不等式的性质
- 格式:ppt
- 大小:287.00 KB
- 文档页数:9
不等式的基本性质是高中数学中一个重难点,下面查字典高中数学网为大家总结了不等式的基本性质知识点,希望对大家所有帮助。
1.不等式的定义:a-b0ab, a-b=0a=b, a-b0a
①其实质是运用实数运算来定义两个实数的大小关系。
它是本章的基础,也是证明不等式与解不等式的主要依据。
②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。
作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。
2.不等式的性质:
①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:
(1) abb
(2) ab, bcac (传递性)
(3) aba+cb+c (cR)
(4) c0时,abacbc
c0时,abac
运算性质有:
(1) ab, cda+cb+d。
(2) ab0, cd0acbd。
(3) ab0anbn (nN, n1)。
(4) ab0(nN, n1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。
一般地,证明不等式就是从条件出发施行一系列的推出变换。
解不等式就是施行一系列的等价变换。
因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:
(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
不等式的性质不等式是数学中一种重要的关系表达方式。
它描述了数值大小之间的关系,常用于解决优化问题、证明数学定理等。
在学习不等式的过程中,我们需要了解不等式的性质,这有助于我们更好地理解和应用不等式。
1. 不等式的传递性不等式的传递性是指,如果一个不等式A > B成立并且B > C成立,那么A > C 也一定成立。
同样地,如果A < B成立并且B < C成立,那么A < C也一定成立。
传递性在解决不等式问题时起到了重要的作用。
通过利用不等式的传递性,我们可以将一个复杂的不等式问题转化为一系列简单的不等式问题,从而更容易求解。
2. 不等式的加法性和减法性不等式的加法性是指,如果一个不等式A > B成立,那么A + C > B + C也一定成立。
类似地,不等式的减法性是指,如果一个不等式A > B成立,那么A - C > B - C也一定成立。
加法性和减法性使得我们可以在不等式两边加上或减去相同的数,从而得到等效的不等式,方便我们进行问题的变形和求解。
3. 不等式的乘法性和除法性不等式的乘法性是指,如果一个不等式A > B成立,并且C > 0,那么A * C >B * C也一定成立。
类似地,如果A > B成立,并且C < 0,那么A * C < B * C也一定成立。
乘法性使得我们可以在不等式两边乘以正数或负数,从而改变不等式的方向。
需要注意的是,当乘以负数时,不等式的方向会颠倒。
除法性是乘法性的逆运算。
不等式的除法性是指,如果一个不等式A > B成立,并且C > 0,那么A / C > B / C也一定成立。
类似地,如果A > B成立,并且C < 0,那么A / C < B / C也一定成立。
乘法性和除法性在求解不等式时起到了重要的作用。
它允许我们在不改变不等式的基本性质的情况下,对不等式进行一些操作,从而得到更简单的形式。
不等式及其基本性质不等式的基本性质:1、不等式的性质1:不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b ,那么a ±c>b ±c.2、不等式的性质2:不等式的两边乘以(或除以)同一正数,不等号的方向不变,用式子表示:如果a > b ,c>0,那么ac > bc 或 a c > b c. 3、不等式的性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,用式子表示:a>b ,c<0,那么,ac < bc 或a c < b c. 一、填空1.在式子①224>+x ②412≤-x ③43<x ④0162≥-x ⑤32-x ⑥33<+b a 中属于不等式的有 .(只填序号)2.如果0,<>c b a ,那么ac bc .3.若b a <,用“<”“>”填空.⑴ 6-a 6-b ⑵ a 5- b 5-⑶ k a 3- k b 3- ⑷ c a + c b +⑸5+-c a c b -+5二、选择4.x 的3倍减5的差不大于1,那么列出不等式正确的是( )A . 153≤-x B.153≥-xC .153<-x D.153>-x5.已知b a >,则下列不等式正确的是( )A .b a 33->- B.33b a ->- C.b a ->-33 D.33->-b a三、解答题6.用不等式表示下列句子的含义.⑴ 2x 是非负数.⑵ 老师的年龄x 比赵刚的年龄y 的2倍还大.⑶ x 的相反数是正数.⑷y 的3倍与8的差不小于4.7.用不等式表示下列关系.⑴x 与3的和的2倍不大于-5.⑵a 除以2的商加上4至多为6.⑶a 与b 两数的平方和为非负数.8、解方程(1)(x-1)—(3x+2)= —(x-1). (2)3y-2=5y-2(3)--23x 514+x =1x 3- (4)20328x y x y -=⎧⎨+=⎩9.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.。
不等式的基本性质【知识要点】1.不等式的有关概念:用 连接起来的式子叫不等式;使不等式成立的 的值叫做不等式的解;一个含有 的不等式的解的 叫做不等式的解集.求一个不等式的 的过程或证明不等式无解的过程叫做解不等式.2.不等式的基本性质:(1)若a <b ,则a +c c b +;(2)若a >b ,c >0则ac bc (或c a c b ); (3)若a >b ,c <0则ac bc (或c a cb ). 3.不等式的解与解集:4.一元一次不等式:一元一次不等式的标准形式:)0(≠><a b ax b ax 或一元一次不等式的步骤:①去分母;②去括号;③移项变号;④合并同类项;⑤系数化为1. 【典型例题】例1 指出下面变形根据的是不等式的哪一条基本性质.(1)由5a >4,得a >54; (2)由a +3>0,得a >-3; (3)由-2a <1,得a >-21; (4)由3a >2a +1,得a >1.例2 用“<”“=”“>”号填空.(1)如果a >b ,那么a -b __________0;(2)如果a =b ,那么a -b __________0;(3)如果a <b ,那么a -b __________0.例3 指出下列各题中不等式变形的依据.(1)由21a >3,得a >6.(2)由a -5>0,得a >5.(3)由-3a <2,得a >-32.例4 根据不等式性质,把下列不等式化成x >a 或x <a 的形式.(1)x +7>9(2)6x <5x -3 (3)51x <52(4)-32x >-1例5 如果a >ab ,且a 是负数,那么b 的取值范围是什么?* 例6 已知m <0,-1<n <0,试将m ,mn ,mn 2从小到大依次排列.【大展身手】1.填空:(1)若3x>4,两边都除以3,得__________,依据是____________.(2)若x+6≤5,两边都减6,得__________,依据是_____________.(3)若-4y≥1,两边都除以-4,得__________,依据是____________.(4)若-23y<-2,两边都乘-32,得___________,依据是____________. 2.若a<b ,用不等号填空: (1)a -5_______b -5;(2)a+m_______b+m ; (3)-2a ______-2b ; (4)6-a_______6-b ;(5)-1+2a_______-1+2b ;(6)ac 2_______bc 2.3.(1)已知a<b ,b<c ,则a_______c ;(2)已知a<b ,则b________a .4.若a <b ,则-3a +1________-3b +1.5.若-35x >5,则x ________-3. 6.若a >b ,c ≤0,则ac ________bc .7.若ba b a --||=-1,则a -b ________0. 8.若ax >b ,ac 2<0,则x ________ab . 9.若a +3>b +3,则下列不等式中错误的是( )A.-55b a -<B.-2a <-2bC.a -2<b -2D.-(-a )>-(-b )10.若a >b ,c <0,则下列不等式成立的是( )A.ac >bcB.c b c a <C.a -c <b -cD.a +c <b +c11.有理数a 、b 在数轴上的位置如图1所示,在下列各式中对a 、b 之间的关系表达不正确的是( )A.b -a >0B.ab >0C.c -b <c -aD.a b 11>图112.已知4>3,则下列结论正确的是( )①4a >3a ②4+a >3+a ③4-a >3-aA.①②B.①③C.②③D.①②③13.下列判断中,正确的个数为( )①若-a >b >0,则ab <0②若ab >0,则a >0,b >0③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -cA.2B.3C.4D.5 14.已知x>y ,则下列不等中不成立的是( )A .x -4>y -4B .-2x>-2yC .33x y >D .-13x<-13y 15.下列不等式的变形中,正确的是( )A .∵-3x>4,∴x>-43B .∵-3x>4,∴x>-34C .∵-3x>4,∴x<-43D .∵-3x>4,∴x<-3416.已知x<y ,要使mx>my 成立,则( )A .m>0B .m<0C .m=0D .m 是任意实数17.如果x<3,则下列不等式错误..的是( ) A .x -3<0 B .2x<6 C .-x>-3 D .x+2008>018.下列不等式中,是一元一次不等式的是( ) A.x 1 +1>2 B.x 2>9 C.2x +y ≤5 D.21 (x -3)<0 19.不等式3(x -2)≤x +4的非负整数解有几个.( )A.4B.5C.6D.无数个 20.不等式4x -41141+<x 的最大的整数解为( ) A.1 B.0 C.-1 D.不存在21.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-622.用不等式的基本性质,试将下列不等式化为x>a或x<a的形式:(1)x-1>3;(2)4x<6;(3)-2x>8.23.如果a<b,则下列不等式必定成立的是()A.am>bm B.am<bm C.am2<bm2D.am2≤bm2 24.如果a<0,则不等式ax>2可化为()A.x<2aB.x>2aC.x<-2aD.x>-2a25.已知关于x的不等式x>32a,表示在数轴上知图,则a的值为()A.1 B.2 C.-1 D.-226.已知a>b,比较12-3a与12-3b的大小.27.试比较a与2a的大小.。