沪教版七年级数学秋季班讲义第四讲幂与积的乘方
- 格式:docx
- 大小:336.64 KB
- 文档页数:9
专题1.3 幂的乘方与积的乘方(知识梳理与考点分类讲解)【知识点一】幂的乘方1.幂的乘方法则 幂的乘方,底数不变,指数相乘.即:用字母表示为()nm n a a =(m ,n 都是正整数)2.法则的拓展运用(1)幂的乘法运算法则的推广:[]m n p a ()=mnp a (m ,n ,p 都是正整数);(2)幂的乘方法则也可以逆用,逆用时mn a =()n m a =()mn a (m ,n 都是正整数)特别提醒1.“底数不变”是指幂的底数a 不变,“指数相乘”是指幂的指数m 与乘方的指数n 相乘.2.底数可以是一个单项式,也可以是一个多项式.【知识点二】积的乘方1,积的乘法法则积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.即:用字母表示为()n ab =n n a b (n 为正整数).2.法则的拓展运用(1) 积的乘方法则的推广:()n n n n abc a b c =(n 为正整数).(2) 积的乘方法则也可以逆用,逆用时n n a b =()n ab (n 为正整数).特别提醒1.积的乘方的前提是底数是乘积的形式,若底数为和的形式则不能用,即()n a b +≠n n a b +.2.每个因数(式)可以是单项式,也可以是多项式.3.在进行积的乘方运算时,要把底数中的每一个因式分别乘方,不要漏掉任何一个.【考点目录】【考点1】同底数幂相乘运算1.64a 【详解】原式666644a a a a =+-=.【易错点分析】幂的乘方中,当底数为负数时,如果指数为偶数,则结果为正数;如果指数为奇数,则结果为负数.合并同类项,要让同类项的系数相加减,字母和字母的指数不变.2.A【分析】先把81,27,9转化为底数为3的幂,再根据幂的乘方,底数不变,指数相乘化简.然后根据指数的大小即可比较大小.【详解】解:∵()314131248133a ===;()413141232733b ===;()61261122339c ===.则a b c >>.故选:A .【点睛】本题考查了幂的乘方,变形为同底数幂的形式,再比较大小,可使计算简便.3.9a 【分析】先算乘方,再算同底数幂的乘法即可.【详解】解:()233639a a a a a ⋅=⋅=;故答案为:9a .【点睛】本题考查幂的运算,熟练掌握相关运算法则,是解题的关键.4.(1)9﹣(2)27-(3)243-【分析】本题主要考查幂的乘方、同底数幂的乘法的逆用,熟练掌握运算法则是解题的关键;(1)利用同底数幂的乘法的法则进行运算即可;掌握同底数幂的乘法法则是解题的关键;(2)利用幂的乘方的法则进行运算即可;掌握幂的乘方的法则是解题的关键;(3)利用同底数幂的乘法的法则及幂的乘方的法则进行运算即可;掌握相关运算法则是解题的关键.【详解】(1)解:339x y x y a a a +=⋅=-⨯=- .(2)解:()()333327x x a a ==-=-.(3)解:()()()3233232233279243x y x y x y a a a a a +=⋅=⋅=-⋅=-⨯=-.5.A【详解】先根据幂的乘方法则,把4个数化成指数相同的数,再根据底数的大小比较即可.()11555112232== ,()11444113381==,()111133355125==,()11222116636==,且11111111323681125<<<,552244332635∴<<<.【易错点分析】与幂有关的计算,需要用到如下策略:把不同底数的幂化为同底数的幂;把不同指数的幂化为同指数的幂;把已知幂化为特殊底数的幂.6.18【分析】根据幂的乘方和同底数幂的乘法的逆运算法则求解即可.【详解】解:∵3m a =,2n a =,∴22m n m na a a +=⋅()2nm a a =⋅232=⨯18=,故答案为:18.【点睛】本题考查幂的乘方和同底数幂的乘法,利用幂的乘方和同底数幂的乘法逆运算法则是解答的关键.7.(1)61237x y ;(2)616x -.【分析】(1)先利用积的乘方运算法则求解,再加减求解即可;(2)先利用同底数幂的乘法和积的乘方运算法则求解,再加减求解即可.【详解】(1)解:()()6322423xy x y -+-6126126427x y x y =-61237x y =;(2)解:()()32224323x x x x -+⋅--66689x x x =-+-616x =-.【点睛】本题考查同底数幂的乘法、积的乘方、合并同类项,熟练掌握运算法则并正确求解是解答的关键.8.D【分析】根据积的乘方运算法则逐项计算,即可判断.【详解】A.()3263x yx y =,故该选项错误,不符合题意;B.()3328a a =,故该选项错误,不符合题意;C.()222ab a b -=,故该选项错误,不符合题意;D.()2224a a =,故该选项正确,符合题意;故选:D .【点睛】本题考查了积的乘方运算法则,熟练掌握运算法则是解题的关键.9.36【分析】利用同底数幂的乘法、积的乘方计算得到1234m n a b a b ++=,推出1324m n +=⎧⎨+=⎩,据此计算即可求解.【详解】解:∵212m n m n a b ab a b ++⋅=,∴()()()555212152034m n m n a b ab a b a b a b ++⋅===,∴1234m n a b a b ++=,∵a ,b 为非零实数,∴13m +=,24n +=,解得2m =,2n =,故()22333236n n n m m ==⨯=.故答案为:36.【点睛】本题考查同底数幂的乘法、积的乘方,熟练掌握运算法则并正确求解是解答的关键.10.(1)320;(2)5400.【分析】(1)根据同底数幂的除法法则计算即可;(2)根据幂的乘方以及同底数幂的乘法法则计算即可.【点睛】题考查积的积的乘方逆用,熟练掌握运算法则并能正确运用是解题的关键.13.0【分析】本题考查了幂的混合运算,利用同底数幂的除法运算法则及积的乘方即可求解,熟练掌握相关运算法则是解题的关键.【详解】解:原式4444x x =-+0=.14.A【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则进行计算,得出结果再进行判断即可.【详解】A 、23235·a a a a +==;B 、()32236a a a ⨯==;C 、()42426a a a a ---÷==;D 、24246·a a a a +==;故选:A .【点睛】本题主要考查了同底数幂的乘法以及幂的乘方,解此题的关键是熟记幂的运算和负整数次幂运算法则.15.22a 【分析】先根据幂的乘方和同底数幂的乘法进行计算,再根据同底数幂的除法进行计算,最后合并同类项即可.【详解】解:()()2332a a a a ÷⋅+622a a a =÷+22a a =+22a =故答案为:22a .【点睛】本题考查了整式的混合运算,能正确根据整式的运算法则进行计算是解此题的关键,注意运算顺序.16.(1)67x (2)322n na b -(3)9150a【分析】直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形即可得出答案.【详解】∵ax=3,ay=9,∴a2x+y=(ax)2•ay=9×9=81.故答案为81.【点睛】本题考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题的关键.答案第7页,共7页。
一、概述乘方是数学中常见的运算方式,而在七年级下册数学课程中,乘方的概念和运算更是重要的一部分。
其中,幂的乘方和积的乘方是学习乘方的重要内容,通过对这两个概念的深入理解和掌握,可以帮助学生更好地应用乘方运算解决实际问题,提高数学能力。
二、幂的乘方1. 幂的概念幂指的是将一个数自身相乘若干次,比如2的3次幂即为2乘以2乘以2,记作2^3。
2. 幂的运算规则a. 同底幂相乘:若a^n × a^m,即底数相同,指数相加,底数不变。
b. 同底幂相除:若a^n ÷ a^m,即底数相同,指数相减,底数不变。
c. 幂的乘方:(a^n)^m = a^(n×m),即一个数的幂再乘以一个数的幂等于这个数的幂的乘积。
3. 举例说明若有2^3 × 2^2,则根据同底幂相乘的规则,底数2不变,指数相加得到2^(3+2)=2^5,因此2^3 × 2^2=2^5。
三、积的乘方1. 积的概念积的乘方指的是将一个数的积自身相乘若干次,比如(2×3)的4次幂即为2×3乘以2×3乘以2×3乘以2×3,记作(2×3)^4。
2. 积的乘方运算规则a. 积的乘方展开:(a×b)^n = a^n × b^n,即括号中的积的乘方等于括号里的各项的乘方相乘。
b. 积的乘方合并:a^n × a^n = (a^n)^2 = a^(2n),即同底数的乘方相乘等于底数不变,指数相加。
3. 举例说明若有(2×3)^4,则根据积的乘方展开的规则,括号中的积的乘方等于2的4次幂乘以3的4次幂,即(2^4) × (3^4)。
四、应用举例1. 计算器计算通过计算器进行幂的乘方和积的乘方的计算。
2. 实际问题通过应用题来帮助学生更好地理解幂的乘方和积的乘方在解决实际问题中的应用。
五、总结通过对幂的乘方和积的乘方的理解和掌握,学生可以更好地进行乘方运算、解决实际问题。
第04讲 幂的运算(一)模块一:同底数幂的乘法1、幂的运算概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在na 中,a 叫做底数,n 叫做指数.含义:na 中,a 为底数,n 为指数,即表示a 的个数,na 表示有n 个a 连续相乘.例如:53表示33333⨯⨯⨯⨯,()53-表示()()()()()33333-⨯-⨯-⨯-⨯-,53-表示()33333-⨯⨯⨯⨯;527⎛⎫ ⎪⎝⎭表示2222277777⨯⨯⨯⨯,527表示222227⨯⨯⨯⨯.特别注意负数及分数的乘方,应把底数加上括号.2、“奇负偶正”口诀的应用:口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:[](3)3---=-;[](3)3-+-=.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号.(3)有理数乘方,这里奇、偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正.例如:()239-=,()3327-=-.特别地:当n 为奇数时,()nn aa -=-;而当n 为偶数时,()nnaa -=.负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,1的任何次幂都是1,任何不为0的数的0次幂都是“1”.3、同底数幂相乘同底数的幂相乘,底数不变,指数相加.用式子表示为:m n m n a a a +⋅=(m ,n 都是正整数).【例1】1. 计算下列各式,结果用幂的形式表示:(1)5622⨯;(2)23a a a ⋅⋅;(3)24()()a b a b +⋅+;(4)235()()()x y x y x y -⋅-⋅-.【例2】2. 下列各式正确吗?不正确的请加以改正.(1)347()()x x x -⋅-=-;(2)246()()x x x --=-;(3)()()121mm m a a a ++--=;(4)5552b b b ⋅=;(5)4610b b b +=;(6)15052x x x =⋅;(7)5525x x x ⋅=;(8)33c c c ⋅=.3. 计算下列各式,结果用幂的形式表示.(1)()()()332a a a --⋅--;(2)()()23x y y x --;(3)()()()212222m m x y x y x y -+---.【例4】4. 如果2111m n n x x x -+⋅=,且145m n y y y --⋅=,试求m 、n 的值.模块二:幂的乘方1、幂的乘方定义:幂的乘方是指几个相同的幂相乘.2、幂的乘方法则:幂的乘方,底数不变,指数相乘.即()m n mn a a =(m 、n 都是正整数)【例5】5. 计算下列各式,结果用幂的形式表示.(1)()42a -;(2)24()a -;(3)2()n n a ;(4)()832;(5)()432⎡⎤-⎣⎦;(6)()33b -;(7)()43x -;(8)323()()x y x y ⎡⎤⎡⎤++⎣⎦⎣⎦.6. 计算:(1)()()684393x x -;(2)()()432332a a a a - ;(3)()2122n n n a a a +++;(4)()()()3834222632x x x x x ⎡⎤-+⎢⎥⎣⎦.【例7】7. 已知23m n a a ==,,求23m n a +的值.【例8】8. 比较大小:(1)比较下列一组数的大小:在552,443,334,225;(2)比较下列一组数的大小:31416181279,,;(3)比较下列一组数的大小:4488,5366,6244.模块三:积的乘方1、积的乘方定义:积的乘方指的是乘积形式的乘方.2、积的乘方法则:积的乘方,等于把积中的每个因式分别乘方,再把所得的幂相乘:()nn n ab a b =(n 是正整数)3、积的乘方的逆用:()n n n a b ab =.例9】9. 计算:(1)()333m n -;【(2)43213a b ⎛⎫- ⎪⎝⎭;(3)()32242a b --;(4)541103⎛⎫-⨯ ⎪⎝⎭.【例10】10. 计算:(1)342()a b -;(2)3532()4x y ;(3)23[()]a b -+.【例11】11. 计算:(1)32332()()y y y ⋅⋅;(2)2323[()]a a a -⋅⋅-;(3)()()3222632x y x y ⎡⎤⎡⎤---+-⎣⎦⎢⎥⎣⎦.【例12】12. 已知:1123326x x x ++-⋅=,求x 的值.(2022秋·上海·七年级上海市建平中学西校校考期中)13. 计算202120223223⎛⎫⎛⎫-⋅- ⎪⎪⎝⎭⎝⎭的结果是( )A. 32-B. 23-C. 202232⎛⎫- ⎪⎝⎭D. 202223⎛⎫- ⎪⎝⎭(2022秋·上海长宁·七年级上海市娄山中学校考阶段练习)14. 下列运算正确的是( ).A. 5510x x x +=B. ()4312x x --=C. 333(2)8xy x y -=- D. ()527()x x x-⋅-=(2022秋·上海·七年级校考模拟)15. 已知5a =3,5b =2,5c =12,则a 、b 、c 之间满足数量关系( )A. a +2b =cB. 4a +6b =cC. a +2b =12cD. 3a +2b =12c(2022秋·上海·七年级校考模拟)16. 已知3a x =,2b x =,那么a b x +的值是( )A. 5B. 6C. 8D. 9(2022秋·上海·七年级校考模拟)17. 代数式()322a 的计算结果是()A. 62a B. 56a C. 58a D. 68a (2022秋·上海·七年级上海市民办新复兴初级中学校考期中)18. 在下列运算中,计算正确的是( )A. 628a a += B. 1628a a a-= C. 628a a a⋅= D. ()268aa =(2022秋·上海宝山·七年级校考期中)19. 下列计算中,正确的是( )A. 336a a a += B. 326a a a ⋅= C. ()239a a = D. ()326a a -=-(2022秋·上海·七年级校联考期末)20. 下列计算正确的是( )A. 235x x x += B. 235x x x ⋅=C. 236x x x ⋅= D. ()325x x =(2022秋·上海虹口·七年级校考期中)21. 计算:()22xy -=_______________.(2022秋·上海嘉定·七年级校考期中)22. 计算:()()()529a a a -⋅-⋅-=________.(2022秋·上海徐汇·七年级上海市徐汇中学校联考期末)23. 已知4m n m n x x x +-⋅=,则m =___________(2022秋·上海金山·七年级校联考期末)24. 已知103n =,且104m =,则210m n +=___________.(2022秋·上海·七年级校考期中)25. (1) ()322⎡⎤-=⎣⎦____________(结果用幂的形式表示);(2)()523-=______________.(2022秋·上海嘉定·七年级校考期中)26. 若2m a =,3n a =,则3m n a +=________.(2022秋·上海宝山·七年级校考期中)27. 计算:2322332a b a ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭___________;(2022秋·上海静安·七年级上海市静安区教育学院附属学校校考期中)28. 计算()()2200320030.045⎡⎤⨯-=⎣⎦__________.(2022秋·上海普陀·七年级统考期中)29. 计算:()()23634423a a a -⋅--.(2022秋·上海·七年级校考模拟)30. 已知36452,n n n n x x x x =+⋅求的值(2022秋·上海·七年级校考模拟)31. 计算:5763234()2()x x x x x ⋅+⋅-+32. (﹣12)2015•(﹣2)2016的计算结果是( )A. 2B. ﹣2C. 4D. ﹣433. 下列运算中,错误的个数是( )(1)224a a a +=;(2)236a a a ⋅=;(3)2n n n a a a ⋅=;(4)()448a a a --⋅= A. 1个B. 2个C. 3个D. 4个34. 计算:3232xy ⎛⎫-= ⎪⎝⎭___________.35. 计算:200520062332⎛⎫⎛⎫-⋅ ⎪⎪⎝⎭⎝⎭=________.36. ()()()()7256a a a a a ⋅-⋅-⋅-⋅-.37. 计算:()()23223xy xy ---÷第04讲 幂的运算(一)模块一:同底数幂的乘法1、幂的运算概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘.例如:53表示33333⨯⨯⨯⨯,()53-表示()()()()()33333-⨯-⨯-⨯-⨯-,53-表示()33333-⨯⨯⨯⨯;527⎛⎫ ⎪⎝⎭表示2222277777⨯⨯⨯⨯,527表示222227⨯⨯⨯⨯. 特别注意负数及分数的乘方,应把底数加上括号.2、“奇负偶正”口诀的应用:口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:[](3)3---=-;[](3)3-+-=.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号.(3)有理数乘方,这里奇、偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正.例如:()239-=,()3327-=-.特别地:当n 为奇数时,()nn a a -=-;而当n 为偶数时,()nn a a -=.负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,1的任何次幂都是1,任何不为0的数的0次幂都是“1”.3、同底数幂相乘同底数的幂相乘,底数不变,指数相加.用式子表示为:m n m n a a a +⋅=(m ,n 都是正整数).【例1】【1题答案】【答案】(1)112 (2)6a (3)()6a b + (4)()10x y -【解析】【分析】(1)根据同底数幂的乘法法则计算即可;(2)根据同底数幂的乘法法则计算即可;(3)根据同底数幂的乘法法则计算即可;(4)根据同底数幂的乘法法则计算即可.【小问1详解】解:5622⨯562+=112=;【小问2详解】解:23a a a ⋅⋅123a ++=6a =;【小问3详解】解:24()()a b a b +⋅+24()a b +=+6()a b =+;【小问4详解】解:235()()()x y x y x y -⋅-⋅-235()x y ++=-10()x y =-【点睛】本题考查了同底数幂的乘法,熟练掌握底数不变,指数相加是解题的关键.【例2】【2题答案】【答案】(1)正确; (2)不正确,正确为:()()4626x x x x --=-=--(3)不正确,正确为:()()()12121m m m m a a a a +++--=-=-(4)不正确,正确为:5510b b b ⋅=(5)不正确,不能计算(6)不正确,正确为:5510x x x ⋅=(7)不正确,正确为:5510x x x ⋅=(8)不正确,正确为:34c c c ⋅=【解析】【分析】根据同底数幂相乘的法则进行判断即可.【小问1详解】()()34347()()x x x x x -⋅-=-⋅-=-,故(1)正确【小问2详解】不正确,正确为:()()4626x x x x --=-=--【小问3详解】不正确,正确为:()()()12121m m m m a a a a +++--=-=-【小问4详解】不正确,正确为:5510b b b ⋅=【小问5详解】不正确,他们不是同类项,不能合并【小问6详解】不正确,正确为:5510x x x ⋅=【小问7详解】不正确,正确为:5510x x x ⋅=【小问8详解】不正确,正确为:34c c c ⋅=【点睛】本题考查同底数幂的乘法法则,正确理解同底数幂的乘法法则是解题的关键.【例3】 【3题答案】【答案】(1)8a(2)()5y x -(3)()232m x y +-【解析】【分析】(1)根据同底数幂乘法的运算法则计算即可;(2)根据同底数幂乘法的运算法则计算即可;(3)根据同底数幂乘法的运算法则计算即可。
第四讲:幂与积的乘方
1.熟练掌握幂的乘方的运算性质并能运用它进行快速计算和熟练的计算;
2.理解积的乘方的意义;会运用积的乘方法则进行有关的计算;
3.逆用积的乘方法则简便运算,能利用所学幂的运算法则,进行混合运算
指出下列各幂的底数和指数:
34(2) 43()a 35()a
在上列各式中我们若把23看成一个整体,那么
34(2) 的底数是23,指数是4,它就是2的3次幂的4次方;
43()a 的底数是 ,指数是_ __,它就是
35()a 的底数是 ,指数是_ __,它就是
34(2);43()a ;35()a 称之为幂的乘方。
请计算34(2); 43()a ; 35()a
提醒学生可以根据乘方的意义和同底数的幂的乘法性质。
得
(1)34(2)= ⨯ ⨯ ⨯ =()2
(2)43()a = ⨯ ⨯ =()a
(3)35()a = ⨯ ⨯ ⨯ ⨯ = ()a
让学生观察(1)34(2)=122;(2)43()a =12a ;(3)35()a =15a 三小题左右两边的变化规律 猜想:如果m 、n 都是正整数,那么 ()m n a =_ __
练习:
1.计算:
(1)52(10); (2)33()y ; (3)[2(3)-]3; (4)[3()a -]5
2.计算;
(1)3524()a a a ⋅+
; (2)2433()()a a ⋅;
(3)322()a a ⋅ (4)3434()a a a +⋅
3.把下列各式写成()n a b +或()n a b -的形式:
(1)2
3()a b ⎡⎤+⎣⎦ (2)[()a b -2()b a -]4
思考:请观察以下算式:
()()()2353535⨯=⨯⋅⨯……幂的意义
()()3355=⨯⋅⨯……乘法的交换律、结合律
2235=⋅
请按照以上方法,完成下列填空:
()
225____________________________⨯== ()4______________________________ab ==
我们知道n a表示n个a相乘,那么()n
ab表示什么呢?
()n
ab ab ab ab
=⋅⋅⋅;____________个ab
()()
a a a
b b b
=⋅⋅⋅⋅⋅⋅⋅;________个a________个b
_____________
=
思考:这个性质对于三个或三个以上因式的积的乘方适用吗?如()n
abc ()n n n n
abc a b c
=(n是正整数)
练习:
1.计算:
(1)()4
3a(2)()3
2mx
-(3)()32xy-(4)
2
2
2
3
xy
⎛⎫ ⎪⎝⎭
小结:在计算中要注意什么?
(1)在计算中要看清所进行的计算类型(同底数幂相乘、幂的乘方、积的乘方),不能用错法
则;
(2)要看清综合运算中包含的各种运算,遵循“先乘方,再乘除,后加减,有括号先做括号”
例1. 计算下列各题
(1)、23523
()()x x x x ⋅+-+ (2)、232534[()]()x x x x x x ⋅-+⋅+-⋅
试一试:计算下列各题
(1)、4510224
()()3[()]x x x -+-- (2)、222452223()()()()x x x x ⋅-⋅
例2. 计算: (1) 1111(0.25)4-⨯
(2) 20132014(0.125)8-⨯
试一试:计算: (1) 620.25(32)⨯- (2)201420142013201311(8)(7)()()87
-⋅-⋅--
例3. 已知105,106a b ==,求(1)231010a b +的值;(2)2310a b +的值
试一试:已知2m a =,2n b =,求(1)8m n +,(2)3222m n m n +++的值
例4. 阅读下列解题过程:试比较1002与753的大小.
解:100425252(2)16==
75325253(3)27==
而1627<, 所以25251627<
1007523∴<
请根据上述解答过程解答:比较552、443、334的大小.
1.下列等式成立的是( )
(A )224a a a += (B )248a a a ⋅= (C )33()n n a a = (D )33(2)2a a = 2.如果x 和y 互为倒数,那么20142013()x y ⋅-的值为 ( ).
A .x
B .–x
C .y
D . –y 3.计算:61245_________⨯=(结果用幂的形式表示). 4.计算:3223()()a a -⋅-= .
5.计算:33()()n n a a ⋅= .
6.3223927⨯⨯= (结果用幂的形式表示).
7.若35(2)2x -⋅=,则x = .
本节课主要知识点:幂的乘法运算,积的乘方运算及注意事项
【巩固练习】
1.下列计算中,结果正确的是( )
A .236a a a =·
B .(2)(3)6a a a ⋅=
C .()326
a a = D .623a a a ÷=
2.化简24m n ⋅的结果是( )
A .(24)mn ⨯
B .22m n +⨯
C .(24)m n +⨯
D .22m n + 3.221()n x --等于( )
A 、41n x -
B 、41n x --
C 、42n x -
D 、42n x --
4. 12()n a --等于( )
A 、22n a -
B 、22n a --
C 、21n a -
D 、22n a --
5. 31n y +可写成( )
A 、31()n y +
B 、31()n y +
C 、3n y y ⋅
D 、1()n n y +
6. 2()()m m m a a ⋅不等于( )
A 、2()m m a
+ B 、2()m m a a ⋅ C 、22m m a + D 、31()()m m m a a -⋅
【预习思考】
1. 利用乘法的交换律和结合律计算:2223x y xy ⋅
2.利用乘法分配率计算下列各题:(1)222(32)ab a b ab ⋅- (2) 212()(12)43
x x y xy -⋅-。