不等式的性质2
- 格式:doc
- 大小:33.00 KB
- 文档页数:2
2.3不等式的基本性质一、教学目标:(一)知识与技能1.掌握不等式的三条基本性质。
2.使用不等式的基本性质对不等式实行变形。
1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。
2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维水平和语言表达水平。
(三)情感态度与价值观通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。
二、教学重难点教学重点:探索不等式的三条基本性质并能准确使用它们将不等式变形。
教学难点:不等式基本性质3的探索与使用。
三、教学方法:自主探究——合作交流四、教学过程:情景引入:1.举例说明什么是不等式?2.判断下列各式是否成立?并说明理由。
( 1 ) 若x-4=12, 则x=16( )( 2 ) 若3x=12, 则 x=4( )( 3 ) 若x-4>12 则 x>16 ( )( 4 ) 若3x>12则 x>4( )【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。
通过复习既找准了旧知停靠点,又创设了一种情境,给学生提供了类比、想象的空间,为后续学习做好了铺垫。
教师导语:当我们开始研究不等式的时候,自然会联想到它是否与等式有相类似的性质。
这节课我们就通过类比来探究不等式的基本性质。
温故知新问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。
估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。
教师引导:“=”没有方向性,所以能够说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。
问题2.你能通过实验、猜想,得出进一步的结论吗?同桌同学通过实例验证得出结论,师生共同总结不等式性质1。
不等关系与不等式(理科)一、考点梳理1.两个实数大小关系的比较两个实数的大小是用实数的运算性质来定义的,有a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b.另外,若b >0,则有a b >1⇔a >b ;a b =1⇔a =b ;ab <1⇔a <b.2.不等式的性质(1)对称性:如果a>b ,那么b<a. (2)传递性:如果a>b ,b>c ,那么a>c. (3)可加性:如果a>b ,那么a +c>b +c.(4)可乘性:如果a>b ,c>0,那么ac>bc ;如果a>b ,c<0,那么ac<bc. (5)同向可加性:如果a>b ,c>d ,那么a +c>b +d. (6)同向同正可乘性:如果a>b>0,c>d>0,那么ac>bd. (7)可乘方性:如果a>b>0,那么a n >b n (n ∈N ,n ≥2).(8)可开方性:如果a>b>0∈N ,n ≥2). 3.不等式的一些常用性质 (1)倒数性质: ①a >b ,ab >0⇒1a <1b .②a <0<b ⇒1a <1b .③a >b >0,0<c <d ⇒a c >bd.④0<a <x <b 或a <x <b <0⇒1b <1x <1a .(2)有关分数的性质 若a >b >0,m >0,则 ①真分数的性质:b a <b +m a +m ;b a >b -m a -m (b -m >0); ②假分数的性质:a b >a +m b +m ;a b <a -m b -m (b -m >0). 二、例题解析 考向一 比较大小【例1】►已知a ,b ,c 是实数,试比较a 2+b 2+c 2与ab +bc +ca 的大小.【训练1】 已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ). A .M<N B .M>N C .M =N D .不确定考向二 不等式性质的简单应用【例2】►(1)(2012·上海十三校联考)若1a <1b <0,有下面四个不等式:①|a|>|b|,②a<b ,③a+b<ab ,④a 3>b 3,则不正确的不等式的个数是( ). A .0 B .1 C .2 D .3(2)设a ,b 是实数,则“0<ab <1”是“b <1a ”的( ).A .充分而不必要条件B .必要而不充分条件C .既不充分也不必要条件D .充要条件【训练2】 已知三个不等式:①ab >0;②bc >ad ;③c a >db .以其中两个作为条件,余下一个作为结论,则可以组成正确命题的个数是( ). A .0 B .1 C .2 D .3考向三 不等式性质的综合应用【例3】►已知函数f(x)=ax 2+bx ,且1≤f(-1)≤2,2≤f(1)≤4.求f(-2)的取值范围.【训练3】 若α,β满足⎩⎪⎨⎪⎧-1≤α+β≤1,1≤α+2β≤3,试求α+3β的取值范围.三、课后练习1.(2011·浙江)若a ,b 为实数,则“0<ab<1”是“a<1b 或b>1a ”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(2013·保定模拟)已知a>b ,则下列不等式成立的是( ). A .a 2-b 2≥0 B .ac>bc C .|a|>|b|D .2a >2b3.(2012·晋城模拟)已知下列四个条件:①b>0>a ,②0>a>b ,③a>0>b ,④a>b>0,能推出1a <1b 成立的有( ). A .1个B .2个C .3个D .4个4.(2010江苏12)设实数x,y 满足3≤2xy ≤8,4≤y x 2≤9,则43yx 的最大值是_____▲____5.(2010辽宁文15).已知-1<x+y <4且2<x -y <3,则z=2x -3y 的取值范围是6.若-π2<α<β<π2,则α-β的取值范围是________.7.(13分)已知f(x)=ax 2-c 且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围.8.(2012·泉州一模)已知奇函数f(x)在区间(-∞,+∞)上是单调减函数,α,β,γ∈R,且α+β>0,β+γ>0,γ+α>0,则f(α)+f(β)+f(γ)与0的关系是________.9.(2011·安徽)(1)设x≥1,y≥1,证明x+y+1xy≤1x+1y+xy;(2)设1<a≤b≤c,证明log a b+log b c+log c a≤log b a+log c b+log a c.基本不等式及应用(理科)一、知识归纳: 1.基本不等式:①重要不等式:如果R b a ∈,,则ab b a 222≥+,当且仅当b a =时,等号成立;②基本不等式0,0>>b a ,ab ba ≥+2,当且仅当b a =时,等号成立; 变形:ab b a 2≥+,ab b a ≥+2)2(,2≥+abb a两个正数的算术平均不小于它们的几何平均,即2a b+≥③三个正数的算术-几何平均不等式:如果,,a b c R +∈,则3a b c ++≥当b a ==c 时,等号成立;推广到一般情形:对于n 个正数12,,,n a a a 它们的算术平均数不小于它们的几何平均数,即12n a a a n+++≥ 12n a a a === 时,等号成立2.最值问题: 已知y x ,是正数,①如果积xy 是定值P ,则当y x =时,和y x +有最小值P 2; ②如果和y x +是定值S ,则当y x =时,积xy 有最大值241S . 利用基本不等式求最值时,要注意变量是否为正,和或积是否为定值,等号是否成立,以及添项、拆项的技巧,以满足均基本不等式的条件。
不等式的基本性质与解法不等式是数学中常见的描述数量关系的工具,它可以表达两个数、两个量或两个函数之间的大小关系。
在解决实际问题时,不等式的理解和运用至关重要。
本文将介绍不等式的基本性质以及解法,并通过一些例子来进一步说明。
一、不等式的基本性质不等式有以下基本性质:1. 加减性质:对于不等式两边同时加减一个相同的数,不等号的方向不变。
例如:若a < b,则a + c < b + c;若a > b,则a - c > b - c。
2. 乘除性质:对于不等式两边同时乘除一个正数,不等号的方向不变;而若乘除一个负数,则不等号的方向反转。
例如:若a < b,c > 0,则ac < bc;若a > b,c < 0,则ac > bc。
3. 倒置性质:若不等式两边同时倒置(取倒数),不等号的方向也要倒置。
例如:若a < b,则1/a > 1/b;若a > b,则1/a < 1/b。
二、不等式的解法1. 图解法:对于简单的一元一次不等式,我们可以通过图解法来求解。
例如,对于不等式2x + 1 > 5,我们可以先绘制出直线y = 2x + 1和y = 5的图像,然后找到两条直线的交点,交点右侧的区域即为不等式的解集。
2. 转化法:有些不等式可以通过转化为等价的形式来求解。
例如,对于不等式x^2 - 4x + 3 > 0,我们可以将其转化为(x - 1)(x - 3) > 0的形式,然后根据函数图像的正负性来确定解集。
3. 分类讨论法:对于复杂的不等式,我们可以通过分类讨论的方法来求解。
例如,对于不等式|x - 2| < 3,我们可以将其拆解为两个不等式x - 2 < 3和-(x - 2) < 3,并分别求解得到解集,然后取它们的交集。
4. 根据性质求解:我们可以根据不等式的性质来求解。
例如,对于不等式x^2 - 5x + 6 < 0,我们可以分解它为(x - 2)(x - 3) < 0,然后根据乘法性质可知,当x在2和3之间时,不等式成立。
人教版七年级数学下册9.1.2.2《不等式的性质(2)》教学设计一. 教材分析《不等式的性质(2)》是人教版七年级数学下册第9.1.2节的一部分,主要介绍不等式的性质。
本节课主要让学生了解不等式的性质,掌握不等式的基本性质,并能够运用不等式的性质解决实际问题。
教材通过具体的例子和练习题,帮助学生理解和掌握不等式的性质。
二. 学情分析学生在七年级上册已经学习了不等式的基本概念和性质,对不等式有一定的了解。
但是,对于不等式的性质的深入理解和灵活运用还存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,通过具体的例子和练习题,引导学生深入理解和掌握不等式的性质。
三. 教学目标1.让学生了解不等式的性质,掌握不等式的基本性质。
2.培养学生运用不等式的性质解决实际问题的能力。
3.培养学生逻辑思维和解决问题的能力。
四. 教学重难点1.不等式的性质的理解和运用。
2.解决实际问题时的不等式应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索和解决问题,深入理解和掌握不等式的性质。
2.使用多媒体教学手段,通过动画和图形,生动形象地展示不等式的性质,帮助学生理解和记忆。
3.采用小组合作学习的方式,让学生在讨论和合作中,共同解决问题,提高学生的合作能力和解决问题的能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生回顾不等式的基本概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)呈现不等式的性质(2),通过动画和图形,生动形象地展示不等式的性质,帮助学生理解和记忆。
3.操练(15分钟)让学生通过解决实际问题,运用不等式的性质,巩固所学知识。
在此过程中,引导学生运用不等式的性质,解决实际问题,培养学生的应用能力。
4.巩固(10分钟)让学生完成一些练习题,检查学生对不等式的性质的掌握程度,并对学生的错误进行指导和纠正。
不等式知识点总结不等式知识点总结上学的时候,相信大家一定都接触过知识点吧!知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
你知道哪些知识点是真正对我们有帮助的吗?以下是小编收集整理的不等式知识点总结,仅供参考,欢迎大家阅读。
不等式知识点总结篇1不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:AB,A+CB+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:AB,A-CB-C在不等式中,如果乘以同一个正数,不等号不改向;例如:AB,AxCBxC(C0)在不等式中,如果乘以同一个负数,不等号改向;例如:AB,AxC 如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
不等式知识点总结篇21.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a>bb>a②传递性:a>b,b>ca>c③可加性:a>ba+c>b+c④可积性:a>b,c>0ac>bc⑤加法法则:a>b,c>da+c>b+d⑥乘法法则:a>b>0,c>d>0ac>bd⑦乘方法则:a>b>0,an>bn(n∈N)⑧开方法则:a>b>02.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)如果为实数,则重要结论(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
不等式的性质二不等式是数学中常用的一类表示不同数值关系的工具。
在不等式的研究中,我们需要了解不等式的基本性质和特点,以便能够准确地推导和解决相关问题。
本文将讨论不等式的性质二,包括不等式的加减性、乘除性以及倒置性。
1. 不等式的加减性对于同一个不等式,如果两边同时加上(或减去)同一个数,不等式的不等关系保持不变。
举例来说,对于不等式2x > 4,我们可以在两边同时减去4,得到2x - 4 > 0。
这个新的不等式依然成立,因为无论原来的不等式中x的取值如何,其两边都减去同一个数,不等关系并未改变。
同样地,如果两边同时加上一个正数,不等式的不等关系保持不变;如果两边同时减去一个负数,也不等关系同样保持不变。
2. 不等式的乘除性对于同一个不等式,如果两边同时乘以(或除以)同一个正数,不等式的不等关系保持不变。
举例来说,对于不等式3x > 6,我们可以在两边同时除以3,得到x > 2。
这个新的不等式依然成立,因为无论原来的不等式中x的取值如何,其两边都乘以同一个正数,不等关系并未改变。
然而,如果两边乘以一个负数,不等式的不等关系将被倒置。
举例来说,对于不等式-2x < 4,如果我们在两边乘以-1,得到2x >-4。
这个新的不等式的不等关系与原来的不等式相反,因为我们将其两边乘以了一个负数。
3. 不等式的倒置性对于一个不等式,如果将其两边的不等关系互换,则得到一个新的不等式,称为原不等式的倒置。
举例来说,对于不等式2x > 4,如果我们将不等关系互换,则得到4 < 2x。
这个新的不等式是原不等式的倒置。
需要注意的是,倒置后的不等式的解与原不等式的解并不完全相同。
在倒置后的不等式中,不等式符号的方向也随之改变,因此其解的范围也会有所不同。
总结:不等式的性质二包括加减性、乘除性和倒置性。
根据这些性质,我们可以进行不等式的等价转化和推导。
在实际问题中,通过运用不等式的性质,我们可以更加灵活地求解和处理不等式方程,提高解题的效率和准确性。
9.1.2不等式的性质(第2课时)
教学目标:
(1)能运用不等式的性质对不等式进行变形和解简单的不等式.(2)知道符号“≥”和“≤”的意义及在数轴上表示不等式的解集时实心圆点与空心圆点的区别.
教学重、难点:
重点:不等式性质的运用.
难点:不等式的解集在数轴上的表示方法.
一、复习引入:
不等式具有哪些性质?分别用文字语言和符号语言表示.
二、讲授新课:
1、利用不等式的性质解不等式
例1利用不等式的性质解下列不等式
(1)x-7>26;(2)3x<2x+1
(3)x>50 (4)-4x>3
分析:解不等式,就是借助不等式的性质使不等式逐步化为x>a或x<a(a为常数)的形式.
(1)x-7>26
根据不等式的性质1,不等式两边加7,不等号的方向不变,所以:
x-7+7>26+7
x>33
(2)3x<2x+1
根据不等式的性质1,不等式两边减2x,不等号的方向不变,所以:3x-2x<2x+1-2x
x<1
第(3)(4)题由学生独立完成,老师纠错
2、在表示两个数量大小关系时,我们会经常用到像a≥b或a≤b这样的式子,如一天内的温度变化t≥19℃且t≤28℃.
三、当堂训练:
1.用不等式的性质解下列不等式,并在数轴上表示出来.
(1)x+5>-1;(2)4x<3x-5;
(3)3x<-4 ;(4)-8x>10 .
2.用不等式表示下列语句并写出解集,并在数轴上表示解集
(1)x的3倍大于或等于1;
(2)x与3的和不小于6;
(3)y与1的差不大于0;
(4)y的1
4小于或等于-2.
四、归纳总结:
(1)如何利用不等式的性质解简单不等式?(2)依据不等式性质3解不等式时应注意什么?(3)请说明符号“≥”和“≤”的含义?
五、布置作业:
教科书习题9.1 第5、7、8题。