☉O于D且交BC于E. 求证:BE=EC.证明:连结BD.∵AB是☉O的直径,∴∠ADB=90º,△BDC为Rt△.又∵∠ABC=90º,AB是☉O的直径,∴BC切☉O于点B.又∵DE切☉O于D,∴BE=DE,则∠BDE=∠DBE.∵∠1+∠BDE=90º,∠C+∠DBE=90 º,∴∠1=∠C,∴DE=EC.∴BE=EC.启示:有关圆中直径,常构造直径所对的圆周角是直角添加辅助线. 四、作过切点的半径(或直径).当题中有切线时,常连结过切点的半径或直径,利用切线与它垂直的特点.有时也作过切点的弦,沟通弦切角与圆心角、圆周角之间的联系.例4 已知:在Rt △ABC 中,∠C=90º,BC 是☉O 的直径,AB 交☉O 于D ,DE 切☉O 于D ,交AC 于E. 求证:OE ∥BA.证明:连结OD.∵DE 切☉O 于D, ∴∠EDO=90 º.又∵∠C=90 º,OC=OD , OE=OE, ∴Rt △ECO ≌RtEDO. ∴∠1=∠2= 12 ∠COD.又∵∠B= 12 ∠COD,∴∠1=∠B. ∴OE ∥BA.例5 已知:如图点O ′为∠AOB 角平分线上一点,以O ′为圆心作☉O ′与OA 相切于点E. 求证:☉O ′与OB 相切.证明:过点O ′作O ′F ⊥OB 于F ,连结O ′E. ∵OA 切☉O ′于点E,∴O ′E ⊥OA 于点E;O ′E 为☉O ′的半径. 又∵点O ′为∠AOB 角平分线上的点, ∴O ′E=O ′F.∴☉O′与OB相切.启示:关于圆中切线,常用辅助线是:(1)切点与圆心连线要领先,过切点作弦,莫忘弦切角.(2)要证一条线为圆的切线时,只要过圆心作这条线的垂线,证垂线段等于这个圆的半径.五、当题中有两圆相切时,首先考虑的是过切点作两圆的公切线,由此沟通弦切角与圆周角之间的联系.有时也作两圆的连心线,利用切点在连心线上沟通圆心距与两圆半径之间的联系.例 6 已知:两圆外切于点P,一条割线分别交两圆于A、B、C、D 四点.求证:∠APD+∠BPC=180º.证明:过切点P作两圆的公切线MN.则∠BPM=∠A,∠CPM=∠D.∵∠APD+∠A+∠D=180º,∴∠APD+∠BPM+∠CPM=180º.∵∠BPM+∠CPM=∠BPC,∴∠APD+∠BPC=180º.例7 已知:两圆内切于点P,大圆的弦AD交小圆于B、C两点.求证:∠APB=∠CPD.证明:过点P作公切线TP.则∠APT=∠D ,∠BPT=∠BCP.∵∠APB=∠BPT-∠APT,∠CPD=∠BCP-∠D,∴∠APB=∠CPD.启示:两圆相切,过切点作公切线,再利用弦切角定理等知识解之.六、两圆相交时,作两圆的公共弦,以两圆的公共弦作为“桥梁”沟通两圆的圆周角和其他角之间的联系.例8 已知:☉O1与☉O2相交于A、B两点,E为☉O1上的一点,EF 切☉O1于点E,EA、EB的延长线交☉O2于C、D两点.求证:EF∥CD.证明:连结AB,则∠1=∠2.∵四边形ABDC是☉O2的内接四边形,∴∠2=∠D.∴∠1=∠D.∴EF∥CD.启示:两圆相交,试连公共弦,有时也作连心线.七、代数、几何的综合题型.解代数、几何的综合题型时,根据问题的特点和需要,由数形结合,于数思形,以形助数,适时转化,变通.运用数形结合的思想方法,结合图形特征添加辅助线.下题是集三角形、圆、一次函数、二次函数为一体的综合性较强的试题.它要求学生不仅需要掌握必要的基础知识和较高的基本技能,而且要有较强的数形结合思想,才能在解题过程中切中要害,迎刃而解.例9 已知:如图,在Rt△AOC中,直角边OA在X轴负半轴上,OC 在Y轴正半轴上,点F在AO上,以点F为圆心的圆与Y轴、AC边相切,切点分别为O、D,☉F与X轴的另一个交点为E.若tanA=34,☉F的半径为32. (1)、求过A 、C 两点的一次函数解析式;(2)、求过E 、D 、O 三点的二次函数解析式; (3)、证明(2)中抛物线的顶点在直线AC 上.分析:解本题(1)(2)两问的关键是求A 、C 、E 、D 、O 五个点 的坐标.解:(1)过切点D 作☉F 的半径DF ,则∠ADF=90º. 在Rt △ADF 中,由tanA=34 和半径DF=32 得AD=2.∴AF=AD 2+DF 2= 52,则AO=AF+FO=4.在Rt △AOC 中,由AO=4和tanA=34,得OC=3,AC=5.则A 、C 两点的坐标为:A (-4,0),C (0,3). 设:所求一次函数解析式为y=kx+b. 由A 、C 两点的坐标求得k=34 ,b=3.∴所求一次函数的解析式为:y=34x+3.(2)过点D 作DG ⊥AO 于G ,则Rt △ADG ∽Rt △ACO. ∴AD AC =DG CO ,即25 =DG 3 得DG=65 .由于点D 在AC 上, 把DG=65 代入y=34 x+3,可求得D 点的横坐标为:- 125.∵OE=2OF=2×32=3,∴E 、D 、O 三点的坐标为:E (-3,0),D (- 125 ,65 )、0(0,0).设:过E 、D 、O 三点的二次函数解析式为y=ax 2+bx+c.则: 9a-3b+c=0, a=- 56,14425 a- 125 b+c= , b=- 52 , c=0, c=0 . ∴所求二次函数解析式为:y=- 56 x 2- 52x.(3)由y=- 56 x 2 - 52 x 易得抛物线的顶点坐标为:(- 32 ,158 ).经检验得,点(- 32 ,158 )在直线y = 34 x + 3上.∴抛物线y=- 56 x 2 - 52x 的顶点在直线AC 上.启示:本题的辅助线是通过图形特征,挖掘题中的明显和隐含条件,而达到目的.综上所述,在解决涉及到圆的问题时,只要添加适当的辅助线,就能把题中的已知条件和问题巧妙地连接起来,达到化繁为简,化难为易的目的,从而使问题的解决简便易行.[课后冲浪]一、证明解答题16.已知:P 是⊙O 外一点,PB ,PD 分别交⊙O 于A 、B 和C 、D ,且AB=CD.求证:PO 平分∠BPD .17.如图,ΔABC 中,∠C=90°,圆O 分别与AC 、BC 相切于M 、N ,点O 在AB 上,如果AO=15㎝,BO=10㎝,求圆O 的半径.18.已知:□ABCD 的对角线AC 、BD 交于O 点,BC 切⊙O 于E 点.求证:AD 也和⊙O 相切.ABCDO E19.如图,学校A 附近有一公路MN ,一拖拉机从P 点出发向PN 方向行驶,已知∠NPA=30°,AP=160米,假使拖拉机行使时,A 周围100米以内受到噪音影响,问:当拖拉机向PN 方向行驶时,学校是否会受到噪音影响?请说明理由.如果拖拉机速度为18千米∕小时,则受噪音影响的时间是多少秒?20.如图,A 是半径为1的圆O 外的一点,OA=2,AB 是圆O 的切线,B 是切点,弦BC ∥OA ,连结AC ,求阴影部分的面积.A21.如图,已知AB 是⊙O 的直径,CD 是弦,AE ⊥CD ,垂足为E,BF ⊥CD ,垂足为F.求证:DE=CF.22.如图,O 2是⊙O 1 上的一点,以O 2为圆心,O 1O 2为半径作一个圆交⊙O 1 于C ,D .直线O 1O 2分别交⊙O 1 于延长线和⊙O 1 ,⊙O 2于点A 与点B .连结AC ,BC .⑴求证:AC=BC ;⑵设⊙O 1 的半径为r ,求AC 的长.⑶连AD ,BD ,求证:四边形ADBC 是菱形;⑷当r=2时,求菱形ADBC 的面积.23.已知:如图,AB 是⊙O 的直径,BC 是⊙O 的切线,连AC 交⊙O 于D ,过D 作⊙O 的切线EF ,交BC 于E 点.求证:OE //AC.A...N三、探索题24.已知:图a,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:(1)DC是⊙O的切线,(2)过D点作DE⊥AB,图b所示,交AC于P点,请考察P点在DE的什么位置?并说明理由.B 图aB 图b。
【设计意图:习题设置在注重基础的同时难度螺旋上升,满足不同层次学生的需求,充分发挥电子白板的倒计时和随机点名的作用,帮助课堂达到良好教学效果,洋葱数学的微视频辅助教学,拓展学生思路,开阔学生视野。
】
四、小结回顾,多元反思
反思本节课的学习过程,结合学习目标想一想:
我们经历了怎样的研究过程?
用到了哪些方法?
掌握了哪些知识?
畅所欲言班内交流
教学反思
本节课我从学生感兴趣的话题入手,层层设疑,步步引导,习题难度螺旋上升,借助电子白板辅助教学收到了良好的教学效果。
不足之处是在处理导学案中较复杂的图形题目时借助ggb软件能达到更好的教学效果。
初中数学《圆》常用辅助线构造技巧圆是初中数学中的重要内容,常常会涉及到圆的基本性质、切线、切点、弦、弦长、弧、弧长等概念。
为了更好地解题,我们可以使用一些常用的辅助线构造技巧。
下面,我将介绍几种常用的辅助线构造技巧。
1.直径是圆的特殊弦,通过任意两点连接圆心,可以得到直径。
在解题中,如果涉及到圆心和两点的位置关系,可以考虑构造直径。
2.过圆心的直线与圆的切线垂直。
当我们需要求解两个垂直的线段或角度时,可以考虑构造一条过圆心的直径,使其与需要垂直的线段或角度相交。
3.过圆心的直线将弧等分为两个等长的弧。
当我们需要将一个弧等分为两个等长的弧时,可以考虑构造一条过圆心的直线,将这个弧分割为两个等长的弧。
1.过切点的切线与圆的半径垂直。
当我们需要求解两个垂直的线段或角度时,可以考虑构造一条过切点的切线,并将其延伸至圆心,使其与需要垂直的线段或角度相交。
2.过切点的切线等于切点至圆心的半径。
当我们需要求解两个等长的线段或角度时,可以考虑构造一条过切点的切线,并将其延伸至圆心,使其与另一条需要等长的线段或角度相交。
1.弦的中点与圆心以及两个端点可以构成一个等腰三角形。
当我们需要求解与等腰三角形相关的线段或角度时,可以考虑构造一条连接弦的中点与圆心以及两个端点的直线。
2.以弦的中点为顶点的直角三角形。
当我们需要求解与直角三角形相关的线段或角度时,可以考虑构造一条连接弦的中点与两个端点的直线,并通过调整弦的位置,使其与这条直线构成一个直角。
1.弦的垂直平分线同时也是弦的中垂线。
在解题中,如果需要求解弦的垂直平分线或者弦的中垂线,可以考虑构造一条连接弦的两个端点的直线,并将其垂直平分或中垂。
2.连接弦的两个端点与圆心的线段是一个等角二段线。
当我们需要求解与等角二段线相关的线段或角度时,可以考虑构造一条连接弦的两个端点与圆心的直线。
以上是一些常用的圆的辅助线构造技巧,通过合理地运用这些技巧,可以帮助我们更好地理解和解题。
专训2圆中常用的作辅助线的方法名师点金:在解决有关圆的计算或证明题时,往往需要添加辅助线,根据题目特点选择恰当的辅助线至关重要.圆中常用的辅助线作法有:作半径,巧用同圆的半径相等;连接圆上两点,巧用同弧所对的圆周角相等;作直径,巧用直径所对的圆周角是直角.作半径,巧用同圆的半径相等1.如图所示,两正方形彼此相邻,且大正方形ABCD的顶点A,D在半圆O上,顶点B,C在半圆O的直径上;小正方形BEFG的顶点F在半圆O上,E点在半圆O的直径上,点G在大正方形的边AB上.若小正方形的边长为4 cm,求该半圆的半径.(第1题)连接圆上两点,巧用同弧所对的圆周角相等2.如图,圆内接三角形ABC的外角∠ACM的平分线与圆交于D点,DP⊥AC,垂足是P,DH⊥BM,垂足为H.求证:AP=BH.(第2题)作直径,巧用直径所对的圆周角是直角3.如图,⊙O的半径为R,弦AB,CD互相垂直,连接AD,BC.(1)求证:AD2+BC2=4R2;(2)若弦AD,BC的长是方程x2-6x+5=0的两个根(AD>BC),求⊙O的半径及点O到AD的距离.(第3题)遇弦加弦心距或半径4.如图所示,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB =CD=8,则OP的长为()A.3 B.4 C.3 2 D.4 2(第4题)(第5题)5.【中考·贵港】如图所示,AB是⊙O的弦,OH⊥AB于点H,点P是优弧上一点,若AB=23,OH=1,则∠APB的度数是________.遇直径巧加直径所对的圆周角6.如图,在△ABC中,AB=BC=2,以AB为直径的⊙O分别交BC,AC于点D,E,且点D是BC的中点.(1)求证:△ABC为等边三角形.(2)求DE的长.【导学号:83182114】(第6题)答案(第1题)1.解:如图,连接OA ,OF.设OA =OF =r cm ,AB =a cm .在Rt △OAB 中,r 2=⎝⎛⎭⎫a 22+a 2, 在Rt △OEF 中,r 2=42+⎝⎛⎭⎫4+a 22, ∴a 24+a 2=16+16+4a +a 24.解得a 1=8,a 2=-4(舍去). ∴r 2=⎝⎛⎭⎫822+82=80.∴r 1=45,r 2=-45(舍去).即该半圆的半径为4 5 cm . 点拨:在有关圆的计算题中,求角度或边长时,常连接半径构造等腰三角形或直角三角形,利用特殊三角形的性质来解决问题.2.证明:如图,连接AD ,BD.∵∠DAC 、∠DBC 是DC ︵所对的圆周角.∴∠DAC =∠DBC.∵CD 平分∠ACM ,DP ⊥AC ,DH ⊥CM ,∴DP =DH.在△ADP 和△BDH 中,⎩⎪⎨⎪⎧∠DAP =∠DBH ,∠DPA =∠DHB =90°,DP =DH.∴△ADP ≌△BDH.∴AP =BH.点拨:本题通过作辅助线构造圆周角,然后利用“同弧所对的圆周角相等”得到∠DAC =∠DBC ,为证两三角形全等创造了条件.(第2题)(第3题)3.(1)证明:如图,过点D 作⊙O 的直径DE ,连接AE ,EC ,AC.∵DE 是⊙O 的直径,∴∠ECD =∠EAD =90°.又∵CD ⊥AB ,∴EC ∥AB.∴∠BAC =∠ACE.∴BC ︵=AE ︵.∴BC =AE.在Rt △AED 中,AD 2+AE 2=DE 2,∴AD 2+BC 2=4R 2.(2)解:如图,过点O 作OF ⊥AD 于点F.∵弦AD ,BC 的长是方程x 2-6x +5=0的两个根(AD>BC),∴AD =5,BC =1.由(1)知,AD 2+BC 2=4R 2,∴52+12=4R 2.∴R =262. ∵∠EAD =90°,OF ⊥AD ,∴OF ∥EA.又∵O 为DE 的中点,∴OF =12AE =12BC =12.即点O 到AD 的距离为12. 点拨:本题作出直径DE ,利用“直径所对的圆周角是直角”构造了两个直角三角形,给解题带来了方便.4.C 5.60°(第6题)6.(1)证明:如图,连接AD ,∵AB 是⊙O 的直径,∴∠ADB =90°.∵点D 是BC 的中点,∴AD 是线段BC 的垂直平分线.∴AB =AC.∵AB =BC ,∴AB =BC =AC ,∴△ABC 为等边三角形.(2)解:如图,连接BE.∵AB 是直径,∴∠AEB =90°,∴BE ⊥AC.∵△ABC 是等边三角形,∴AE =EC ,即E 为AC 的中点. ∵D 是BC 的中点,故DE 为△ABC 的中位线.∴DE =12AB =12×2=1.。
专训2圆中常用的作辅助线的方法
名师点金:在解决有关圆的计算或证明题时,往往需要添加辅助线,根据题目特点选择恰当的辅助线至关重要.圆中常用的辅助线作法有:作半径,巧用同圆的半径相等;连接圆上两点,巧用同弧所对的圆周角相等;作直径,巧用直径所对的圆周角是直角.
作半径,巧用同圆的半径相等
1.如图所示,两正方形彼此相邻,且大正方形ABCD的顶点A,D在半圆O上,顶点B,C在半圆O的直径上;小正方形BEFG的顶点F在半圆O上,E点在半圆O的直径上,点G在大正方形的边AB上.若小正方形的边长为4 cm,求该半圆的半径.
(第1题)
连接圆上两点,巧用同弧所对的圆周角相等
2.如图,圆内接三角形ABC的外角∠ACM的平分线与圆交于D点,DP⊥AC,垂足是P,DH⊥BM,垂足为H.求证:AP=BH.
(第2题)
作直径,巧用直径所对的圆周角是直角
3.如图,⊙O的半径为R,弦AB,CD互相垂直,连接AD,BC.
(1)求证:AD2+BC2=4R2;
(2)若弦AD,BC的长是方程x2-6x+5=0的两个根(AD>BC),求⊙O的半径及点O到AD的距离.
(第3题)
遇弦加弦心距或半径
4.如图所示,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB =CD=8,则OP的长为()
A.3 B.4 C.3 2 D.4 2
(第4题)
(第5题)
5.【中考·贵港】如图所示,AB是⊙O的弦,OH⊥AB于点H,点P是优弧上一点,若AB=23,OH=1,则∠APB的度数是________.
遇直径巧加直径所对的圆周角
6.如图,在△ABC中,AB=BC=2,以AB为直径的⊙O分别交BC,AC于点D,E,且点D是BC的中点.
(1)求证:△ABC为等边三角形.
(2)求DE的长.【导学号:83182114】
(第6题)
答案
(第1题)
1.解:如图,连接OA ,OF.设OA =OF =r cm ,AB =a cm .
在Rt △OAB 中,
r 2=⎝⎛⎭⎫a 22
+a 2, 在Rt △OEF 中,r 2=42+⎝⎛⎭⎫4+a 22
, ∴a 24+a 2=16+16+4a +a 24
.解得a 1=8,a 2=-4(舍去). ∴r 2=⎝⎛⎭⎫822
+82=80.∴r 1=45,r 2=-45(舍去).即该半圆的半径为4 5 cm . 点拨:在有关圆的计算题中,求角度或边长时,常连接半径构造等腰三角形或直角三角形,利用特殊三角形的性质来解决问题.
2.证明:如图,连接AD ,BD.∵∠DAC 、∠DBC 是DC ︵所对的圆周角.
∴∠DAC =∠DBC.
∵CD 平分∠ACM ,DP ⊥AC ,DH ⊥CM ,∴DP =DH.
在△ADP 和△BDH 中,
⎩⎪⎨⎪⎧∠DAP =∠DBH ,∠DPA =∠DHB =90°
,DP =DH.
∴△ADP ≌△BDH.∴AP =BH.
点拨:本题通过作辅助线构造圆周角,然后利用“同弧所对的圆周角相等”得到∠DAC =∠DBC ,为证两三角形全等创造了条件.
(第2题)
(第3题)
3.(1)证明:如图,过点D 作⊙O 的直径DE ,连接AE ,EC ,AC.
∵DE 是⊙O 的直径,∴∠ECD =∠EAD =90°.
又∵CD ⊥AB ,∴EC ∥AB.
∴∠BAC =∠ACE.
∴BC ︵=AE ︵.∴BC =AE.
在Rt △AED 中,AD 2+AE 2=DE 2,
∴AD 2+BC 2=4R 2.
(2)解:如图,过点O 作OF ⊥AD 于点F.
∵弦AD ,BC 的长是方程x 2-6x +5=0的两个根(AD>BC),
∴AD =5,BC =1.
由(1)知,AD 2+BC 2=4R 2,∴52+12=4R 2.∴R =
262
. ∵∠EAD =90°,OF ⊥AD ,∴OF ∥EA.
又∵O 为DE 的中点,∴OF =12AE =12BC =12.即点O 到AD 的距离为12
. 点拨:本题作出直径DE ,利用“直径所对的圆周角是直角”构造了两个直角三角形,给解题带来了方便.
4.C 5.60°
(第6题)
6.(1)证明:如图,连接AD ,
∵AB 是⊙O 的直径,
∴∠ADB =90°.
∵点D 是BC 的中点,
∴AD 是线段BC 的垂直平分线.
∴AB =AC.
∵AB =BC ,∴AB =BC =AC ,
∴△ABC 为等边三角形.
(2)解:如图,连接BE.
∵AB 是直径,∴∠AEB =90°,
∴BE ⊥AC.
∵△ABC 是等边三角形,∴AE =EC ,即E 为AC 的中点. ∵D 是BC 的中点,故DE 为△ABC 的中位线.
∴DE =12AB =12
×2=1.。