【2018洛阳高考三模】河南省洛阳市2018届高三第三次统一考试 数学(理)
- 格式:doc
- 大小:779.53 KB
- 文档页数:9
洛阳市2018-2018学年高三年级统一考试(三练)理科综合试题(A)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷33-40题为选考题,其它题为必考题。
考生作答时,将答案答在答题卷,在本试题上答题无效。
第Ⅰ卷(选择题共126分)可能用到的相对原子质量:H:1 C:12 N:14 O:16 Na:23 Al:27 S:32Fe:56 Ba:137一、选择题(本题共13小题,每小题6分,共78分。
在每小题给出的4个选项中,只有一项是符合题目要求的。
1下列关于酶与ATP的叙述正确的是:A. 人体成熟的红细胞既能产生酶又能产生ATPB。
酶既可以作为催化剂,也可以作为反应的底物C.ATP的合成总是伴随着有机物的氧化分解D.三磷酸腺苷是生命活动的直接能源物质,其结构简式为ATP2下图表示某生态系统中3种生物的CO2吸收量(相对值)的变化情况,请据图判断下列叙述错误的是()A.a曲线代表的生物属于某种生产者,其利用化学能固定CO2B.若c是某种动物,即可能是分解者,又可能是消费者C.若b曲线代表某种植物,则18时植物内的有机物积累量最多D.若a生物能被人巨噬细胞吞噬,则其一定能引发人体的细胞免疫3.mRNA上的起始密码子是AUG和GUG, 对应的氨基酸是甲硫氨酸和缬氨酸。
但蛋白质的第一个氨基酸往往不是甲硫氨酸或缬氨酸。
产生此结果的原因是A. 甲硫氨酸和缬氨酸可能对应多种密码子B. 起始密码子是核糖体进行翻译的起点C. 转录生成的mRNA可能进行加工修饰D. 翻译生成的多肽链可能进行加工修饰4. 在19世纪中叶以前,英国曼彻斯特地区的桦尺蠖几乎都是浅色型(s)的.随着工业的发展,工厂排出的煤烟逐渐将树皮熏成黑褐色,到了20世纪中叶,黑色型(S)的桦尺蠖成了常见类型.下列与此相关的叙述中正确的是()A.浅色桦尺蠖与黑色桦尺蠖同时存在体现了物种的多样性B.桦尺蠖种群进化过程中接受选择的是各种基因型的个体C.该地区桦尺蠖种群进化过程中Ss的基因型频率不会改变D.长时间的环境污染导致s基因突变成S基因的频率增加5. B淋巴细胞在免疫系统中会发生两次选择:在骨髓中分化时经历第一次选择,凡是不能识别自身抗原的B淋巴细胞会凋亡,保留下来的B淋巴细胞一般不会对自身抗原产生免疫应答;在外周免疫系统中,B淋巴细胞识别特异性外来抗原后发生第二次选择.凡是能表达高亲和力抗原识别受体的保留下来,其余的几天后死亡。
洛阳市2017--2018 学年高中三年级第三次统一考试数学试卷(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知为虚数单位,则复数在复平面内所对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:首先应用复数的运算法则,将复数化为最简形式,根据复数在复平面内对应的点的坐标,确定其所在的象限即可求得结果.详解:,在复平面内对应的点为,所以在第四象限,故选D.点睛:该题考查的是有关复数的除法运算以及复数在复平面内对应的点的坐标,从而确定出其所在的象限.2. 已知集合,.若,则实数的值是()A. 0B. 2C. 0或2D. 0或1或2【答案】C【解析】分析:解题时利用子集的概念即可得结果.详解:当时,,满足;当时,,满足;所以或,所以实数的值是0或2,故选C.点睛:该题考查了子集的概念,属于基础题.3. 下列函数为奇函数的是()A. B. C. D.【答案】C【解析】分析:结合函数奇偶性的定义,由条件判断各个选项中函数的奇偶性,从而得出结论.详解:由于A中的函数为非奇非偶函数,故排除A;由于B、D中的函数的定义域为R,且满足,故它们都是偶函数,故排除B、D;对于C中的函数,的定义域为,且满足,所以它是奇函数,故选C.点睛:该题考查的是函数奇偶性的判定,解题的关键是根据与的关系判断函数的奇偶性,在解题的过程中,首先确定函数的定义域,并判断其是否关于原点对称,之后再根据奇函数的定义判断,得出结果.4. 已知平面向量,,,若,,则实数的值为()A. B. C. 2 D.【答案】B【解析】分析:首先应用向量的数乘及坐标加法运算求得的坐标,然后直接利用向量共线时坐标所满足的条件,列出等量关系式,求解k的值.详解:因为,所以,又,由得,解得,故选B.点睛:该题主要考查平面向量的线性运算以及平面向量平行时坐标所满足的条件,正确地把握向量的坐标运算是解题的关键,在解题时,一定要熟记向量共线时坐标的关系,从而正确得到等量关系式求解即可.5. 已知双曲线的右焦点与抛物线的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A. B. 3 C. 5 D.【答案】A【解析】分析:首先求出抛物线的焦点坐标,之后利用双曲线的右焦点与抛物线的焦点重合,,先求出,再求出双曲线的焦点坐标和渐近线方程,之后应用点到直线的距离公式求得结果.详解:因为抛物线的焦点坐标为,依题意,,所以,所以双曲线的方程为,所以其渐近线方程为,所以双曲线的一个焦点到渐近线的距离为,故选A.点睛:该题考查的是有关抛物线的焦点坐标,以及双曲线的焦点坐标,双曲线的渐近线方程,点到直线的距离公式,在求解的过程中,首先需要求出抛物线的坐标,之后借助于双曲线中之间的关系,求出,之后求得渐近线方程,接着应用点到直线的距离公式求得结果.6. 某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D. 8【答案】A【解析】分析:首先利用题中所给的三视图将几何体还原,因为正视图、侧视图和俯视图外轮廓都是正方形,所以就得到该几何体是由正方体切割而成的,从而得到其为正方体切去一个三棱锥,之后应用减法运算求得该几何体的体积. 详解:根据题中所给的几何体的三视图,可以得到该几何体是由正方体切割而成的,记正方体为,取中点为,取中点为N,该几何体就是正方体切去一个三棱锥之后剩余部分,故其体积为,故选A.点睛:该题考查的是有关根据三视图还原几何体,求其体积的问题,解题的关键是将几何体还原,在分析的过程中,能够得出该几何体与正方体有关,从而需要先画出一个正方体,结合三视图中对应的有关线段,从而得到对应几何体的相应的顶点在什么位置,从而得到最后的结果,之后应用减法运算求得体积.7. 已知满足约束条件,则的最小值为()A. 1B. 3C. 5D. 7【答案】D详解:根据约束条件画出可行域,如图所示,由得,画出直线,之后向上移动,可以发现当其过点时,截距最小,即z取得最小值,由可得,此时,故答案是7.点睛:该题考查的是有关线性规划的问题,在解题的过程中,关键一步就是正确画出约束条件对应的可行域,之后化目标函数为直线方程的斜截式,结合z的几何意义,数形结合得到最优解,联立方程组,求得最优解的坐标,把最优解的坐标代入目标函数得答案.8. 定义表示不超过的最大整数,例如,,.下面的程序框图取材于中国古代数学著作《孙子算经》.执行该程序框图.则输出()A. 9B. 16C. 23D. 30【答案】C【解析】分析:首先模拟运行该程序框图,依据程序逐级运算,并通过判断条件调整运算的方向,是继续还是结束,即可计算得出结果.详解:一步步运行程序框图,可得,,,所以输出,故选C.点睛:该题考查的是有关程序框图运行后输出结果运算的问题,在解题的过程中,首先需要明确的意义,通过题中的举例,清楚其意义,之后在程序框图运行的过程中,明确什么时候该往哪走,从而最后求得结果.9. 下列叙述中正确的个数是()①将一组样本数据中的每个数据都加上同一个常数后,方差不变;②命题,,命题,,则为真命题;③“”是“的必要而不充分条件;④将函数的图象向左平移个单位长度得到函数的图象.A. 1B. 2C. 3D. 4【答案】B【解析】分析:①利用一组数据的方程的定义和公式可以判断得出结果;②结合函数的性质以及复合命题的真值表可知结果;③利用余弦函数的性质,结合条件的充分性和必要性得到结论;④利用图像的平移变换规律以及诱导公式得到结果.详解:对于①,因为有结论将一组样本数据中的每个数据都加上同一个常数后,方差不变,所以①正确;对于②,结合指数函数的性质,可知p是真命题,根据二次函数的性质,可知很成立,所以q是假命题,所以是假命题,所以②错误;对于③,因为当时,一定有,但是当,时,有,所以不一定成立,所以应该是充分不必要条件,所以③错误;对于④,将函数的图象向左平移个单位长度得到函数解析式为,故④正确,所以正确命题的个数为2,故选B.点睛:该题考查的是有关真命题的个数问题,在解题的过程中,需要对命题逐一分析,得到结果,在判断的过程中,用到方差的性质、复合命题真值表、余弦函数的性质、图像的平移变换以及诱导公式,需要认真审题.10. 函数的单调递减区间是()A. B.C. D.【答案】B【解析】分析:首先利用差角公式将解析式化简,应用复合函数单调性法则,结合对数式的底数是,从而得到应该求的增区间,并且首先满足真数大于零的条件,从而得到,化简,最后求得其结果为,从而确定选项.详解:根据题意有,所以要求,结合复合函数单调性法则,实则求的增区间,所以有,解得,所以函数的单调减区间是,故选B.点睛:该题考查的是有关复合函数的单调区间的问题,在解题的过程中,需要首先化简函数解析式,之后根据复合函数单调性法则同增异减的原则,得到其结果,在解题的过程中,需要时刻注意定义域优先原则,得保证函数有意义,之后列出相应的式子,求得结果.11. 已知函数满足条件:对于,且,存在唯一的且,使得.当成立时,()A. B. C. D.【答案】A【解析】分析:根据题意,得到函数在和上单调,并且是连续的函数,从而得到以及的符号,代入相应的式子,得到其所满足的等量关系式,从而求得,得到结果.详解:若对于,存在唯一的,使得,所以在和上单调,则,且,由得,即,即,则,故选D.点睛:该题考查的是有关分段函数的性质问题,在求解的过程中,需要把握住条件对于,存在唯一的,使得,得到函数的单调性,从而得到系数所满足的条件,列出相应的等量关系式,求得结果.12. 已知椭圆的左、右焦点分別为,过的直线与椭圆交于两点,若是以为直角项点的等腰直角三角形,则椭圆的离心率为()A. B. C. D.【答案】D【解析】试题分析:设,若是以为直角顶点的等腰直角三角形,∴,.由椭圆的定义可知的周长为,∴,.∴.∵,∴,∴,.考点:椭圆的几何性质.【方法点晴】本题主要考查了椭圆的定义、标准方程及其简单的几何性质的应用、椭圆离心率的求解,着重考查了学生分析问题和解答问题的能力、转化与化归思想的应用,本题的解答中,若是以为直角顶点的等腰直角三角形,得出,,再由椭圆的定义,得到的周长为,列出的关系式,即可求解离心率.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知角的始边与轴的非负半轴重合,顶点与坐标原点重合,终边过点,则__________.【答案】10【解析】分析:首先利用三角函数的定义式,结合题中所给的角的终边所过的点的坐标求得,之后借助于同角三角函数关系式,将关于正余弦分式形式的式子上下同除,得到关于切的式子,代入求值即可得结果.详解:根据角的终边过,利用三角函数的定义式,可以求得,所以有,故答案是10.点睛:该题考查的是有关利用角的正切值来求关于正余弦的分式形式的式子的值的问题,在解题的过程中,需要注意利用角的终边所过的点,结合三角函数的定义式求得正切值,之后对分式的分子分母上下同除,将其化为切的式子求解即可.14. 关于的方程在区间上有两个不等实根,则实数的取值范围是__________.【答案】【解析】分析:首先将方程转化,分离参数,化为,将问题转化为函数图像与直线的交点个数来解决,之后构造函数,求导,利用导数研究函数单调性,从而得到函数图像的大致走向以及相应的最值,最后求得结果.详解:关于的方程,即:,令函数,若方程在区间上有两个不等实根,即函数与在区间上有两个不同的交点,,令可得,当时,,函数是减函数,当时,,函数是增函数,所以函数的最小值为,,所以函数的最大值为,所以关于的方程在区间上有两个不等实根,则实数的取值范围是.点睛:该题考查的是有关方程的解的个数对应的参数的范围问题,该题转化为函数与在区间上有两个不同的交点,结合函数图像的走向以及最值求得结果,还可以将方程转化为,即曲线和直线在相应区间上有两个交点,也可以求得结果.15. 在正三棱锥中,,是的中点,,则正三棱锥外接球的表面积为__________.【答案】【解析】分析:利用正三棱锥和是的中点,,找到正三棱锥的三条侧棱之间的关系,从而得到该三棱锥的特殊的特征,从而利用补体的方式,将其转化Wie求正方体的外接球的有关量的计算,从而求得结果.详解:取的中点,连接,因为,所以,又因为是正三角形,所以,故平面,,又因为,,所以平面,且,故得到是三条两两垂直的,可以看做是正方体切下来的一个正三棱锥,故外接球的直径,因为,所以,从而得到,所以其外接球的表面积为.点睛:该题考查的是有关空间几何体的外接球的问题,在解题的过程中,首先应该寻找该三棱锥的有关特征,利用有关相等和垂直关系,得到该三棱锥的三条侧棱是两两垂直的,从而利用特殊几何体的外接球球心所在位置的规律,得到对应的结果.16. 在中,是的中点,与互为余角,,,则的值为__________.【答案】或【解析】设,则由+可知,为的中点,,即,由正弦定理得或,当A=B时,AC=BC, ,当时, ,在△ACD中, ,综上可得,的值为或.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设正项数列的前项和满足.(1)求数列的通项公式;(2)设,数列的前项和为,求的取值范围.【答案】(1);(2).详解:(1)①时,由,得,②时,由已知,得,∴,两式作差,得,又因为是正项数列,所以.∴数列是以1为首项,2为公差的等差数列.∴.(2)∵,∴.又因为数列是递增数列,当时最小,,∴.点睛:该题考查的是有关数列的通项公式的求解以及裂项相消法求和,在解题的过程中,需要对题中所给的式子,类比着往前写或者往后写一个,两式相减,结合题中的条件,得到相邻两项的差为同一个常数,从而得到该数列是等差数列,之后借助于等差数列的通项公式求得结果,对于第二问应用裂项相消法求和之后,结合式子的特征以及n的范围,求得其值域.18. 高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从洛阳的高中生中,随机抽取了55人,从上海的高中生中随机抽取了45人进行答题.洛阳高中生答题情况是:选择家的占、选择朋友聚集的地方的占、选择个人空间的占.上海高中生答题情况是:选择朋友聚集的地方的占、选择家的占、选择个人空间的占.(1)请根据以上调查结果将下面列联表补充完整,并判断能否有的把握认为“恋家(在家里感到最幸福)”与城市有关:(2)从被调查的不“恋家”的上海学生中,用分层抽样的方法选出4人接受进一步调查,从被选出的4 人中随机抽取2人到洛阳交流学习,求这2人中含有在“个人空间”感到幸福的学生的概率.附:,其中 d.【答案】(1)见解析;(2).【解析】分析:第一问就需要根据题意,将对应的数据填入表中的相应位置,之后应用公式求得观测值,与表中所给的临界值比较,得出结果;第二问将所有的基本事件和满足条件的基本事件都写出来,之后借助于古典概型概率公式求得结果.详解:(1)由已知得,∴,∴有的把握认为“恋家”与城市有关.(2)用分层抽样的方法抽出4 人.其中在“朋友聚焦的地方”感到幸福的有3人,在“个人空间”感到幸福的有1人,分别设为;∵,∴,设“含有在“个人空间”感到幸福的学生”为事件,,∴,则所求的概率为.点睛:该题考查的是有关独立性检验的问题,以及古典概型的概率求解公式的应用,在解题的过程中,需要利用公式将的值算出,之后与表中的临界值比较得出结果;之后是古典概型的解题方案,就是将对应的所有的基本事件和满足条件的基本事件都写出来,之后借助于公式完成任务.19. 如图,三棱柱中,平面,,是的中点,.(1)求证:平面平面;(2)求点到平面的距离.【答案】(1)见解析;(2).【解析】试题分析:(1)由平面得,由得,由线面垂直的判定定理得平面,故平面平面;(2)很容易得的值,由可得到平面的距离。
洛阳市2017--2018 学年高中三年级第三次统一考试数学试卷(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,则复数21i+在复平面内所对应的点在()A.第一象限 B.第二象限C.第三象限 D.第四象限2.已知集合{0,1,2}A=,{1,}B m=.若B A⊆,则实数m的值是()A.0 B.2 C.0或2 D.0或1或23.下列函数为奇函数的是()A.323y x x=+ B.2x xe ey-+= C.23log3xyx-=+D.siny x x=4.已知平面向量(2,1)a=-r,(1,1)b=r,(5,1)c=-r,若()//a kb c+rr r,,则实数k的值为()A.114-B.12C. 2 D.1145.已知双曲线2221(0)4x ybb-=>的右焦点与抛物线212y x=的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A.5B.3 C.5 D.426.某几何体的三视图如图所示,则该几何体的体积为()A.233B.152C.476D.87.已知,x y满足约束条件5040250yx yx y-≤⎧⎪+-≥⎨⎪--≥⎩,则2z x y=+的最小值为()A.1B.3 C,5 D.78.定义[]x表示不超过x的最大整数,例如[0.6]0=,[2]2=,[3.6]3=.下面的程序框图取材于中国古代数学著作《孙子算经》.执行该程序框图.则输出a=()A.9B.16C.23D.309.下列叙述中正确的个数是( )①将一组样本数据中的每个数据都加上同一个常数后,方差不变;②命题:[0,1]p x ∀∈,1x e ≥,命题0:q x R ∃∈,20010x x ++<,则p q ∧为真命题;③“cos 0α≠”是“2()2k k Z παπ≠+∈的必要而不充分条件;④将函数sin 2y x =的图象向左平移512π个单位长度得到函数sin(2)6y x π=-的图象. A.1B ,2C.3D ,410.函数12log (sin 2coscos 2sin )44y x x ππ=-的单调递减区间是( )A .5(,),88k k k Z ππππ++∈ B .3(,],88k k k Z ππππ++∈ C. 3[,),88k k k Z ππππ-+∈ D .35[,),88k k k Z ππππ++∈ 11.已知函数3,0(),0x x f x ax b x ≥=+<⎪⎩满足条件:对于1x R ∀∈,且10x ≠,存在唯一的2x R ∈且12x x ≠,使得12()()f x f x =.当(2)(3)f a f b =成立时,a b +=( ) A .632-+ B .62- C.632+ D .6212.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分別为12,F F ,过2F 的直线与椭圆交于,A B 两点,若1F AB V 是以A 为直角项点的等腰直角三角形,则椭圆的离心率为( )A 2B .2352 D 63第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知角α的始边与x 轴的非负半轴重合,顶点与坐标原点重合,终边过点(3,4)P ,则sin 2cos sin cos αααα+=-.14.关于x 的方程ln 10x x kx -+=在区间1[,]e e上有两个不等实根,则实数k 的取值范围是. 15.在正三棱锥S ABC -中,2AB =,M 是SC 的中点,AM SB ⊥,则正三棱锥S ABC -外接球的表面积为.16.在ABC V 中,D 是AB 的中点,ACD ∠与CBD ∠互为余角,2AD =,3AC =,则sin A 的值为. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 设正项数列{}n a 的前n 项和n S 满足21n n S a =+. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=⋅,数列{}n b 的前n 项和为n T ,求n T 的取值范围.18. 高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从洛阳的高中生中,随机抽取了55人,从上海的高中生中随机抽取了45人进行答题.洛阳高中生答题情况是:选择家的占25、选择朋友聚集的地方的占310、选择个人空间的占310.上海高中生答题情况是:选择朋友聚集的地方的占35、选择家的占15、选择个人空间的占15. (1)请根据以上调查结果将下面22⨯列联表补充完整,并判断能否有95%的把握认为“恋家(在家里感到最幸福)”与城市有关:在家里最幸福 在其它场所最幸福 合计 洛阳高中生 上海高中生 合计中随机抽取2人到洛阳交流学习,求这2人中含有在“个人空间”感到幸福的学生的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c =+++d.19.如图,三棱柱111ABC A B C -中,1A A ⊥平面ABC ,90ACB ︒∠=,M 是AB 的中点,12AC CB OC ===.(1)求证:平面1A CM ⊥平面1l ABB A ; (2)求点M 到平面11A CB 的距离.20.已知抛物线2:2(0)C y px p =>的焦点为F ,A 为抛物线C 上异于原点的任意一点,过点A 的直线l 交抛物线C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF V 为正三角形.(1)求抛物线C 的方程;(2)若直线12//l l ,且1l 和抛物线C 有且只有一个公共点E ,试问直线AE 是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由. 21.已知函数2()(1)2x t f x x e x =--,其中t R ∈. (1)函数()f x 的图象能否与x 轴相切?若能,求出实数t ,若不能,请说明理由; (2)讨论函数()f x 的单调性.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程 已知直线l 的极坐标方程为sin()224πρθ+=,现以极点O 为原点,极轴为x 轴的非负半轴建立平面直角坐标系,曲线1C 的参数方程为12cos 22sin x y ϕϕ=-+⎧⎨=-+⎩(ϕ为参数).(1)求直线l 的直角坐标方程和曲线1C 的普通方程;(2)若曲线2C 为曲线1C 关于直线l 的对称曲线,点A ,B 分别为曲线1C 、曲线2C 上的动点,点P 坐标为(2,2),求||||AP BP +的最小值. 23.选修4-5:不等式选讲已知函数()3|||31|f x x a x =-++,g()|41||2|x x x =--+. (1)求不等式()6g x <的解集;(2)若存在1x ,2x R ∈,使得1()f x 和2()g x 互为相反数,求a 的取值范围.试卷答案一、选择题1-5: DCCBA 6-10:ADCBB 11、12:AD 二、填空题13. 10 14.1(1,1]e + 15. 3π16.3或4三、解答题17.解:(1)①1n =时,由11a =+,得11a =,②2n ≥时,由已知,得24(1)n n S a =+,∴2114(1)n n S a --=+,两式作差,得11()(2)0n n n n a a a a --+--=, 又因为{}n a 是正项数列,所以12n n a a --=. ∴数列{}n a 是以1为首项,2为公差的等差数列. ∴21n a n =-. (2)∵111111()(21)(21)22121n n n b a a n n n n +===-⋅-+-+,∴12n n T b b b =+++L11111111(1)()()2323522121n n =-+-++--+L 111(1)2212n =-<+. 又因为数列{}n T 是递增数列,当1n =时n T 最小,113T =, ∴11[,)32n T ∈. 18.解:(1)由已知得,∴2100(2236933)1001134.628 3.841316955453123K ⨯⨯-⨯⨯⨯==≈>⨯⨯⨯⨯,∴有95%的把握认为“恋家”与城市有关.(2)用分层抽样的方法抽出4 人.其中在“朋友聚焦的地方”感到幸福的有3人,在“个人空间”感到幸福的有1人,分别设为123,,,a a a b ;∵Ω121312323{(,),(,),(,),(,),(,)(,)}a a a a a b a a a b a b =, ∴6n =,设“含有在“个人空间”感到幸福的学生”为事件A ,123{(,),(,),(,)}A a b a b a b =,∴3m =,则所求的概率为31()62m P A n ===. 19.(1)由1A A ⊥面ABC ,CM ⊂平面ABC ,则1A A CM ⊥. ∵AC CB =,M 是AB 的中点,∴AB CM ⊥. 又1A A AB A ⋂=,∴CM ⊥平面11ABB A又CM ⊂平面1ACM ,∴平面1A CM ⊥平面11ABB A . (2)设点M 到平面11A CB 的距离为h ,由题意可知11112AC CB A B MC ====1124A CB S ==V 11A MB S =V 1211ABB A S四边形122=⋅⋅=由(1)可知CM ⊥平面11ABB A , 得111111111133C A MB A MB M A CB A CB V MC S V h S --=⋅==⋅V V , ∴点M 到平面11A CB 的距离1111A MB A CB MC S h S ⋅=VV =20.解:(1)由题意知(,0)2pF , 设(,0)(0)D t t >,则FD 的中点为2(,0)4p t+, 因为||||FA FD =,由抛物线的定义知:3||22p p t +=-, 解得3t p =+或3t =-(舍去), 由234p t+=,解得2p =, 所以抛物线C 的方程为24y x =.(2)由(1)知(1,0)F ,设000(,)(0)A x y x >,(,0)(0)D D D x x >, 因为||||FA FD =,则0|1|1D x x -=+, 由0D x >得02D x x =+,故0(2,0)D x +, 故直线AB 的斜率为02AB y k =-, 因为直线1l 和直线AB 平行, 故可设直线1l 的方程为02y y x b =-+, 代入抛物线方程得200880b y y y y +-=, 由题意知20064320b y y ∆=+=,得02b y =-. 设(,)E E E x y ,则04E y y =-,204E x y =, 当204y ≠时,0020044E AE E y y yk x x y -==--,可得直线AE 的方程为000204()4y y y x x y -=--,由2004y x =,整理可得0204(1)4y y x y =--, 所以直线AE 恒过点(1,0)F ,当204y =时,直线AE 的方程为1x =,过点(1,0)F ,所以直线AE 恒过定点(1,0)F .21.解:(1)由于()()xxf x xe tx x e t '=-=-. 假设函数()f x 的图象与x 轴相切于点0(,0)x ,则有0()0()0f x f x '=⎧⎨=⎩,即0020000(1)020x x t x e x x e tx ⎧--=⎪⎨⎪-=⎩. 显然00x ≠,将00x t e =>代入方程0200(1)02xt x e x --=中, 得200220x x -+=.显然此方程无解.故无论t 取何值,函数()f x 的图象都不能与x 轴相切. (2)由于()()x xf x xe tx x e t '=-=-,当0t ≤时,0xe t ->,当0x >时,()0f x '>,()f x 递增,当0x <时,()0f x '<,()f x 递减; 当0t >时,由()0f x '=得0x =或ln x t =, ①当01t <<时,ln 0t <,当0x >时,()0f x '>,()f x 递增, 当ln 0t x <<时,()0f x '<,()f x 递减, 当ln x t <,()0f x '>,()f x 递增; ②当1t =时,()0f x '>,()f x 递增; ③当1t >时,ln 0t >,当ln x t >时,()0f x '>,()f x 递增, 当0ln x t <<时,()0f x '<,()f x 递减, 当0x <时,()0f x '>,()f x 递增.综上,当0t ≤时,()f x 在(,0)-∞上是减函数,在(0,)+∞上是增函数; 当01t <<时,()f x 在(,ln ),(0,)t -∞+∞上是增函数,在(ln ,0)t 上是减函数; 当1t =时,()f x 在(,)-∞+∞上是增函数;当1t >时,()f x 在(,0),(ln ,)t -∞+∞上是增函数,在(0,ln )t 上是减函数. 22.解:(1)∵sin()4πρθ+=sin cos ρθθ=, 即cos sin 4ρθρθ+=,∴直线l 的直角坐标方程为40x y +-=;∵12cos 22sin x y ϕϕ=-+⎧⎨=-+⎩,∴曲线1C 的普通方程为22(1)(2)4x y +++=. (2)∵点P 在直线4x y +=上,根据对称性,||AP 的最小值与||BP 的最小值相等. 曲线1C 是以(1,2)--为圆心,半径2r =的圆.∴min 1||||AP PC r =-23==.所以||||AP BP +的最小值为236⨯=.23.解:(1)∵()g x =33,2151,24133,4x x x x x x ⎧⎪-+≤-⎪⎪---<≤⎨⎪⎪->⎪⎩,当2x ≤-时,336x -+<解得1x >-,此时无解. 当124x -<≤时,516x --<,解得75x >-,即7154x -<≤. 当14x <时,336x -<,解得3x <,即134x <<,综上,()6g x <的解集为7{|3}5x x -<<.(2)因为存在1x ,2x R ∈,使得12()()f x g x =-成立.所以{|(),}y y f x x R =∈{|(),}y y g x x R =-∈≠∅I .又()3|||31|f x x a x =-++|(33)(31)||31|x a x a ≥--+=+, 由(1)可知9()[,)4g x ∈-+∞,则9()(,]4g x -∈-∞. 所以9|31|4a +≤,解得1351212a -≤≤. 故a 的取值范围为135[,]1212-.。
洛阳市2017-2018学年高三年级统一考试(三练)理科综合试题(A)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷33-40题为选考题,其它题为必考题。
考生作答时,将答案答在答题卷,在本试题上答题无效。
第Ⅰ卷(选择题共126分)可能用到的相对原子质量:H:1 C:12 N:14 O:16 Na:23 Al:27 S:32Fe:56 Ba:137一、选择题(本题共13小题,每小题6分,共78分。
在每小题给出的4个选项中,只有一项是符合题目要求的。
1下列关于酶与ATP的叙述正确的是:A. 人体成熟的红细胞既能产生酶又能产生ATPB。
酶既可以作为催化剂,也可以作为反应的底物C.ATP的合成总是伴随着有机物的氧化分解D.三磷酸腺苷是生命活动的直接能源物质,其结构简式为ATP2下图表示某生态系统中3种生物的CO2吸收量(相对值)的变化情况,请据图判断下列叙述错误的是()A.a曲线代表的生物属于某种生产者,其利用化学能固定CO2B.若c是某种动物,即可能是分解者,又可能是消费者C.若b曲线代表某种植物,则18时植物内的有机物积累量最多D.若a生物能被人巨噬细胞吞噬,则其一定能引发人体的细胞免疫3.mRNA上的起始密码子是AUG和GUG, 对应的氨基酸是甲硫氨酸和缬氨酸。
但蛋白质的第一个氨基酸往往不是甲硫氨酸或缬氨酸。
产生此结果的原因是A. 甲硫氨酸和缬氨酸可能对应多种密码子B. 起始密码子是核糖体进行翻译的起点C. 转录生成的mRNA可能进行加工修饰D. 翻译生成的多肽链可能进行加工修饰4. 在19世纪中叶以前,英国曼彻斯特地区的桦尺蠖几乎都是浅色型(s)的.随着工业的发展,工厂排出的煤烟逐渐将树皮熏成黑褐色,到了20世纪中叶,黑色型(S)的桦尺蠖成了常见类型.下列与此相关的叙述中正确的是()A.浅色桦尺蠖与黑色桦尺蠖同时存在体现了物种的多样性B.桦尺蠖种群进化过程中接受选择的是各种基因型的个体C.该地区桦尺蠖种群进化过程中Ss的基因型频率不会改变D.长时间的环境污染导致s基因突变成S基因的频率增加5. B淋巴细胞在免疫系统中会发生两次选择:在骨髓中分化时经历第一次选择,凡是不能识别自身抗原的B淋巴细胞会凋亡,保留下来的B淋巴细胞一般不会对自身抗原产生免疫应答;在外周免疫系统中,B淋巴细胞识别特异性外来抗原后发生第二次选择.凡是能表达高亲和力抗原识别受体的保留下来,其余的几天后死亡。
洛阳市2017—2018学年高中三年级第三次统一考试理科综合试卷可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 S-32 Cl-35.5 Fe-56 Cu-64 Ag-108第Ⅰ卷(选择题共126分)一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的1.下列有关“结构和功能相适应”的观点中,叙述正确的是A.细胞中的DNA分子结构发生变化后,生物的性状一定随之改变B.突起使神经元细胞膜面积扩大,有利于酶的附着,以提高代谢效率C.皮肤汗腺细胞中的高尔基体发达,有利于排汗D.哺乳动物成熟的红细胞没有细胞核,有利于携带氧气2.下列有关艾滋病的叙述,正确的是A.艾滋病是一种免疫系统的疾病,因可通过母婴传播,所以属于遗传病B.艾滋病患者有很多死于癌症,这与免疫系统的监控和清除功能下降有关C.HIV只能引发机体产生细胞免疫,所以患者体内无HIV抗体D.HIV侵人人体后,T细胞数量就会持续下降3.如图所示,内共生起源学说认为:线粒体、叶绿体分别起源于一种原始的好氧细菌和蓝藻类原核细胞,它们最早被先祖厌氧真核生物吞噬后未被消化,而是与宿主进行长期共生,逐渐演化为重要的细胞器。
下列表述正确的是A.线粒体和叶绿体分裂繁殖的事实不支持内共生假说B.根据此假说,线粒体的外膜是从原始的真核细胞的细胞膜衍生而来C.线粒体和叶绿体的膜结枃不同于细胞膜和其它细胞器膜,不支持此假说D.先祖厌氧真核生物吞噬需氧菌后使其解体,解体后的物质组装成线粒体4.图1、图2为处于不同分裂时期的两种细胞示意图,下列相关叙述正确的是A.图中两个细胞都能产生两种子细胞B.图中两个细胞均处于有丝分裂前期C.图中,引起姐妹染色单体上存在等位基因的原因都相同D.图中两个细胞都含有两个染色体组5.洋葱是常用的生物学实验材料,下列相关实验叙述正确的是A.利用光镜观察洋葱鳞片叶外表皮细胞时,可看到紫色液泡染色体等结构B.观察根尖细胞的有丝分裂时,应用酒精洗掉洋葱根尖上的染色剂C.观察洋葱鳞片叶外表皮细胞中的线粒体时,需要用健那绿染色D.洋葱鳞片叶外表皮细胞在质壁分离的过程中,吸水能力会逐渐增强6.人类已进入信息时代,信息在现代社会中十分重要。
河南省洛阳市高考数学三模试卷(理科)一、选择题:本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的共轭复数为()A.﹣3﹣i B.﹣1﹣i C.﹣1+i D.﹣2+2i2.要得到函数y=2sin(2x﹣)的图象,只需将函数y=2sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位3.(已知集合A={x||x+1|<1},B{x|y=},则A∩B=()A.(﹣2,﹣1)B.(﹣2,﹣1] C.(﹣1,0)D.[﹣1,0)4.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A. 60种B.63种C.65种D.66种5.某几何体的三视图如图所示,则它的体积是()A.B.C.8﹣2πD.6.若函数f(x)=x3﹣x2+x+1在x=1处的切线的倾斜角为α,则的值是()A.B.C.﹣D.7.双曲线﹣=1(a>0,b>0)的一条渐近线被圆M:(x﹣8)2+y2=25截得的弦长为6,则双曲线的离心率为()A. 2 B.C. 4 D.8.已知函数f(x)=e x+x,g(x)=lnx+x,h(x)=x﹣的零点依次为a,b,c,则()A. c<b<a B.a<b<c C.c<a<b D.b<a<c9.已知实数x,y满足约束条件,若y≥kx﹣3恒成立,则实数k的数值范围是()A. [﹣,0] B.[0,]C.(﹣∞,0]∪[,+∞)D.(﹣∞,﹣]∪[0,+∞)10.(若三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,则球O的表面积为()A. 64πB.16πC.12πD.4π11.如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值为()A.B.9 C.D.﹣9 12.执行如图所示的一个程序框图,若f(x)在[﹣1,a]上的值域为[0,2],则实数a的取值范围是()A.(0,1] B.[1,] C.[1,2] D.[,2]二、填空题:本题共4个小题,每小题5分,共20分.13.(5分)(2018•洛阳三模)ss“∃x>0,x2+x﹣2≥0”的否定是_________ .14.(5分)(2018•洛阳三模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,C=45°,1+=,则边c的值为_________ .15.(5分)(2018•洛阳三模)已知P是抛物线y2=4x上的动点,过P作抛物线准线的垂线,垂足为M、N是圆(x﹣2)2+(y﹣5)2=1上的动点,则|PM|+|PN|的最小值是_________ .16.(5分)(2018•洛阳三模)已知x∈R,y∈[0,5],我们把满足方程x2+8xsin(x+y)π+16=0的解(x,y)组成的集合记为M,则集合M中的元素个数是_________ .三、解答题:本题共5小题,共70分,解答题应写出文字说明、证明过程和演算步骤.17.(12分)(2018•洛阳三模)已知{a n}的各项均为正数的数列,其前n 项和为S n,若2S n=a n2+a n(n≥1),且a1、a3、a7成等比数列.(1)求{a n}的通项公式;(2)令b n=2,数列{b n}的前n项和为T n,证明:T n+4=2b.18.(12分)(2018•洛阳三模)现有一个寻宝游戏,规则如下:在起点P 处有A、B、C三条封闭的单向线路,走完这三条线路所花费的时间分别为10分钟、20分钟、30分钟,游戏主办方将宝物放置在B线路上(参赛方并不知晓),开始寻宝时参赛方在起点处随机选择路线顺序,若没有寻到宝物,重新回到起点后,再从没有走过的线路中随机选择路线继续寻宝,直到寻到宝物并将其带回至P处,期间所花费的时间记为X.(1)求X≤30分钟的概率;(2)求X的分布列及EX的值.19.(12分)(2018•洛阳三模)如图所示,在菱形ABCD中,对角线AC,BD交于E点,F,G分别为AD,BC的中点,AB=2,∠DAB=60°,沿对角线BD将△ABD折起,使得AC=.(1)求证:平面ABD⊥平面BCD;(2)求二面角F﹣DG﹣C的余弦值.20.(12分)(2018•洛阳三模)如图,A,B是双曲线﹣y2=1的左右顶点,C,D是双曲线上关于x轴对称的两点,直线AC与BD的交点为E.(1)求点E的轨迹W的方程;(2)若W与x轴的正半轴,y轴的正半轴的交点分别为M,N,直线y=kx (k>0)与W的两个交点分别是P,Q(其中P是第一象限),求四边形MPNQ 面积的最大值.21.(12分)(2018•洛阳三模)已知函数,曲线y=f(x)在点(1,f(1))处的切线方程是5x﹣4y+1=0.(Ⅰ)求a,b的值;(Ⅱ)设g(x)=2ln(x+1)﹣mf(x),若当x∈[0,+∞)时,恒有g(x)≤0,求m的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B铅笔在答题卷上把所选题目对应的题号涂黑.【选修4-1:几何证明选项】22.(10分)(2018•洛阳三模)如图,已知AB是⊙O的直径,C为⊙O上一点,以C为切点的切线交AB的延长线于点P,AM⊥CP,垂足为M,CD⊥AB,垂足为D.(1)求证:AD=AM;(2)若⊙O的直径为2,∠PCB=30°,求PC的长.【选修4-4:坐标系与参数方程】23.(2018•洛阳三模)已知直线l的参数方程为,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cos(θ﹣).(1)求直线l的参数方程化为普通方程,将圆C的极坐标方程化为直角坐标方程;(2)求圆C上的点到直线l距离的取值范围.【选修4-5:不等式选项】24.(2018•洛阳三模)已知函数f(x)=2|x+1|﹣|x﹣3|(1)求不等式f(x)≥5的解集;(2)当x∈[﹣2,2]时,关于x的不等式f(x)﹣|2t﹣3|≥0有解,求实数t的取值范围.三、解答题:本题共5小题,共70分,解答题应写出文字说明、证明过程和演算步骤.17、解:(Ⅰ)∵2S n=a n2+a n(n≥1),∴n≥2时,2S n﹣1=a n﹣12+a n﹣1,两式相减,得2a n=﹣+a n﹣a n﹣1,整理,得(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,∵a n+a n﹣1≠0,∴)a n﹣a n﹣1=1,又4s 1=+a1,即﹣a 1=0,解得:a1=1,∴{a n}是以1为首项,1为公差的等差数列.又a1、a3、a7成等比数列.∴=a 1a7,即=a1(a1+6),解得a1=2,∴a n=2+(n﹣1)•1=n+1.(2)证明:由(1)得b n==2n+1,∴T n=22+23+…+2n+1==2n+2﹣4,∴T n+4=2n+2=2b n.18.解:(1)X≤30分钟的概率:P(X≤30)=P(B)+P(AB)==.(2)由题意知X的所有可能取值为20,30,50,60,P(X=20)=P(B)=,P(X=30)=P(AB)==,P(X=50)=P(CB)==,P(X=60)=P(ABC)+P(CAB)=,∴X的分布列为:X 20 30 50 60P∴EX=20×+30×+50×+60×=40(分).19.(1)证明;在菱形ABCD中,AB=2,∠DAB=60°,∴△ABD,△CBD 为等边三角形,∵E是BD的中点,∴AE⊥BD,AE=CE=,∵AC=,∴AE2+CE2=AC2,∴AE⊥EC,∴AE⊥平面BCD,又∵AE⊂平面ABD,∴平面ABD⊥平面BCD;(2)解:由(1)可知建立以E为原点,EC为x轴,ED为y轴,EA为z 轴的空间直角坐标系E﹣xyz,则D(0,1,0),C(,0,0),F(0,,)G(﹣,1,),平面CDG的一个法向量=(0,0,1),设平面FDG的法向量=(x,y,z),=(0,﹣,),=(﹣,1,)∴,即,令z=1,得x=3,y=,故平面FDG的一个法向量=(3,,1),∴cos==,∴二面角F﹣DG﹣C的余弦值为﹣.20.解:(1)由已知A(﹣2,0),B(2,0),设C(x0,y0),D(x0,﹣y0),则,①由两点式分别得直线AC,BD的方程为:直线AC:,直线BD:,两式相乘,得,②由①,得﹣=,代入②,得:,整理,得﹣4y2=x2﹣4,∴点E的轨迹W的方程.(2)由(1)及已知得M(2,0),N(0,1),联立,得(4k2+1)x2=4,∴P(),Q(﹣),四边形MPNQ的面积S=S△QOM+S△DMP+S△NOP+S△NOQ=2(S△QMP+S△QNP),∴S==2y P+x P==2=2==2,∵k>0,∴4k+≥4,故当且仅当,即k=时,四边形MPNQ的面积取最大值为2.21.解:(Ⅰ)求导函数,可得.∵曲线y=f(x)在点(1,f(1))处的切线方程是5x﹣4y+1=0.∴,∴,∴﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)由(Ⅰ)知:,∴,则,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)令h(x)=﹣mx2+(2﹣2m)x+2﹣2m,当m=0时,h(x)=2x+2,在x∈[0,+∞)时,h(x)>0,∴g′(x)>0,即g(x)在[0,+∞)上是增函数,则g(x)≥g(0)=0,不满足题设.当m<0时,∵且h(0)=2﹣2m>0∴x∈[0,+∞)时,h(x)>0,g′(x)>0,即g(x)在[0,+∞)上是增函数,则g(x)≥g(0)=0,不满足题设.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)当0<m<1时,则△=(2﹣2m)2+4m(2=2m)=4(1﹣m2)>0,由h(x)=0得;则x∈[0,x2)时,h(x)>0,g′(x)>0即g(x)在[0,x2)上是增函数,则g(x2)≥g(0)=0,不满足题设.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当m≥1时,△=(2﹣2m)2+4m(2=2m)=4(1﹣m2)≤0,h(x)≤0,g′(x)≤0,即g(x)在[0,+∞)上是减函数,则g(x)≤g(0)=0,满足题设.综上所述,m∈[1,+∞)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B铅笔在答题卷上把所选题目对应的题号涂黑.【选修4-1:几何证明选项】22.(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠ABC+∠BCD=90°,∴∠ACD=∠ABC,∵以C为切点的切线交AB的延长线于点P,∴∠MCA=∠ABC=∠ACD,∵∠AMC=∠ADC=90°,AC=AC,∴△AMC≌△ADC,∴AD=AM;(2)解:∵∠PCB=30°,以C为切点的切线交AB的延长线于点P,∴∠PAC=∠PCB=30°,在Rt△ABC中,AB=2,∠BAC=30°,∴BC=1,∠ABC=60°,∴∠BPC=30°,∴∠BPC=∠BCP,BC=BP=1,由切割线定理得PC2=PB•PA=PB(PB+BA)=3,∴PC=.【选修4-4:坐标系与参数方程】23.解:(1)由(t为参数)得直线l的普通方程为又∵,∴,∴,即;(2)由得圆心C(1,),半径r=2.∴圆心C到直线l的距离d=.直线l与圆C相离.∴圆C上的点到直线l的距离的取值范围是.【选修4-5:不等式选项】24、解:(1)f(x)=2|x+1|﹣|x﹣3|=,由式f(x)≥5,可得①,或②,或.解①求得x≥3,解②求得 2≤x<3,解③求得 x≤﹣10.故不等式的解集为[2,+∞)∪(﹣∞,﹣10].(2)当x∈[﹣2,2]时,f(x)∈[﹣4,5],∵关于x的不等式f(x)﹣|2t﹣3|≥0有解,∴5﹣|2t﹣3|≥0,即﹣5≤2t﹣3≤5,求得﹣1≤t≤4,故t的范围为[﹣1,4].。
洛阳市2017--2018 学年高中三年级第三次统一考试数学试卷(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知为虚数单位,则复数在复平面内所对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:首先应用复数的运算法则,将复数化为最简形式,根据复数在复平面内对应的点的坐标,确定其所在的象限即可求得结果.详解:,在复平面内对应的点为,所以在第四象限,故选D.点睛:该题考查的是有关复数的除法运算以及复数在复平面内对应的点的坐标,从而确定出其所在的象限.2. 已知集合,.若,则实数的值是()A. 0B. 2C. 0或2D. 0或1或2【答案】C【解析】分析:解题时利用子集的概念即可得结果.详解:当时,,满足;当时,,满足;所以或,所以实数的值是0或2,故选C.点睛:该题考查了子集的概念,属于基础题.3. 下列函数为奇函数的是()A. B. C. D.【答案】C【解析】分析:结合函数奇偶性的定义,由条件判断各个选项中函数的奇偶性,从而得出结论.详解:由于A中的函数为非奇非偶函数,故排除A;由于B、D中的函数的定义域为R,且满足,故它们都是偶函数,故排除B、D;对于C中的函数,的定义域为,且满足,所以它是奇函数,故选C.点睛:该题考查的是函数奇偶性的判定,解题的关键是根据与的关系判断函数的奇偶性,在解题的过程中,首先确定函数的定义域,并判断其是否关于原点对称,之后再根据奇函数的定义判断,得出结果.4. 已知平面向量,,,若,,则实数的值为()A. B. C. 2 D.【答案】B【解析】分析:首先应用向量的数乘及坐标加法运算求得的坐标,然后直接利用向量共线时坐标所满足的条件,列出等量关系式,求解k的值.详解:因为,所以,又,由得,解得,故选B.点睛:该题主要考查平面向量的线性运算以及平面向量平行时坐标所满足的条件,正确地把握向量的坐标运算是解题的关键,在解题时,一定要熟记向量共线时坐标的关系,从而正确得到等量关系式求解即可.5. 已知双曲线的右焦点与抛物线的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A. B. 3 C. 5 D.【答案】A【解析】分析:首先求出抛物线的焦点坐标,之后利用双曲线的右焦点与抛物线的焦点重合,,先求出,再求出双曲线的焦点坐标和渐近线方程,之后应用点到直线的距离公式求得结果.详解:因为抛物线的焦点坐标为,依题意,,所以,所以双曲线的方程为,所以其渐近线方程为,所以双曲线的一个焦点到渐近线的距离为,故选A.点睛:该题考查的是有关抛物线的焦点坐标,以及双曲线的焦点坐标,双曲线的渐近线方程,点到直线的距离公式,在求解的过程中,首先需要求出抛物线的坐标,之后借助于双曲线中之间的关系,求出,之后求得渐近线方程,接着应用点到直线的距离公式求得结果.6. 某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D. 8【答案】A【解析】分析:首先利用题中所给的三视图将几何体还原,因为正视图、侧视图和俯视图外轮廓都是正方形,所以就得到该几何体是由正方体切割而成的,从而得到其为正方体切去一个三棱锥,之后应用减法运算求得该几何体的体积.详解:根据题中所给的几何体的三视图,可以得到该几何体是由正方体切割而成的,记正方体为,取中点为,取中点为N,该几何体就是正方体切去一个三棱锥之后剩余部分,故其体积为,故选A.点睛:该题考查的是有关根据三视图还原几何体,求其体积的问题,解题的关键是将几何体还原,在分析的过程中,能够得出该几何体与正方体有关,从而需要先画出一个正方体,结合三视图中对应的有关线段,从而得到对应几何体的相应的顶点在什么位置,从而得到最后的结果,之后应用减法运算求得体积.7. 已知满足约束条件,则的最小值为()A. 1B. 3C. 5D. 7【答案】D详解:根据约束条件画出可行域,如图所示,由得,画出直线,之后向上移动,可以发现当其过点时,截距最小,即z取得最小值,由可得,此时,故答案是7.点睛:该题考查的是有关线性规划的问题,在解题的过程中,关键一步就是正确画出约束条件对应的可行域,之后化目标函数为直线方程的斜截式,结合z的几何意义,数形结合得到最优解,联立方程组,求得最优解的坐标,把最优解的坐标代入目标函数得答案.8. 定义表示不超过的最大整数,例如,,.下面的程序框图取材于中国古代数学著作《孙子算经》.执行该程序框图.则输出()A. 9B. 16C. 23D. 30【答案】C【解析】分析:首先模拟运行该程序框图,依据程序逐级运算,并通过判断条件调整运算的方向,是继续还是结束,即可计算得出结果.详解:一步步运行程序框图,可得,,,所以输出,故选C.点睛:该题考查的是有关程序框图运行后输出结果运算的问题,在解题的过程中,首先需要明确的意义,通过题中的举例,清楚其意义,之后在程序框图运行的过程中,明确什么时候该往哪走,从而最后求得结果.9. 下列叙述中正确的个数是()①将一组样本数据中的每个数据都加上同一个常数后,方差不变;②命题,,命题,,则为真命题;③“”是“的必要而不充分条件;④将函数的图象向左平移个单位长度得到函数的图象.A. 1B. 2C. 3D. 4【答案】B【解析】分析:①利用一组数据的方程的定义和公式可以判断得出结果;②结合函数的性质以及复合命题的真值表可知结果;③利用余弦函数的性质,结合条件的充分性和必要性得到结论;④利用图像的平移变换规律以及诱导公式得到结果.详解:对于①,因为有结论将一组样本数据中的每个数据都加上同一个常数后,方差不变,所以①正确;对于②,结合指数函数的性质,可知p是真命题,根据二次函数的性质,可知很成立,所以q是假命题,所以是假命题,所以②错误;对于③,因为当时,一定有,但是当,时,有,所以不一定成立,所以应该是充分不必要条件,所以③错误;对于④,将函数的图象向左平移个单位长度得到函数解析式为,故④正确,所以正确命题的个数为2,故选B.点睛:该题考查的是有关真命题的个数问题,在解题的过程中,需要对命题逐一分析,得到结果,在判断的过程中,用到方差的性质、复合命题真值表、余弦函数的性质、图像的平移变换以及诱导公式,需要认真审题.10. 函数的单调递减区间是()A. B.C. D.【答案】B【解析】分析:首先利用差角公式将解析式化简,应用复合函数单调性法则,结合对数式的底数是,从而得到应该求的增区间,并且首先满足真数大于零的条件,从而得到,化简,最后求得其结果为,从而确定选项.详解:根据题意有,所以要求,结合复合函数单调性法则,实则求的增区间,所以有,解得,所以函数的单调减区间是,故选B.点睛:该题考查的是有关复合函数的单调区间的问题,在解题的过程中,需要首先化简函数解析式,之后根据复合函数单调性法则同增异减的原则,得到其结果,在解题的过程中,需要时刻注意定义域优先原则,得保证函数有意义,之后列出相应的式子,求得结果.11. 已知函数满足条件:对于,且,存在唯一的且,使得.当成立时,()A. B. C. D.【答案】A【解析】分析:根据题意,得到函数在和上单调,并且是连续的函数,从而得到以及的符号,代入相应的式子,得到其所满足的等量关系式,从而求得,得到结果.详解:若对于,存在唯一的,使得,所以在和上单调,则,且,由得,即,即,则,故选D.点睛:该题考查的是有关分段函数的性质问题,在求解的过程中,需要把握住条件对于,存在唯一的,使得,得到函数的单调性,从而得到系数所满足的条件,列出相应的等量关系式,求得结果.12. 已知椭圆的左、右焦点分別为,过的直线与椭圆交于两点,若是以为直角项点的等腰直角三角形,则椭圆的离心率为()A. B. C. D.【答案】D【解析】试题分析:设,若是以为直角顶点的等腰直角三角形,∴,.由椭圆的定义可知的周长为,∴,.∴.∵,∴,∴,.考点:椭圆的几何性质.【方法点晴】本题主要考查了椭圆的定义、标准方程及其简单的几何性质的应用、椭圆离心率的求解,着重考查了学生分析问题和解答问题的能力、转化与化归思想的应用,本题的解答中,若是以为直角顶点的等腰直角三角形,得出,,再由椭圆的定义,得到的周长为,列出的关系式,即可求解离心率.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知角的始边与轴的非负半轴重合,顶点与坐标原点重合,终边过点,则__________.【答案】10【解析】分析:首先利用三角函数的定义式,结合题中所给的角的终边所过的点的坐标求得,之后借助于同角三角函数关系式,将关于正余弦分式形式的式子上下同除,得到关于切的式子,代入求值即可得结果.详解:根据角的终边过,利用三角函数的定义式,可以求得,所以有,故答案是10.点睛:该题考查的是有关利用角的正切值来求关于正余弦的分式形式的式子的值的问题,在解题的过程中,需要注意利用角的终边所过的点,结合三角函数的定义式求得正切值,之后对分式的分子分母上下同除,将其化为切的式子求解即可.14. 关于的方程在区间上有两个不等实根,则实数的取值范围是__________.【答案】【解析】分析:首先将方程转化,分离参数,化为,将问题转化为函数图像与直线的交点个数来解决,之后构造函数,求导,利用导数研究函数单调性,从而得到函数图像的大致走向以及相应的最值,最后求得结果.详解:关于的方程,即:,令函数,若方程在区间上有两个不等实根,即函数与在区间上有两个不同的交点,,令可得,当时,,函数是减函数,当时,,函数是增函数,所以函数的最小值为,,所以函数的最大值为,所以关于的方程在区间上有两个不等实根,则实数的取值范围是.点睛:该题考查的是有关方程的解的个数对应的参数的范围问题,该题转化为函数与在区间上有两个不同的交点,结合函数图像的走向以及最值求得结果,还可以将方程转化为,即曲线和直线在相应区间上有两个交点,也可以求得结果.15. 在正三棱锥中,,是的中点,,则正三棱锥外接球的表面积为__________.【答案】【解析】分析:利用正三棱锥和是的中点,,找到正三棱锥的三条侧棱之间的关系,从而得到该三棱锥的特殊的特征,从而利用补体的方式,将其转化Wie求正方体的外接球的有关量的计算,从而求得结果.详解:取的中点,连接,因为,所以,又因为是正三角形,所以,故平面,,又因为,,所以平面,且,故得到是三条两两垂直的,可以看做是正方体切下来的一个正三棱锥,故外接球的直径,因为,所以,从而得到,所以其外接球的表面积为.点睛:该题考查的是有关空间几何体的外接球的问题,在解题的过程中,首先应该寻找该三棱锥的有关特征,利用有关相等和垂直关系,得到该三棱锥的三条侧棱是两两垂直的,从而利用特殊几何体的外接球球心所在位置的规律,得到对应的结果.16. 在中,是的中点,与互为余角,,,则的值为__________.【答案】或【解析】设,则由+可知,为的中点,,即,由正弦定理得或,当A=B时,AC=BC, ,当时, ,在△ACD中, ,综上可得,的值为或.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设正项数列的前项和满足.(1)求数列的通项公式;(2)设,数列的前项和为,求的取值范围.【答案】(1);(2).详解:(1)①时,由,得,②时,由已知,得,∴,两式作差,得,又因为是正项数列,所以.∴数列是以1为首项,2为公差的等差数列.∴.(2)∵,∴.又因为数列是递增数列,当时最小,,∴.点睛:该题考查的是有关数列的通项公式的求解以及裂项相消法求和,在解题的过程中,需要对题中所给的式子,类比着往前写或者往后写一个,两式相减,结合题中的条件,得到相邻两项的差为同一个常数,从而得到该数列是等差数列,之后借助于等差数列的通项公式求得结果,对于第二问应用裂项相消法求和之后,结合式子的特征以及n的范围,求得其值域.18. 高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从洛阳的高中生中,随机抽取了55人,从上海的高中生中随机抽取了45人进行答题.洛阳高中生答题情况是:选择家的占、选择朋友聚集的地方的占、选择个人空间的占.上海高中生答题情况是:选择朋友聚集的地方的占、选择家的占、选择个人空间的占.(1)请根据以上调查结果将下面列联表补充完整,并判断能否有的把握认为“恋家(在家里感到最幸福)”与城市有关:(2)从被调查的不“恋家”的上海学生中,用分层抽样的方法选出4人接受进一步调查,从被选出的4 人中随机抽取2人到洛阳交流学习,求这2人中含有在“个人空间”感到幸福的学生的概率.附:,其中 d.【答案】(1)见解析;(2).【解析】分析:第一问就需要根据题意,将对应的数据填入表中的相应位置,之后应用公式求得观测值,与表中所给的临界值比较,得出结果;第二问将所有的基本事件和满足条件的基本事件都写出来,之后借助于古典概型概率公式求得结果.详解:(1)由已知得,∴,∴有的把握认为“恋家”与城市有关.(2)用分层抽样的方法抽出4 人.其中在“朋友聚焦的地方”感到幸福的有3人,在“个人空间”感到幸福的有1人,分别设为;∵,∴,设“含有在“个人空间”感到幸福的学生”为事件,,∴,则所求的概率为.点睛:该题考查的是有关独立性检验的问题,以及古典概型的概率求解公式的应用,在解题的过程中,需要利用公式将的值算出,之后与表中的临界值比较得出结果;之后是古典概型的解题方案,就是将对应的所有的基本事件和满足条件的基本事件都写出来,之后借助于公式完成任务.19. 如图,三棱柱中,平面,,是的中点,.(1)求证:平面平面;(2)求点到平面的距离.【答案】(1)见解析;(2).【解析】试题分析:(1)由平面得,由得,由线面垂直的判定定理得平面,故平面平面;(2)很容易得的值,由可得到平面的距离。
洛阳市2017-2018学年高中三年级第三次统一考试数学试卷(理)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ()A. 4B. 8C. 16D. 32【答案】C【解析】分析:求出集合A,B的子集个数为故选C.点睛:本题考查集合的运算以及子集的个数,属基础题.2. ()A. 第四象限B. 第三象限C. 第二象限D. 第一象限【答案】A则的共轭复数对应的点在第四象限.故选A.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3. )A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件【答案】C【解析】分析:利用指数函数与对数函数的单调性即可得出m,n的大小关系,进而判断出结论.,∴“故选C.点睛:本题考查了函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4. 其正态分布密度曲线如图所示,,则落入阴影部分的点的个数的估计值是()【答案】B【解析】分析:根据正态分布的定义,可以求出阴影部分的面积,利用几何概型即可计算.详解:.10000个点,则落入阴影部分的点的个数的估计值是6587.故选D.点睛:本题考查了正态分布、几何概型,正确理解正态分布的定义是解题的关键,属于中档题.5. 《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,现自上而下取第1,3,9节,则这3节的容积之和为()升 D.【答案】B4节的容积共3升,下面3节的容积共4由此能求出自上而下取第1,3,9节,则这3节的容积之和.,公差为∵上面4节的容积共3升,下面3节的容积共4升,,解得,∴自上而下取第1,3,9节,则这3节的容积之和为:(升).故选B.点睛:本题考查等比数列中三项和的求法,考查等差数列的性质等基础知识,考查运用求解能力,考查函数与方程思想,是中档题.6. ,得到函数,则下列说法不正确...的是()B. 在区间上是增函数是图象的一条对称轴 D.【答案】D得到函数图象的解析式故A正确;时,B正确;图象的一条对称轴,故C正确;,图像的一个对称中心,故D错误.故选D.型函数的图象和性质,是基础题.7. 、作倾斜角为的直线与支分别交于点、,若则该双曲线的离心率为()A. 2 D.【答案】C的坐标,代入双曲线方程可得,化简整理即可求出为的中点,由题意可得直线方程为整理可得故选C.点睛:本题考查了直线和双曲线的位置关系,以及直线方程,中点坐标公式,属于中档题8. ,所在直线分别交于点若()A. 3B. 4【答案】A根据三点共线得出.详解:当且仅当即时等号成立故选A.点睛:考查向量减法的几何意义,共线向量基本定理,以及平面向量基本定理,以及基本不等式的应用,属中档题.9. ()B. 1C. 0【答案】D故选D.点睛:此题考查了二项展开式定理的展开使用及灵活变形求值,特别是解决二项式的系数问题时,常采取赋值法,属于基础题.10. 上的一动点,且直线所成角的最大值为则三棱锥()D.【答案】B外接球的球心,求出外接球的半径,再计算它的表面积.详解:三棱锥,解得的最小值为∴的最小值是,作的中点,的外接球的表面积是故选B.点睛:本题考查了几何体外接球的应用问题,解题的关键求外接球的半径,是中档题.11. )【答案】A又的奇数项与偶数项分别成等比数列,首项分别为1,2,由此可求的奇数项与偶数项分别成等比数列,首项分别为1,2,则故选A..12. 4()B. C.【答案】C44个不同的可得,讨论其性质可得.详解:函数4个不同的交点,4个不同的实根,,则在上单调递增,上单调递减,,故的值域为,此时,由图像可知,4的取值范围为.故选C.点睛:本题考查利用导数眼函数零点问题,注意数形结合思想的应用,解题时注意函数的定义域,属难题.第Ⅱ卷(共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13. __________.【答案】4详解:第一次循环,;第二次循环,;第三次循环,;,退出循环,此时输出的值为4故答案为4:点睛:本题考查循环结构,考查学生的读图能力,解题的关键是读懂循环结构.14. __________.【答案】1【解析】分析:由约束条件作出可行域,可知z恒大于等于0,数形结合得到最优解,把最优解的坐标代入目标函数得答案.详解:由约束条件作出可行域,可知z恒大于等于0,则目标函数故答案为1 .点睛:本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.15. 已知一几何体的三视图如图所示,则该几何体的体积为__________.【解析】分析:由三视图可得:该几何体为左右两部分组成,左边为公式即可得出.点睛:本题考查了圆锥与三棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.16.的面积最小时,__________.【解析】分析:先根据定积分求出(为坐标原点)的面积最小,可得切点坐标,利用三角形的面积公式,即,问题得以解决.由椭圆的焦点为,可设椭圆的方程为当且仅当时取等号,此时的面积最小,点睛:本题考查三角形面积的计算,考查直线与椭圆是位置关系,考查余弦定理的运用,基本不等式,椭圆的切线方程,属于难题三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17. ,(1;(2的面积为【答案】(1);【解析】分析:(1(2详解:(1所以(2)由正弦定理,,∴,解得.点睛:本题考查正弦定理以及余弦定理三角形的面积的求法,考查计算能力.18. ,沿对角线,内的摄影恰好落在边上.(1(2,求二面角.【答案】(1)见解析【解析】试题分析:(1)先证明所以平面(2法求解即可.试题解析:(1因为四边形所以平面(2)方法1:在矩形中,过点DM∩DE=D为二面角..方法2:以点为原点,线段图所示.,所以,所以,.设平面的一个法向量为,则.的一个法向量为,所以求二面角的余弦值为.点睛:此题考查二面角余弦值的计算,向量坐标的运算等.向量法在解决立体几何中二面角问题的一般步骤是:1.建系,根据图形特点建立合理的空间直角坐标系;2.标点,把所涉及到的点的坐标找出来,并计算相应向量的坐标;3.求法向量,通过向量的运算,把二面角的两个半面的法向量计算出来;4.代入公式求值,利用向量的数量积公式,求出两个法向量的夹角,从而求二面角的相关值.19. 某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.(1)求甲、乙两位同学总共正确作答3个题目的概率;(2由于甲所在班级少一名学生参赛,故甲答对一题得15分,乙答对一题得10.【答案】【解析】分析:(1)由题意可知共答对3题可以分为3种情况:甲答对1题乙答对2题;甲答对2题乙答对1题;甲答对3题乙答对0题.由此能求出甲、乙两位同学总共正确作答3个题目的概率.(21,2,3.分别求出相应的概率,由此能求出详解:(1)由题意可知共答对3题可以分为3种情况:甲答对1题乙答对2题;甲答对2题乙答对1题;甲答对3题乙答对0题.故所求的概率(2)的所有取值有1,2,3.由题意可知,故而,所以.点睛:本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,考查古典概型、二项分布等基础知识,考查运用求解能力,考查函数与方程思想,是中档题.20. 【河南省洛阳市2018届三模】,抛,(1(2.【答案】【解析】分析:(1,得出的范围得出(2的方程得出据函数单调性得出最大值.详解:所以(2)直线联立直线,则.故即点睛:本题考查了抛物线的性质,直线与抛物线的位置关系,考查弦长公式与距离公式的应用,属于中档题.21.(1)讨论函数的单调性;(2,证明:.【答案】(1)见解析;(2)见解析.学。
洛阳市2018 届高中三年级第三次统一考试
数学试卷(理)
第Ⅰ卷(选择题,共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合{|||2}A x Z x =∈≤,2{|1}B y y x ==-,则A B 的子集个数为( )
A .4
B . 8
C . 16
D .32
2.已知复数534i z i
=+(i 是虚数单位),则z 的共轭复数z 对应的点在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限 3.“lg lg m n >”是“1
1()()22m n
<”的( )
A .充要条件
B .必要不充分条件
C .充分不必要条件
D .既不充分也不必要条件
4.设随机变量(1,1)X N ,其正态分布密度曲线如图所示,
那么向正方形ABCD 中随机投掷10000个点,则落入阴影部
分的点的个数的估计值是( )
注:若2(,)X N μσ ,则()0.6826P X μσμσ-<<+≈,(22)0.9544P X μσμσ-<<+≈.
A .6038
B .6587 C.7028 D .7539
5.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,现自上而下取第1,3,9节,则这3节的容积之和为( )
A .133升
B .176升 C.199升 D .2512
升 6.将函数()cos(2)4f x x π=-的图像向平移8
π个单位,得到函数()g x 的图像,则下列说法不正确...的是( )
A .1()62g π
=B .()g x 在区间57(,)88
ππ上是增函数 C.2x π
=是()g x 图像的一条对称轴 D .(,0)8π
-是()g x 图像的一个对称中心
7.设双曲线22
221(0,0)x y a b a b
-=>>的左、右焦点分别为1F ,2F ,过1F 作倾斜角为3π的直线与y 轴和双曲线的右支分别交于点A 、B ,若11()2
OA OB OF =+ ,则该双曲线的离心率为( )
A .2
B 28.在AB
C △中,点P 满足2BP PC = ,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,
若AM mAB = ,(0,0)AN nAC m n =>> ,则2m n +的最小值为( )
A .3
B .4 C.
83 D .103 9.若2017(12018)
x -=220170122017a a x a x a x +++ ()x R ∈,则2017122017201820182018a a a +++ 的值为( )
A .20172018
B .1 C. 0 D .1-
10.在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=
,3AP =,AB =Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为
3π,则三棱锥P ABC -的外接球的表面积为( )
A .45π
B .57π C. 63π D .84π
11.记数列{}n a 的前n 项和为n S .已知11a =,1()2()n n n n S S a n N *+-=∈,则2018S =( )
A .10093(21)-
B .10093(21)2- C.20183(21)- D .20183(21)2
- 12.已知函数2
()22ln x f x x e x
=-与()2ln g x e x mx =+的图像有4个不同的交点,则实数m 的取值范围是( )
A .(4,0)-
B .1
(,2)2 C. 1(0,)2
D .(0,2)。