概率统计分布表(常用)
- 格式:doc
- 大小:813.50 KB
- 文档页数:24
概率与统计一、普通的众数、平均数、中位数及方差1、 众数 :一组数据中,出现次数最多的数。
2、平均数 : ①、常规平均数:xx 1x 2x n②、加权平均数: xx 1 1 x 2 2x nnn12n3、中位数: 从大到小或者从小到大排列,最中间或最中间两个数的平均数 。
4、方差: s 21[( x 1 x) 2 ( x 2 x )2( x nx )2 ]n二、频率直方分布图下的频率1、频率 =小长方形面积: f S y 距 d ;频率 =频数 / 总数2、频率之和 : f 1f 2f n 1 ;同时 S 1 S 2S n1 ;三、频率直方分布图下的众数、平均数、中位数及方差1、众数: 最高小矩形底边的中点。
2、平均数: x x 1 f 1 x 2 f 2 x 3 f 3 x n f nx x 1 S 1 x 2 S 2x 3 S 3x n S n3、中位数: 从左到右或者从右到左累加,面积等于0.5 时 x 的值。
4、方差: s 2( x 1x )2 f 1 ( x 2 x) 2 f 2( x n x) 2 f n四、线性回归直线方程 : ? ? ?bxy an(x ix )( y iy )nx i y i nxy??其中: b i 1i 1,a?ybxnn( x i x )2x i 2nx 2i 1i11、线性回归直线方程必过样本中心( x , y ) ;??0 : 负相关。
2、 b 0 : 正相关; b?3、线性回归直线方程: y? ?bx a?的斜率 b 中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析?i1、残差 : ?iy i?i 越小越好;ey (残差 =真实值—预报值)。
分析:e2、残差平方和 :n? )2(y i,i 1y in( y iy )2( y 1 y )2 ( yy )2( yy )2分析:①意义:越小越好;②计算:?i?12?2n?ni 1n ?i )23、拟合度(相关指数) : R 21( yy ,分析:① . R 20,1②. 越大拟合度越高;i 1的常数;ny)2i ( y i1nn4、相关系数 : ri ( x i x )( y i y)x i y i nx y1i 1nx)2 ny) 2 nx) 2 ny )2i 1( x i i ( y i( x i ( y i1i 1i 1分析:① . r[ 1,1]的常数;② . r 0: 正相关; r0: 负相关③. r[0,0.25] ;相关性很弱;r(0.25,0.75) ;相关性一般;r [0.75,1] ;相关性很强;六、独立性检验 x 1 x 21、2×2 列联表 :合计2、独立性检验公式 bc)2y 1 a b a b ①. k 2(an( add )y 2cdc db)(c d )(a c)(b合计a cb dn②.犯错误上界 P 对照表3、独立性检验步骤①.计算观察值n(ad bc) 2k : k;(a b)(c d )(a c)(b d )②.查找临界值 k0:由犯错误概率P,根据上表查找临界值k0;③.下结论: k k0:即犯错误概率不超过P 的前提下认为:, 有 1-P 以上的把握认为:;k k0:即犯错误概率超过P 的前提认为:,没有 1-P 以上的把握认为:;【经典例题】题型 1 与茎叶图的应用例 1( 2014 全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50 位市民。
卡方分布分位表1. 什么是卡方分布?卡方分布(chi-squared distribution )是统计学中常用的概率分布之一,它是一种单参数分布。
卡方分布常用于分析成功与失败之间的关系,比如独立性检验、拟合优度检验等。
2. 卡方分布的概率密度函数卡方分布的概率密度函数(probability density function, PDF )可以表示为:f (x;k )=12k 2Γ(k 2)x k 2−1e −x 2其中,k 是卡方分布的自由度参数,Γ 是伽马函数。
3. 卡方分布分位表的作用卡方分布分位表(chi-squared distribution quantile table )是用于计算卡方分布的分位数的一种表格。
分位数是统计学中用于表示分布特征的关键指标之一。
通过查表可以快速找到给定分布和自由度下的分位数,从而帮助我们进行各种统计分析。
4. 卡方分布分位表的使用方法使用卡方分布分位表,首先需要确定自由度(degrees of freedom, df )和置信水平(confidence level, α)。
然后在表格中找到对应自由度和置信水平的值,就可以得到相应的分位数。
以下是示例卡方分布分位表的一部分: 自由度 (k ) 0.995 0.99 0.975 0.95 0.9 0.1 0.05 0.025 0.01 0.005 10.00004 0.00016 0.00393 0.01579 0.21072 2.70554 3.84146 5.02389 6.63490 7.87944自由度(k) 0.995 0.99 0.975 0.95 0.9 0.1 0.05 0.025 0.01 0.0052 0.01003 0.020100.050640.103180.710724.605175.991467.377769.2103410.596623 0.07172 0.114830.215800.351851.441796.251397.814739.3484011.3448712.83816……………………………例如,如果自由度为3,置信水平为0.95,则对应的分位数为3.84146。
标准正态分布表025标准正态分布表025是统计学中常用的一种表格,用于计算正态分布的概率。
正态分布是一种连续概率分布,其概率密度函数呈钟形曲线,均值为0,标准差为1。
标准正态分布表025可以帮助我们在进行正态分布概率计算时节省时间,提高计算的准确性。
在标准正态分布表025中,横坐标为Z值,纵坐标为Z值对应的累积概率。
通过查表可以得到给定Z值下的累积概率,也可以通过给定累积概率来反查对应的Z 值。
这对于统计学中的假设检验、置信区间估计等问题非常有用。
使用标准正态分布表025时,首先需要计算出所关注的变量的Z值,即将原始数据转化为标准正态分布的变量。
然后根据Z值在表格中查找对应的累积概率。
例如,如果我们要计算Z值为1.96时的累积概率,可以在表格中找到Z值为1.9和0.06的交叉点,对应的累积概率为0.9750。
这意味着在标准正态分布下,Z值小于1.96的概率为0.9750。
另外,标准正态分布表025也可以用于反查。
例如,如果我们希望找到累积概率为0.95对应的Z值,可以在表格中找到累积概率为0.9500的数值,对应的Z值为1.64。
这意味着在标准正态分布下,Z值小于1.64的概率为0.95。
在实际应用中,标准正态分布表025可以帮助我们进行各种与正态分布相关的统计推断。
例如,在制造业中,我们可以利用标准正态分布表025来进行质量控制,判断产品的合格率;在医学研究中,我们可以利用标准正态分布表025来进行药效学研究,评估药物的疗效;在金融领域,我们可以利用标准正态分布表025来进行风险评估,制定投资策略。
总之,标准正态分布表025是统计学中一项非常有用的工具,它可以帮助我们快速准确地计算正态分布的概率,为决策提供科学依据。
通过熟练掌握标准正态分布表025的使用方法,我们可以更好地应用统计学原理解决实际问题,提高工作效率,取得更好的成果。
概率分布与统计表的解读随着社会的发展和科学技术的进步,数据分析在各个领域中扮演着重要的角色。
概率分布和统计表是数据分析中常用的工具。
本文将对概率分布和统计表进行解读,帮助读者更好地理解和运用这些工具。
概率分布是描述随机变量的可能取值和对应的概率的函数关系。
它可以对各种可能性进行量化分析,从而帮助我们预测未来的事件发生概率。
常见的概率分布有离散型和连续型两种。
离散型概率分布是指随机变量取有限个或可数个值的概率分布。
其中最常见的是二项分布和泊松分布。
二项分布用于描述二项试验中成功次数的概率分布,例如投掷硬币的结果;而泊松分布则用于描述单位时间或单位面积内随机事件发生次数的概率分布,例如单位时间内电话呼入次数。
连续型概率分布则是指随机变量取连续值的概率分布。
其中最著名的是正态分布。
正态分布是自然界中普遍存在的一种分布,也叫做高斯分布。
许多现实世界的现象,如身高、体重、考试成绩等都能够用正态分布来描述。
统计表是将大量的数据按照某种规则进行整理和呈现的工具。
通过统计表,我们可以更直观地了解数据的分布情况和统计特征。
常见的统计表包括频数表、频率表和累计频率表等。
频数表是将数据按照取值分成不同的类别,并记录每个类别中数据出现的次数。
例如,我们可以通过频数表了解一个班级学生的考试成绩在不同分数段的人数分布情况。
频率表是在频数表的基础上,将每个类别中数据出现的次数除以总的数据个数,得到频率。
频率表能够更好地反映数据的相对分布情况,帮助我们判断数据的集中趋势和分散程度。
累计频率表是在频率表的基础上,将每个类别频率依次累加。
累计频率表能够帮助我们更全面地了解数据的分布情况,比如确定百分位数和中位数等统计指标。
在实际应用中,概率分布和统计表经常结合使用。
通过对概率分布和统计表的分析,我们可以得到更深入的数据洞察,进而做出更准确的决策。
比如,在市场调研中,我们可以通过概率分布和统计表了解消费者购买某种产品的概率和购买数量的分布情况,从而为企业制定销售策略提供基础数据支持。
标准正态表x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852页脚内容页脚内容页脚内容n\p0.005 0.010 0.025 0.050 0.100 0.250 0.750 0.900 0.950 0.975 0.990 0.9951 0.0000 0.0002 0.0010 0.0039 0.0158 0.1015 1.3233 2.7055 3.8415 5.0239 6.6349 7.87942 0.0100 0.0201 0.0506 0.1026 0.2107 0.5754 2.7726 4.6052 5.9915 7.3778 9.2103 10.59663 0.0717 0.1148 0.2158 0.3518 0.5844 1.2125 4.1083 6.2514 7.8147 9.3484 11.3449 12.83824 0.2070 0.2971 0.4844 0.7107 1.0636 1.9226 5.3853 7.7794 9.4877 11.1433 13.2767 14.86035 0.4117 0.5543 0.8312 1.1455 1.6103 2.6746 6.6257 9.2364 11.0705 12.8325 15.0863 16.74966 0.6757 0.8721 1.2373 1.6354 2.2041 3.4546 7.8408 10.6446 12.5916 14.4494 16.8119 18.54767 0.9893 1.2390 1.6899 2.1673 2.8331 4.2549 9.0371 12.0170 14.0671 16.0128 18.4753 20.27778 1.3444 1.6465 2.1797 2.7326 3.4895 5.0706 10.2189 13.3616 15.5073 17.5345 20.0902 21.95509 1.7349 2.0879 2.7004 3.3251 4.1682 5.8988 11.3888 14.6837 16.9190 19.0228 21.6660 23.589410 2.1559 2.5582 3.2470 3.9403 4.8652 6.7372 12.5489 15.9872 18.3070 20.4832 23.2093 25.1882页脚内容页脚内容页脚内容T分布n\p0.750 0.800 0.850 0.900 0.950 0.975 0.990 0.995 0.9975 0.9990 0.99951 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 127.3213 318.3088 636.61922 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 14.0890 22.3271 31.59913 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 7.4533 10.2145 12.92404 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5.5976 7.1732 8.61035 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 4.7733 5.8934 6.86886 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 4.3168 5.2076 5.95887 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 4.0293 4.7853 5.40798 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 3.8325 4.5008 5.0413页脚内容页脚内容页脚内容页脚内容页脚内容81 0.6775 0.8461 1.0431 1.2921 1.6639 1.9897 2.3733 2.6379 2.8860 3.1939 3.414782 0.6775 0.8460 1.0430 1.2920 1.6636 1.9893 2.3727 2.6371 2.8850 3.1926 3.413283 0.6775 0.8460 1.0429 1.2918 1.6634 1.9890 2.3721 2.6364 2.8840 3.1913 3.411684 0.6774 0.8459 1.0429 1.2917 1.6632 1.9886 2.3716 2.6356 2.8831 3.1901 3.410285 0.6774 0.8459 1.0428 1.2916 1.6630 1.9883 2.3710 2.6349 2.8822 3.1889 3.408786 0.6774 0.8458 1.0427 1.2915 1.6628 1.9879 2.3705 2.6342 2.8813 3.1877 3.407387 0.6773 0.8458 1.0426 1.2914 1.6626 1.9876 2.3700 2.6335 2.8804 3.1866 3.405988 0.6773 0.8457 1.0426 1.2912 1.6624 1.9873 2.3695 2.6329 2.8795 3.1854 3.404589 0.6773 0.8457 1.0425 1.2911 1.6622 1.9870 2.3690 2.6322 2.8787 3.1843 3.403290 0.6772 0.8456 1.0424 1.2910 1.6620 1.9867 2.3685 2.6316 2.8779 3.1833 3.4019 100 0.6770 0.8452 1.0418 1.2901 1.6602 1.9840 2.3642 2.6259 2.8707 3.1737 3.3905 120 0.6765 0.8446 1.0409 1.2886 1.6577 1.9799 2.3578 2.6174 2.8599 3.1595 3.3735F分布P=0.90页脚内容页脚内容P=0.99页脚内容页脚内容页脚内容页脚内容页脚内容页脚内容页脚内容页脚内容Excel公式1.正态分布函数Excel计算正态分布时,使用NORMDIST函数,其格式如下:NORMDIST(a,μ,σ,累积)其中,“累积”:若为TRUE,则输出分布函数值,即P{X≤a};若为FALSE,则为概率密度函数值.示例:已知X服从正态分布,μ=600,σ=100,求P{X≤500}.输入公式NORMDIST(500, 600, 100, TRUE)得到的结果为0.158655,即P{X≤500}=0.158655.2、正态分布函数的反函数Excel计算正态分布函数的反函数使用NORMINV函数,格式如下:NORMINV(p,μ ,σ ),此公式计算a,使P{X ≤a}=p页脚内容3标准正态分布反函数=NORMSINV(0.975)3、t分布Excel计算t分布的值,采用TDIST函数,格式如下:TDIST(a,自由度,侧数)其中,“侧数”:指明分布为单侧或双侧:若为1,为单侧;此命令输出P{ T >a }若为2,为双侧.此命令输出P{ |T| >a}示例:设T服从自由度为24的t分布,求P(T>1.711).已知t=1.711,df=24,采用单侧,则T分布的值:TDIST(1.711,24,1)得到0.05,即P(T > 1.711)=0.05.4. t分布的反函数Excel使用TINV函数得到t分布的反函数,格式如下:TINV(α,自由度)输出T 分布的α / 2 分位点:t_α/2_(n)若求临界值tα(n),则使用公式=TINV(2*α, n)页脚内容5.返回F分布的函数是FDISTFDIST(x,degrees_freedom1,degrees_freedom2)函数FDIST 的计算公式为FDIST=P( F>x ),5.F分布的反函数FINV(probability,deg_freedom1,deg_freedom2)已知probability=P( F>x ),求x页脚内容。