概率统计分布表(常用)
- 格式:doc
- 大小:702.00 KB
- 文档页数:19
8个常见分布期望和方差概率分布的期望和方差为了理解和预测复杂的概率分布,其中最重要的两个因素是期望和方差。
概率分布的期望是由可能的结果的各种频率的平均值。
它是一个数字,可以确定概率变量的未来值的变化,用来表明对分布结果的期望:方差是描述随机变量变化程度的数字,它表示数据离期望值多大程度。
期望和方差是描述统计定律的基本量,它们是用于理解和预测随机变量的行为的最重要的两个概念。
此外,方差也是可以利用的重要的统计概念,用来表明总体变化的大小,以及在给定范围内期望出现变化的可能性。
尽管,有很多不同的概率分布存在,但是在概率领域,最常用的概率分布可以分为三类:正态分布,二项分布和卡方分布。
下文将分别介绍这三类分布的期望和方差。
正态分布是指概率分布中,观测值的分布曲线呈现出钟形状,中心对称型的曲线。
正态分布的期望可以表示为:E(x)=μ,即随机变量的期望值就是均值。
正态分布的方差可以表示为:V(x)=σ2,其中σ2是样本数据的方差,表示数据的变化程度。
二项分布研究的是独立重复试验,其中均有概率p成功,概率q失败,这里p+q=1。
对二项分布,其期望值E(X)=np,即期望值取决于p值和重复次数n;其中变异系数V(x)=npq,表示数据变异的程度。
卡方分布也被称为卡方正态或卡方分位数分布,它描述的是数据来源于独立正态分布的累积分布,通常用于统计检验中的卡方检验。
对卡方分布,其期望值E(X)=n;变异系数V(x)=2n,表示数据变异的程度。
总的来说,概率分布的期望和方差是理解和预测复杂概率分布的基础,它们提供了一种可以用来确定观测值的有效值并预测观测结果的方法。
通过期望和方差,我们可以很容易地推断三类常见分布的理论值,进一步推断复杂概率分布的变化趋势,从而帮助更好地。
标准正态表0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.81330.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.83891.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.97061.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.97672.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.98572.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.99812.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.99863.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.99993.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00009 1.7349 2.0879 2.7004 3.3251 4.1682 5.8988 11.3888 14.6837 16.9190 19.0228 21.6660 23.589410 2.1559 2.5582 3.2470 3.9403 4.8652 6.7372 12.5489 15.9872 18.3070 20.4832 23.2093 25.188211 2.6032 3.0535 3.8157 4.5748 5.5778 7.5841 13.7007 17.2750 19.6751 21.9200 24.7250 26.756812 3.0738 3.5706 4.4038 5.2260 6.3038 8.4384 14.8454 18.5493 21.0261 23.3367 26.2170 28.299513 3.5650 4.1069 5.0088 5.8919 7.0415 9.2991 15.9839 19.8119 22.3620 24.7356 27.6882 29.819514 4.0747 4.6604 5.6287 6.5706 7.7895 10.1653 17.1169 21.0641 23.6848 26.1189 29.1412 31.319315 4.6009 5.2293 6.2621 7.2609 8.5468 11.0365 18.2451 22.3071 24.9958 27.4884 30.5779 32.801316 5.1422 5.8122 6.9077 7.9616 9.3122 11.9122 19.3689 23.5418 26.2962 28.8454 31.9999 34.267217 5.6972 6.4078 7.5642 8.6718 10.0852 12.7919 20.4887 24.7690 27.5871 30.1910 33.4087 35.718518 6.2648 7.0149 8.2307 9.3905 10.8649 13.6753 21.6049 25.9894 28.8693 31.5264 34.8053 37.156519 6.8440 7.6327 8.9065 10.1170 11.6509 14.5620 22.7178 27.2036 30.1435 32.8523 36.1909 38.582320 7.4338 8.2604 9.5908 10.8508 12.4426 15.4518 23.8277 28.4120 31.4104 34.1696 37.5662 39.996821 8.0337 8.8972 10.2829 11.5913 13.2396 16.3444 24.9348 29.6151 32.6706 35.4789 38.9322 41.401122 8.6427 9.5425 10.9823 12.3380 14.0415 17.2396 26.0393 30.8133 33.9244 36.7807 40.2894 42.795723 9.2604 10.1957 11.6886 13.0905 14.8480 18.1373 27.1413 32.0069 35.1725 38.0756 41.6384 44.181324 9.8862 10.8564 12.4012 13.8484 15.6587 19.0373 28.2412 33.1962 36.4150 39.3641 42.9798 45.558525 10.5197 11.5240 13.1197 14.6114 16.4734 19.9393 29.3389 34.3816 37.6525 40.6465 44.3141 46.927926 11.1602 12.1981 13.8439 15.3792 17.2919 20.8434 30.4346 35.5632 38.8851 41.9232 45.6417 48.289927 11.8076 12.8785 14.5734 16.1514 18.1139 21.7494 31.5284 36.7412 40.1133 43.1945 46.9629 49.644928 12.4613 13.5647 15.3079 16.9279 18.9392 22.6572 32.6205 37.9159 41.3371 44.4608 48.2782 50.993429 13.1211 14.2565 16.0471 17.7084 19.7677 23.5666 33.7109 39.0875 42.5570 45.7223 49.5879 52.335630 13.7867 14.9535 16.7908 18.4927 20.5992 24.4776 34.7997 40.2560 43.7730 46.9792 50.8922 53.672031 14.4578 15.6555 17.5387 19.2806 21.4336 25.3901 35.8871 41.4217 44.9853 48.2319 52.1914 55.002732 15.1340 16.3622 18.2908 20.0719 22.2706 26.3041 36.9730 42.5847 46.1943 49.4804 53.4858 56.328133 15.8153 17.0735 19.0467 20.8665 23.1102 27.2194 38.0575 43.7452 47.3999 50.7251 54.7755 57.648434 16.5013 17.7891 19.8063 21.6643 23.9523 28.1361 39.1408 44.9032 48.6024 51.9660 56.0609 58.963935 17.1918 18.5089 20.5694 22.4650 24.7967 29.0540 40.2228 46.0588 49.8018 53.2033 57.3421 60.274836 17.8867 19.2327 21.3359 23.2686 25.6433 29.9730 41.3036 47.2122 50.9985 54.4373 58.6192 61.581237 18.5858 19.9602 22.1056 24.0749 26.4921 30.8933 42.3833 48.3634 52.1923 55.6680 59.8925 62.883338 19.2889 20.6914 22.8785 24.8839 27.3430 31.8146 43.4619 49.5126 53.3835 56.8955 61.1621 64.181439 19.9959 21.4262 23.6543 25.6954 28.1958 32.7369 44.5395 50.6598 54.5722 58.1201 62.4281 65.475640 20.7065 22.1643 24.4330 26.5093 29.0505 33.6603 45.6160 51.8051 55.7585 59.3417 63.6907 66.766041 21.4208 22.9056 25.2145 27.3256 29.9071 34.5846 46.6916 52.9485 56.9424 60.5606 64.9501 68.052742 22.1385 23.6501 25.9987 28.1440 30.7654 35.5099 47.7663 54.0902 58.1240 61.7768 66.2062 69.336043 22.8595 24.3976 26.7854 28.9647 31.6255 36.4361 48.8400 55.2302 59.3035 62.9904 67.4593 70.615944 23.5837 25.1480 27.5746 29.7875 32.4871 37.3631 49.9129 56.3685 60.4809 64.2015 68.7095 71.892645 24.3110 25.9013 28.3662 30.6123 33.3504 38.2910 50.9849 57.5053 61.6562 65.4102 69.9568 73.1661T分布1 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 127.3213 318.3088 636.61922 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 14.0890 22.3271 31.59913 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 7.4533 10.2145 12.92404 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5.5976 7.1732 8.61035 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 4.7733 5.8934 6.86886 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 4.3168 5.2076 5.95887 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 4.0293 4.7853 5.40798 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 3.8325 4.5008 5.04139 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 3.6897 4.2968 4.780910 0.6998 0.8791 1.0931 1.3722 1.8125 2.2281 2.7638 3.1693 3.5814 4.1437 4.586911 0.6974 0.8755 1.0877 1.3634 1.7959 2.2010 2.7181 3.1058 3.4966 4.0247 4.437012 0.6955 0.8726 1.0832 1.3562 1.7823 2.1788 2.6810 3.0545 3.4284 3.9296 4.317813 0.6938 0.8702 1.0795 1.3502 1.7709 2.1604 2.6503 3.0123 3.3725 3.8520 4.220814 0.6924 0.8681 1.0763 1.3450 1.7613 2.1448 2.6245 2.9768 3.3257 3.7874 4.140515 0.6912 0.8662 1.0735 1.3406 1.7531 2.1314 2.6025 2.9467 3.2860 3.7328 4.072816 0.6901 0.8647 1.0711 1.3368 1.7459 2.1199 2.5835 2.9208 3.2520 3.6862 4.015017 0.6892 0.8633 1.0690 1.3334 1.7396 2.1098 2.5669 2.8982 3.2224 3.6458 3.965118 0.6884 0.8620 1.0672 1.3304 1.7341 2.1009 2.5524 2.8784 3.1966 3.6105 3.921619 0.6876 0.8610 1.0655 1.3277 1.7291 2.0930 2.5395 2.8609 3.1737 3.5794 3.883420 0.6870 0.8600 1.0640 1.3253 1.7247 2.0860 2.5280 2.8453 3.1534 3.5518 3.849521 0.6864 0.8591 1.0627 1.3232 1.7207 2.0796 2.5176 2.8314 3.1352 3.5272 3.819322 0.6858 0.8583 1.0614 1.3212 1.7171 2.0739 2.5083 2.8188 3.1188 3.5050 3.792123 0.6853 0.8575 1.0603 1.3195 1.7139 2.0687 2.4999 2.8073 3.1040 3.4850 3.767624 0.6848 0.8569 1.0593 1.3178 1.7109 2.0639 2.4922 2.7969 3.0905 3.4668 3.745425 0.6844 0.8562 1.0584 1.3163 1.7081 2.0595 2.4851 2.7874 3.0782 3.4502 3.725126 0.6840 0.8557 1.0575 1.3150 1.7056 2.0555 2.4786 2.7787 3.0669 3.4350 3.706627 0.6837 0.8551 1.0567 1.3137 1.7033 2.0518 2.4727 2.7707 3.0565 3.4210 3.689628 0.6834 0.8546 1.0560 1.3125 1.7011 2.0484 2.4671 2.7633 3.0469 3.4082 3.673929 0.6830 0.8542 1.0553 1.3114 1.6991 2.0452 2.4620 2.7564 3.0380 3.3962 3.659430 0.6828 0.8538 1.0547 1.3104 1.6973 2.0423 2.4573 2.7500 3.0298 3.3852 3.646031 0.6825 0.8534 1.0541 1.3095 1.6955 2.0395 2.4528 2.7440 3.0221 3.3749 3.633532 0.6822 0.8530 1.0535 1.3086 1.6939 2.0369 2.4487 2.7385 3.0149 3.3653 3.621833 0.6820 0.8526 1.0530 1.3077 1.6924 2.0345 2.4448 2.7333 3.0082 3.3563 3.610934 0.6818 0.8523 1.0525 1.3070 1.6909 2.0322 2.4411 2.7284 3.0020 3.3479 3.600735 0.6816 0.8520 1.0520 1.3062 1.6896 2.0301 2.4377 2.7238 2.9960 3.3400 3.591136 0.6814 0.8517 1.0516 1.3055 1.6883 2.0281 2.4345 2.7195 2.9905 3.3326 3.582137 0.6812 0.8514 1.0512 1.3049 1.6871 2.0262 2.4314 2.7154 2.9852 3.3256 3.573738 0.6810 0.8512 1.0508 1.3042 1.6860 2.0244 2.4286 2.7116 2.9803 3.3190 3.565739 0.6808 0.8509 1.0504 1.3036 1.6849 2.0227 2.4258 2.7079 2.9756 3.3128 3.558140 0.6807 0.8507 1.0500 1.3031 1.6839 2.0211 2.4233 2.7045 2.9712 3.3069 3.551041 0.6805 0.8505 1.0497 1.3025 1.6829 2.0195 2.4208 2.7012 2.9670 3.3013 3.544242 0.6804 0.8503 1.0494 1.3020 1.6820 2.0181 2.4185 2.6981 2.9630 3.2960 3.537743 0.6802 0.8501 1.0491 1.3016 1.6811 2.0167 2.4163 2.6951 2.9592 3.2909 3.531644 0.6801 0.8499 1.0488 1.3011 1.6802 2.0154 2.4141 2.6923 2.9555 3.2861 3.525845 0.6800 0.8497 1.0485 1.3006 1.6794 2.0141 2.4121 2.6896 2.9521 3.2815 3.520346 0.6799 0.8495 1.0483 1.3002 1.6787 2.0129 2.4102 2.6870 2.9488 3.2771 3.515047 0.6797 0.8493 1.0480 1.2998 1.6779 2.0117 2.4083 2.6846 2.9456 3.2729 3.509948 0.6796 0.8492 1.0478 1.2994 1.6772 2.0106 2.4066 2.6822 2.9426 3.2689 3.505149 0.6795 0.8490 1.0475 1.2991 1.6766 2.0096 2.4049 2.6800 2.9397 3.2651 3.500450 0.6794 0.8489 1.0473 1.2987 1.6759 2.0086 2.4033 2.6778 2.9370 3.2614 3.496051 0.6793 0.8487 1.0471 1.2984 1.6753 2.0076 2.4017 2.6757 2.9343 3.2579 3.491852 0.6792 0.8486 1.0469 1.2980 1.6747 2.0066 2.4002 2.6737 2.9318 3.2545 3.487753 0.6791 0.8485 1.0467 1.2977 1.6741 2.0057 2.3988 2.6718 2.9293 3.2513 3.483854 0.6791 0.8483 1.0465 1.2974 1.6736 2.0049 2.3974 2.6700 2.9270 3.2481 3.480055 0.6790 0.8482 1.0463 1.2971 1.6730 2.0040 2.3961 2.6682 2.9247 3.2451 3.476456 0.6789 0.8481 1.0461 1.2969 1.6725 2.0032 2.3948 2.6665 2.9225 3.2423 3.472957 0.6788 0.8480 1.0459 1.2966 1.6720 2.0025 2.3936 2.6649 2.9204 3.2395 3.469658 0.6787 0.8479 1.0458 1.2963 1.6716 2.0017 2.3924 2.6633 2.9184 3.2368 3.466359 0.6787 0.8478 1.0456 1.2961 1.6711 2.0010 2.3912 2.6618 2.9164 3.2342 3.463260 0.6786 0.8477 1.0455 1.2958 1.6706 2.0003 2.3901 2.6603 2.9146 3.2317 3.460261 0.6785 0.8476 1.0453 1.2956 1.6702 1.9996 2.3890 2.6589 2.9127 3.2293 3.457362 0.6785 0.8475 1.0452 1.2954 1.6698 1.9990 2.3880 2.6575 2.9110 3.2270 3.454563 0.6784 0.8474 1.0450 1.2951 1.6694 1.9983 2.3870 2.6561 2.9093 3.2247 3.451864 0.6783 0.8473 1.0449 1.2949 1.6690 1.9977 2.3860 2.6549 2.9076 3.2225 3.449165 0.6783 0.8472 1.0448 1.2947 1.6686 1.9971 2.3851 2.6536 2.9060 3.2204 3.446666 0.6782 0.8471 1.0446 1.2945 1.6683 1.9966 2.3842 2.6524 2.9045 3.2184 3.444167 0.6782 0.8470 1.0445 1.2943 1.6679 1.9960 2.3833 2.6512 2.9030 3.2164 3.441768 0.6781 0.8469 1.0444 1.2941 1.6676 1.9955 2.3824 2.6501 2.9015 3.2145 3.439469 0.6781 0.8469 1.0443 1.2939 1.6672 1.9949 2.3816 2.6490 2.9001 3.2126 3.437270 0.6780 0.8468 1.0442 1.2938 1.6669 1.9944 2.3808 2.6479 2.8987 3.2108 3.435071 0.6780 0.8467 1.0441 1.2936 1.6666 1.9939 2.3800 2.6469 2.8974 3.2090 3.432972 0.6779 0.8466 1.0440 1.2934 1.6663 1.9935 2.3793 2.6459 2.8961 3.2073 3.430873 0.6779 0.8466 1.0438 1.2933 1.6660 1.9930 2.3785 2.6449 2.8949 3.2057 3.428974 0.6778 0.8465 1.0437 1.2931 1.6657 1.9925 2.3778 2.6439 2.8936 3.2041 3.426975 0.6778 0.8464 1.0436 1.2929 1.6654 1.9921 2.3771 2.6430 2.8924 3.2025 3.425076 0.6777 0.8464 1.0436 1.2928 1.6652 1.9917 2.3764 2.6421 2.8913 3.2010 3.423277 0.6777 0.8463 1.0435 1.2926 1.6649 1.9913 2.3758 2.6412 2.8902 3.1995 3.421478 0.6776 0.8463 1.0434 1.2925 1.6646 1.9908 2.3751 2.6403 2.8891 3.1980 3.419779 0.6776 0.8462 1.0433 1.2924 1.6644 1.9905 2.3745 2.6395 2.8880 3.1966 3.418080 0.6776 0.8461 1.0432 1.2922 1.6641 1.9901 2.3739 2.6387 2.8870 3.1953 3.416381 0.6775 0.8461 1.0431 1.2921 1.6639 1.9897 2.3733 2.6379 2.8860 3.1939 3.414782 0.6775 0.8460 1.0430 1.2920 1.6636 1.9893 2.3727 2.6371 2.8850 3.1926 3.413283 0.6775 0.8460 1.0429 1.2918 1.6634 1.9890 2.3721 2.6364 2.8840 3.1913 3.411684 0.6774 0.8459 1.0429 1.2917 1.6632 1.9886 2.3716 2.6356 2.8831 3.1901 3.410285 0.6774 0.8459 1.0428 1.2916 1.6630 1.9883 2.3710 2.6349 2.8822 3.1889 3.408786 0.6774 0.8458 1.0427 1.2915 1.6628 1.9879 2.3705 2.6342 2.8813 3.1877 3.407387 0.6773 0.8458 1.0426 1.2914 1.6626 1.9876 2.3700 2.6335 2.8804 3.1866 3.405988 0.6773 0.8457 1.0426 1.2912 1.6624 1.9873 2.3695 2.6329 2.8795 3.1854 3.404589 0.6773 0.8457 1.0425 1.2911 1.6622 1.9870 2.3690 2.6322 2.8787 3.1843 3.403290 0.6772 0.8456 1.0424 1.2910 1.6620 1.9867 2.3685 2.6316 2.8779 3.1833 3.4019 100 0.6770 0.8452 1.0418 1.2901 1.6602 1.9840 2.3642 2.6259 2.8707 3.1737 3.3905 120 0.6765 0.8446 1.0409 1.2886 1.6577 1.9799 2.3578 2.6174 2.8599 3.1595 3.3735F分布P= 0.9011 3.23 2.86 2.66 2.54 2.45 2.34 2.30 2.27 2.17 2.12 2.0812 3.18 2.81 2.61 2.48 2.39 2.28 2.24 2.21 2.10 2.06 2.0113 3.14 2.76 2.56 2.43 2.35 2.23 2.20 2.16 2.05 2.01 1.9614 3.10 2.73 2.52 2.39 2.31 2.19 2.15 2.12 2.01 1.96 1.9115 3.07 2.70 2.49 2.36 2.27 2.16 2.12 2.09 1.97 1.92 1.8716 3.05 2.67 2.46 2.33 2.24 2.13 2.09 2.06 1.94 1.89 1.8417 3.03 2.64 2.44 2.31 2.22 2.10 2.06 2.03 1.91 1.86 1.8118 3.01 2.62 2.42 2.29 2.20 2.08 2.04 2.00 1.89 1.84 1.7819 2.99 2.61 2.40 2.27 2.18 2.06 2.02 1.98 1.86 1.81 1.7620 2.97 2.59 2.38 2.25 2.16 2.04 2.00 1.96 1.84 1.79 1.7421 2.96 2.57 2.36 2.23 2.14 2.02 1.98 1.95 1.83 1.78 1.7222 2.95 2.56 2.35 2.22 2.13 2.01 1.97 1.93 1.81 1.76 1.70 24 2.93 2.54 2.33 2.19 2.10 1.98 1.94 1.91 1.78 1.73 1.67 26 2.91 2.52 2.31 2.17 2.08 1.96 1.92 1.88 1.76 1.71 1.65 28 2.89 2.50 2.29 2.16 2.06 1.94 1.90 1.87 1.74 1.69 1.63 30 2.88 2.49 2.28 2.14 2.05 1.93 1.88 1.85 1.72 1.67 1.61P= 0.9911 9.65 7.21 6.22 5.67 5.32 4.89 4.74 4.63 4.40 4.29 4.21 4.15 4.1012 9.33 6.93 5.95 5.41 5.06 4.64 4.50 4.39 4.16 4.05 3.97 3.91 3.8613 9.07 6.70 5.74 5.21 4.86 4.44 4.30 4.19 3.96 3.86 3.78 3.72 3.6614 8.86 6.51 5.56 5.04 4.69 4.28 4.14 4.03 3.80 3.70 3.62 3.56 3.5115 8.68 6.36 5.42 4.89 4.56 4.14 4.00 3.89 3.67 3.56 3.49 3.42 3.3716 8.53 6.23 5.29 4.77 4.44 4.03 3.89 3.78 3.55 3.45 3.37 3.31 3.2617 8.40 6.11 5.18 4.67 4.34 3.93 3.79 3.68 3.46 3.35 3.27 3.21 3.1618 8.29 6.01 5.09 4.58 4.25 3.84 3.71 3.60 3.37 3.27 3.19 3.13 3.0819 8.18 5.93 5.01 4.50 4.17 3.77 3.63 3.52 3.30 3.19 3.12 3.05 3.0020 8.10 5.85 4.94 4.43 4.10 3.70 3.56 3.46 3.23 3.13 3.05 2.99 2.9421 8.02 5.78 4.87 4.37 4.04 3.64 3.51 3.40 3.17 3.07 2.99 2.93 2.8822 7.95 5.72 4.82 4.31 3.99 3.59 3.45 3.35 3.12 3.02 2.94 2.88 2.8323 7.88 5.66 4.76 4.26 3.94 3.54 3.41 3.30 3.07 2.97 2.89 2.83 2.7824 7.82 5.61 4.72 4.22 3.90 3.50 3.36 3.26 3.03 2.93 2.85 2.79 2.7425 7.77 5.57 4.68 4.18 3.85 3.46 3.32 3.22 2.99 2.89 2.81 2.75 2.7026 7.72 5.53 4.64 4.14 3.82 3.42 3.29 3.18 2.96 2.86 2.78 2.72 2.6627 7.68 5.49 4.60 4.11 3.78 3.39 3.26 3.15 2.93 2.82 2.75 2.68 2.6328 7.64 5.45 4.57 4.07 3.75 3.36 3.23 3.12 2.90 2.79 2.72 2.65 2.6029 7.60 5.42 4.54 4.04 3.73 3.33 3.20 3.09 2.87 2.77 2.69 2.63 2.5730 7.56 5.39 4.51 4.02 3.70 3.30 3.17 3.07 2.84 2.74 2.66 2.60 2.55Excel公式1.正态分布函数Excel计算正态分布时,使用NORMDIST函数,其格式如下:NORMDIST(a,μ,σ,累积)其中,“累积”:若为TRUE,则输出分布函数值,即P{X≤a};若为FALSE,则为概率密度函数值.示例:已知X服从正态分布,μ=600,σ=100,求P{X≤500}.输入公式NORMDIST(500, 600, 100, TRUE)得到的结果为0.158655,即P{X≤500}=0.158655.2、正态分布函数的反函数Excel计算正态分布函数的反函数使用NORMINV函数,格式如下: NORMINV(p,μ,σ),此公式计算a,使P{X ≤a}=p 3标准正态分布反函数=NORMSINV(0.975)3、 t分布Excel计算t分布的值,采用TDIST函数,格式如下: TDIST(a,自由度,侧数)其中,“侧数”:指明分布为单侧或双侧:若为1,为单侧;此命令输出P{ T >a }若为2,为双侧.此命令输出P{ |T| >a}示例:设T服从自由度为24的t分布,求P(T>1.711).已知t=1.711,df=24,采用单侧,则T分布的值:TDIST(1.711,24,1)得到0.05,即P(T > 1.711)=0.05.4. t分布的反函数Excel使用TINV函数得到t分布的反函数,格式如下: TINV(α,自由度)输出 T 分布的α / 2 分位点: t_α/2_(n)若求临界值tα(n),则使用公式=TINV(2*α, n)5.返回F分布的函数是FDISTFDIST(x,degrees_freedom1,degrees_freedom2) 函数 FDIST 的计算公式为 FDIST=P( F>x ),5.F分布的反函数FINV(probability,deg_freedom1,deg_freedom2) 已知 probability=P( F>x ),求x。
t分布表1. 什么是t分布表t分布表是一种统计学中常用的工具,用于计算t分布的累积概率。
t分布是一种概率分布,通常用于小样本(样本量较小)情况下对样本均值的推断。
t分布表中列出了在给定自由度和置信水平下的t值和对应的累积概率。
2. t分布表的用途t分布表主要用于解决以下两个问题:a. 给定t值,计算对应的累积概率在统计学中,我们经常需要计算一个t值对应的累积概率,即给定某个t值,求该t值以下的面积。
这可以用t分布表来完成。
用户只需要在t分布表中找到对应的自由度和置信水平,即可得到该t值以下的累积概率。
b. 给定累积概率,计算对应的t值在一些统计推断问题中,我们需要给定累积概率,求该累积概率对应的t值。
例如,在假设检验中,我们常常需要计算一个t临界值,该值将样本均值与总体均值进行比较。
t分布表可以帮助我们找到给定累积概率下的t值。
3. 如何使用t分布表在使用t分布表时,我们需要知道两个关键的输入参数:自由度和置信水平。
a. 自由度自由度(degrees of freedom)是t分布中的一个重要参数。
对于给定的问题,自由度等于样本中独立观察值的数量减1。
例如,若样本容量为10个,则自由度为9。
b. 置信水平置信水平是统计推断中常用的一个指标,用于表示结果的可靠性。
常见的置信水平有0.95(95%置信水平)和0.99(99%置信水平)等。
较高的置信水平意味着对结果的可靠性更高。
使用t分布表的步骤如下:1.确定问题中的自由度和置信水平;2.在t分布表中找到相应的自由度;3.在该行中找到置信水平对应的列;4.交叉点的数值即为t值。
4. t分布表的局限性在使用t分布表时,需要注意其一些局限性:•只能用于正态分布情况下的小样本(样本量较小)推断;•对于较大的自由度,t分布和正态分布的差异较小,所以在样本量大的情况下,通常可以使用正态分布近似代替t分布;•t分布表只给出了常见自由度和置信水平下的数值,若需要计算其他自由度或置信水平下的值,需要使用统计软件或计算工具进行计算。
上机实习常用分布概率计算的Excel应用利用Excel中的统计函数工具,可以计算二项分布、泊松分布、正态分布等常用概率分布的概率值、累积(分布)概率等。
这里我们主要介绍如何用Excel来计算二项分布的概率值与累积概率,其他常用分布的概率计算等处理与此类似。
§3.1 二项分布的概率计算一、二项分布的(累积)概率值计算用Excel来计算二项分布的概率值P n(k)、累积概率F n(k),需要用BINOMDIST函数,其格式为:BINOMDIST (number_s,trials, probability_s, cumulative)其中 number_s:试验成功的次数k;trials:独立试验的总次数n;probability_s:一次试验中成功的概率p;cumulative:为一逻辑值,若取0或FALSE时,计算概率值P n(k);若取1或TRUE时,则计算累积概率F n(k),。
即对二项分布B(n,p)的概率值P n(k)和累积概率F n(k),有P n(k)=BINOMDIST(k,n,p,0);F n(k)= BINOMDIST(k,n,p,1)现结合下列机床维修问题的概率计算来稀疏现象(小概率事件)发生次数说明计算二项分布概率的具体步骤。
例3.1某车间有各自独立运行的机床若干台,设每台机床发生故障的概率为0.01,每台机床的故障需要一名维修工来排除,试求在下列两种情形下机床发生故障而得不到及时维修的概率:(1)一人负责15台机床的维修;(2)3人共同负责80台机床的维修。
原解:(1)依题意,维修人员是否能及时维修机床,取决于同一时刻发生故障的机床数。
设X表示15台机床中同一时刻发生故障的台数,则X服从n=15,p=0.01的二项分布:X~B(15,0.01),而 P(X= k)= C15k(0.01)k(0.99)15-k,k = 0, 1, …, 15故所求概率为P(X≥2)=1-P(X≤1)=1-P(X=0)-P(X=1)=1-(0.99)15-15×0.01×(0.99)14=1-0.8600-0.1303=0.0097(2)当3人共同负责80台机床的维修时,设Y表示80台机床中同一时刻发生故障的台数,则Y服从n=80、p=0.01的二项分布,即Y~B(80,0.01)此时因为 n=80≥30, p=0.01≤0.2所以可以利用泊松近似公式:当n很大,p较小时(一般只要n≥30,p≤0.2时),对任一确定的k,有(其中 =np)λλ--≈ekqpCkknkkn!来计算。
正态分布概率表95%
正态分布概率表是一种统计学中常用的概率分布表,它可以用来描述一组数据的分布情况。
正态分布概率表95%是指,在正态分布中,95%的数据位于平均值的两个标准差之内。
正态分布概率表95%的应用非常广泛,它可以用来分析一组数据的分布情况,从而更好地了解数据的特征。
此外,正态分布概率表95%还可以用来估计一组数据的概率分布,从而更好地预测数据的变化趋势。
正态分布概率表95%也可以用来评估一组数据的稳定性,如果95%的数据都位于平均值的两个标准差之内,则说明数据的分布情况较为稳定,可以更好地进行分析和预测。
正态分布概率表95%也可以用来评估一组数据的可靠性,如果95%的数据都位于平均值的两个标准差之内,则说明数据的可靠性较高,可以更好地进行分析和预测。
总之,正态分布概率表95%是一种非常有用的统计工具,它可以用来分析一组数据的分布情况,从而更好地了解数据的特征,并可以用来评估数据的稳定性和可靠性。