不等式的性质(2)
- 格式:ppt
- 大小:335.50 KB
- 文档页数:5
不等式的性质(2)引言不等式是数学中一个重要的概念,用于描述数之间的大小关系。
在不同的数学领域中,我们会遇到各种各样的不等式,它们具有不同的性质和特点。
本文将继续探讨不等式的性质,深入了解不等式的相关概念和定理。
绝对值不等式绝对值不等式是一类常见的不等式,它们以绝对值为主要特征。
绝对值是一个数的非负值,它可以将一个数转化为非负数或零。
在处理不等式时,绝对值不等式可以帮助我们更好地理解数之间的大小关系。
绝对值不等式的基本性质对于任意实数a和b,我们有以下基本的绝对值不等式性质:•若a < b,则 |a| < |b|。
•若a > 0,则 |a| > 0。
•若a = 0,则 |a| = 0。
这些性质可以帮助我们在解决实际问题时更好地应用绝对值不等式。
绝对值不等式的求解方法对于一般的绝对值不等式,我们可以通过以下方法求解:1.将绝对值不等式转化为一个复合不等式,即将绝对值不等式的条件拆分成两个不等式。
2.分别解决上述两个不等式,并求出它们的解集。
3.将两个解集合并,得到最终的解集。
需要注意的是,在解决绝对值不等式时,我们需要区分绝对值的正负情况,并根据绝对值的定义进行讨论。
绝对值不等式的应用举例1.证明不等式|a+b| ≤ |a| + |b|。
首先,我们可以将绝对值展开得到 |a+b| =√[(a+b)^2]。
然后,根据平方根的非负性质,我们知道√[(a+b)^2] ≥ 0。
接下来,我们考虑三种情况:a+b ≥ 0,a+b = 0,a+b ≤ 0。
通过分别求解这三种情况下的不等式,我们可以得到|a+b| ≤ |a| + |b| 的证明。
2.解决绝对值不等式 |2x-1| ≥ 5x-3。
首先,我们将绝对值展开得到 |2x-1| = 2x-1 或 1-2x。
然后,我们将两种情况分别带入不等式得到以下两个不等式:2x-1 ≥ 5x-3 和 1-2x ≥ 5x-3。
通过求解这两个不等式,我们可以得到最终的解集。
不等关系与不等式(理科)一、考点梳理1.两个实数大小关系的比较两个实数的大小是用实数的运算性质来定义的,有a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b.另外,若b >0,则有a b >1⇔a >b ;a b =1⇔a =b ;ab <1⇔a <b.2.不等式的性质(1)对称性:如果a>b ,那么b<a. (2)传递性:如果a>b ,b>c ,那么a>c. (3)可加性:如果a>b ,那么a +c>b +c.(4)可乘性:如果a>b ,c>0,那么ac>bc ;如果a>b ,c<0,那么ac<bc. (5)同向可加性:如果a>b ,c>d ,那么a +c>b +d. (6)同向同正可乘性:如果a>b>0,c>d>0,那么ac>bd. (7)可乘方性:如果a>b>0,那么a n >b n (n ∈N ,n ≥2).(8)可开方性:如果a>b>0∈N ,n ≥2). 3.不等式的一些常用性质 (1)倒数性质: ①a >b ,ab >0⇒1a <1b .②a <0<b ⇒1a <1b .③a >b >0,0<c <d ⇒a c >bd.④0<a <x <b 或a <x <b <0⇒1b <1x <1a .(2)有关分数的性质 若a >b >0,m >0,则 ①真分数的性质:b a <b +m a +m ;b a >b -m a -m (b -m >0); ②假分数的性质:a b >a +m b +m ;a b <a -m b -m (b -m >0). 二、例题解析 考向一 比较大小【例1】►已知a ,b ,c 是实数,试比较a 2+b 2+c 2与ab +bc +ca 的大小.【训练1】 已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ). A .M<N B .M>N C .M =N D .不确定考向二 不等式性质的简单应用【例2】►(1)(2012·上海十三校联考)若1a <1b <0,有下面四个不等式:①|a|>|b|,②a<b ,③a+b<ab ,④a 3>b 3,则不正确的不等式的个数是( ). A .0 B .1 C .2 D .3(2)设a ,b 是实数,则“0<ab <1”是“b <1a ”的( ).A .充分而不必要条件B .必要而不充分条件C .既不充分也不必要条件D .充要条件【训练2】 已知三个不等式:①ab >0;②bc >ad ;③c a >db .以其中两个作为条件,余下一个作为结论,则可以组成正确命题的个数是( ). A .0 B .1 C .2 D .3考向三 不等式性质的综合应用【例3】►已知函数f(x)=ax 2+bx ,且1≤f(-1)≤2,2≤f(1)≤4.求f(-2)的取值范围.【训练3】 若α,β满足⎩⎪⎨⎪⎧-1≤α+β≤1,1≤α+2β≤3,试求α+3β的取值范围.三、课后练习1.(2011·浙江)若a ,b 为实数,则“0<ab<1”是“a<1b 或b>1a ”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(2013·保定模拟)已知a>b ,则下列不等式成立的是( ). A .a 2-b 2≥0 B .ac>bc C .|a|>|b|D .2a >2b3.(2012·晋城模拟)已知下列四个条件:①b>0>a ,②0>a>b ,③a>0>b ,④a>b>0,能推出1a <1b 成立的有( ). A .1个B .2个C .3个D .4个4.(2010江苏12)设实数x,y 满足3≤2xy ≤8,4≤y x 2≤9,则43yx 的最大值是_____▲____5.(2010辽宁文15).已知-1<x+y <4且2<x -y <3,则z=2x -3y 的取值范围是6.若-π2<α<β<π2,则α-β的取值范围是________.7.(13分)已知f(x)=ax 2-c 且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围.8.(2012·泉州一模)已知奇函数f(x)在区间(-∞,+∞)上是单调减函数,α,β,γ∈R,且α+β>0,β+γ>0,γ+α>0,则f(α)+f(β)+f(γ)与0的关系是________.9.(2011·安徽)(1)设x≥1,y≥1,证明x+y+1xy≤1x+1y+xy;(2)设1<a≤b≤c,证明log a b+log b c+log c a≤log b a+log c b+log a c.基本不等式及应用(理科)一、知识归纳: 1.基本不等式:①重要不等式:如果R b a ∈,,则ab b a 222≥+,当且仅当b a =时,等号成立;②基本不等式0,0>>b a ,ab ba ≥+2,当且仅当b a =时,等号成立; 变形:ab b a 2≥+,ab b a ≥+2)2(,2≥+abb a两个正数的算术平均不小于它们的几何平均,即2a b+≥③三个正数的算术-几何平均不等式:如果,,a b c R +∈,则3a b c ++≥当b a ==c 时,等号成立;推广到一般情形:对于n 个正数12,,,n a a a 它们的算术平均数不小于它们的几何平均数,即12n a a a n+++≥ 12n a a a === 时,等号成立2.最值问题: 已知y x ,是正数,①如果积xy 是定值P ,则当y x =时,和y x +有最小值P 2; ②如果和y x +是定值S ,则当y x =时,积xy 有最大值241S . 利用基本不等式求最值时,要注意变量是否为正,和或积是否为定值,等号是否成立,以及添项、拆项的技巧,以满足均基本不等式的条件。
不等式的性质(二)1.理解同向不等式,异向不等式概念;2.掌握并会证明定理1,2,3;3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据;4.初步理解证明不等式的逻辑推理方法.教学重点:定理1,2,3的证明的证明思路和推导过程教学难点:理解证明不等式的逻辑推理方法教学方法:引导式教学过程()一、复习回顾上一节课,我们一起学习了比较两实数大小的方法,主要根据的是实数运算的符号法则,而这也是推证不等式性质的主要依据,因此,我们来作一下回顾:<sub> </sub>这一节课,我们将利用比较实数的方法,来推证不等式的性质.二、讲授新课在证明不等式的性质之前,我们先明确一下同向不等式与异向不等式的概念.1.同向不等式:两个不等号方向相同的不等式,例如:<sub> </sub>是同向不等式.异向不等式:两个不等号方向相反的不等式.例如:<sub> </sub>是异向不等式.2.不等式的性质:定理1:若<sub> </sub>,则<sub> </sub>定理1说明,把不等式的左边和右边交换,所得不等式与原不等式异向.在证明时,既要证明充分性,也要证明必要性.证明:∵<sub> </sub>,∴<sub> </sub>由正数的相反数是负数,得<sub> </sub>说明:定理1的后半部分可引导学生仿照前半部分推证,注意向学生强调实数运算的符号法则的应用.定理2:若<sub> </sub>,且<sub> </sub>,则<sub> </sub>.证明:∵<sub> </sub>∴<sub> </sub>根据两个正数的和仍是正数,得<sub> </sub><sub> </sub>∴<sub> </sub>说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数.定理3:若<sub> </sub>,则<sub> </sub>定理3说明,不等式的两边都加上同一个实数,所得不等式与原不等式同向.证明:∵<sub> </sub><sub></sub>∴<sub> </sub>说明:(1)定理3的证明相当于比较<sub> </sub>与<sub> </sub>的大小,采用的是求差比较法;(2)不等式中任何一项改变符号后,可以把它从一边移到另一边,理由是:根据定理3可得出:若<sub> </sub>,则<sub> </sub>即<sub> </sub>.定理3推论:若<sub> </sub>.证明:∵<sub> </sub>,∴<sub> </sub> ①∵<sub> </sub>∴<sub> </sub> ②由①、②得<sub> </sub>说明:(1)推论的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(3)两个同向不等式的两边分别相减时,就不能作出一般的结论;(4)定理3的逆命题也成立.(可让学生自证)三、课堂练习1.证明定理1后半部分;2.证明定理3的逆定理.说明:本节主要目的是掌握定理1,2,3的证明思路与推证过程,练习穿插在定理的证明过程中进行.课堂小结通过本节学习,要求大家熟悉定理1,2,3的证明思路,并掌握其推导过程,初步理解证明不等式的逻辑推理方法.课后作业1.求证:若<sub> </sub>2.证明:若<sub> </sub>板书设计§6.1.2 不等式的性质1.同向不等式3.定理2 4.定理3 5.定理3异向不等式证明证明推论2.定理1 证明说明说明证明第三课时教学目标1.熟练掌握定理1,2,3的应用;2.掌握并会证明定理4及其推论1,2;3.掌握反证法证明定理5.教学重点:定理4,5的证明.教学难点:定理4的应用.教学方法:引导式教学过程():一、复习回顾上一节课,我们一起学习了不等式的三个性质,即定理1,2,3,并初步认识了证明不等式的逻辑推理方法,首先,让我们来回顾一下三个定理的基本内容.(学生回答)好,我们这一节课将继续推论定理4、5及其推论,并进一步熟悉不等式性质的应用.二、讲授新课定理4:若<sub> </sub>若<sub> </sub>证明:<sub> </sub><sub></sub><sub> </sub>根据同号相乘得正,异号相乘得负,得当<sub> </sub><sub></sub><sub> </sub>说明:(1)证明过程中的关键步骤是根据“同号相乘得正,异号相乘得负”来完成的;(2)定理4证明在一个不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变.推论1:若<sub> </sub>证明:<sub> </sub><sub> </sub> ①又<sub> </sub>∴<sub> </sub> ②由①、②可得<sub> </sub>.说明:(1)上述证明是两次运用定理4,再用定理2证出的;(2)所有的字母都表示正数,如果仅有<sub> </sub>,就推不出<sub> </sub>的结论.(3)这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.推论2:若<sub> </sub>说明:(1)推论2是推论1的特殊情形;(2)应强调学生注意<i>n</i>∈N<sub> </sub>的条件.定理5:若<sub> </sub>我们用反证法来证明定理5,因为反面有两种情形,即<sub> </sub>,所以不能仅仅否定了<sub> </sub>,就“归谬”了事,而必须进行“穷举”.说明:假定<sub> </sub>不大于<sub> </sub>,这有两种情况:或者<sub> </sub>,或者<sub> </sub>.由推论2和定理1,当<sub> </sub>时,有<sub> </sub>;当<sub> </sub>时,显然有<sub> </sub>这些都同已知条件<sub> </sub>矛盾所以<sub> </sub>.接下来,我们通过具体的例题来熟悉不等式性质的应用.例2 已知<sub> </sub>证明:由<sub> </sub><sub></sub><sub> </sub>例3 已知<sub> </sub>证明:∵<sub> </sub>两边同乘以正数<sub> </sub><sub> </sub>说明:通过例3,例4的学习,使学生初步接触不等式的证明,为以后学习不等式的证明打下基础.在应用定理4时,应注意题目条件,即在一个等式两端乘以同一个数时,其正负将影响结论.接下来,我们通过练习来进一步熟悉不等式性质的应用.三、课堂练习课本P<sub>7</sub>练习1,2,3.课堂小结通过本节学习,大家要掌握不等式性质的应用及反证法证明思路,为以后不等式的证明打下一定的基础.课后作业课本习题6.1 4,5.板书设计§6.1.3 不等式的性质。
不等式的性质(2)一、复习引入:1、判断两个实数大小的充要条件是:0>-⇔>b a b a0=-⇔=b a b a0<-⇔<b a b a2、引出不等式的证明方法,作差比较法步骤是:第一步:作差并化简,其目标应是n 个因式之积或完全平方式或常数的形式 第二步:判断差值与零的大小关系,必要时须进行讨论 第三步:得出结论二、讲解新课:1.同向不等式:两个不等号方向相同的不等式,例如:a>b ,c>d ,是同向不等式异向不等式:两个不等号方向相反的不等式例如:a>b ,c<d ,是异向不等式2.不等式的性质:定理1:如果a>b ,那么b<a ,如果b<a ,那么a>b .(对称性)即:a>b ⇒b<a ;b<a ⇒a>b证明:∵a>b ∴a-b>0由正数的相反数是负数,得-(a-b)<0即b-a<0 ∴b<a (定理的后半部分略) .定理2:如果a>b ,且b>c ,那么a>c(传递性) ,即a>b ,b>c ⇒a>c证明:∵a>b ,b>c ∴a-b>0, b-c>0根据两个正数的和仍是正数,得(a-b)+( b-c)>0 即a -c>0∴a>c根据定理l ,定理2还可以表示为:c<b ,b<a ⇒c<a点评:这是不等式的传递性、这种传递性可以推广到n 个的情形.定理3:如果a>b ,那么a+c>b+c .即a>b ⇒a+c>b+c证明:∵a>b , ∴a-b>0,∴(a+c)-( b+c)>0 即a+c>b+c点评:(1)定理3的逆命题也成立;(2)利用定理3可以得出:如果a+b>c ,那么a>c-b ,也就是说,不等式中任何一项改变符号后,可以把它从—边移到另一边.推论:如果a>b ,且c>d ,那么a+c>b+d(相加法则) , 即a>b , c>d ⇒a+c>b+d . 证法一:⇒⎭⎬⎫+>+⇒>+>+⇒>d b c b d c c b c a b a a+c>b+d 证法二:⇒>-+-⇒⎭⎬⎫>-⇒>>-⇒>000d c b a d c d c b a b a a+c>b+d 点评:(1)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(2)两个同向不等式的两边分别相减时,不能作出一般的结论;三、讲解范例:例1、已知a>b ,c<d ,求证:a-c>b-d .(相减法则)分析:思路一:证明“a -c >b -d ”,实际是根据已知条件比较a -c 与b -d 的大小,所以以实数的运算性质与大小顺序之间的关系为依据,直接运用实数运算的符号法则来确定差的符号,最后达到证题目的证法一:∵a >b ,c <d∵a -b >0,d -c >0∴(a -c )-(b -d )=(a -b )+(d -c )>0(两个正数的和仍为正数)故a -c >b -d思路二:我们已熟悉不等式的性质中的定理1~定理3及推论,所以运用不等式的性质,加以变形,最后达到证明目的证法二:∵c <d ∴-c >-d又∵a >b∴a +(-c )>b +(-d )∴a -c >b -d例2、求证:0,011,<>⇒>>b a ba b a 证明:0b 0,a b,a 0,ab 0,a -b ,0011,11,0,<>∴><∴<>->-∴>>-∴>又而即又aba b b a b a b a b a 四、课堂练习:1、判断下列命题的真假,并说明理由:(1)如果a >b ,那么a -c >b -c ;(2)如果a >b ,那么c a c 分析:从不等式性质定理找依据,与性质定理相违的为假,与定理相符的为真 答案:(1)真因为推理符号定理3 (2)假由不等式的基本性质2,3(初中)可知,当c <0时,c a c 即不等式两边同乘以一个数,必须明确这个数的正负2、回答下列问题:(1)如果a >b ,c >d ,能否断定a +c 与b +d 谁大谁小?举例说明;(2)如果a >b ,c >d ,能否断定a -2c 与b -2d 谁大谁小?举例说明 答案:(1)不能断定例如:2>1,1<3⇒2+1<1+3;而2>1,-1<-08⇒2-1>1-08异向不等式作加法没定论(2)不能断定例如a >b ,c =1>d =-1⇒a -2c =a -2,b +2=b -2d ,其大小不定a =8>1=b 时a -2c =6>b +2=3而a =2>1=b 时a -2c =0<b +2=33、求证:(1)如果a >b ,c >d ,那么a -d >b -c ;(2)如果a >b ,那么c -2a <c -2b证明:(1).c b d a d b c b d c d c d b d a b a ->-⇒⎪⎭⎪⎬⎫-<-⇒-<-⇒>->-⇒>(2)a >b ⇒-2a <-2b ⇒c -2a <c -2b4、已和a >b >c >d >0,且dc b a =,求证:a +d >b +c 证明:∵dc b a = ∴d d c b b a -=- ∴(a -b )d =(c -d )b又∵a >b >c >d >0∴a -b >0,c -d >0,b >d >0且d b >1 ∴db dc b a =-->1 ∴a -b >c -d 即a +d >b +c 评述:此题中,不等式性质和比例定理联合使用,使式子形与形之间的转换更迅速这道题不仅有不等式性质应用的信息,更有比例的信息,因此这道题既要重视性质的运用技巧,也要重视比例定理的应用技巧五、小结 :本节课我们学习了不等式的性质定理1~定理3及其推论,理解不等式性质的反对称性(a >b ⇔b <a =、传递性(a >b ,b >c ⇒a >c )、可加性(a >b ⇒a +c >b +c )、加法法则(a >b ,c >d ⇒a +c >b +d ),并记住这些性质的条件,尤其是字母的符号及不等式的方向,要搞清楚这些性质的主要用途及其证明的基本方法六、课后作业:1、若,0<<n m 则n m -1与m1的大小关系是 。
不等式的性质(2)一、不等式的基本性质回顾在不等式的性质(1)中,我们已经学习了不等式的基本概念和性质。
在本文档中,我们将进一步探讨不等式的性质,包括一些特殊的不等式类型以及它们的应用。
回顾一下,不等式就是表示两个数之间大小关系的数学表达式。
常见的不等式符号包括小于等于(≤),大于等于(≥),小于(<)和大于(>)。
二、特殊不等式类型1. 绝对值不等式绝对值不等式是指不等式中含有绝对值符号的不等式。
绝对值不等式可以分成两种情况讨论:•当绝对值的表达式大于等于0时,可以去掉绝对值符号,并根据不等式的性质进行求解。
•当绝对值的表达式小于0时,不等式无解。
例如,考虑绝对值不等式 |x - 2| < 3,我们可以进行如下的求解:•将绝对值不等式拆分为两个不等式,即 x - 2 < 3 和 x - 2 > -3。
•对第一个不等式进行求解,得到 x < 5。
•对第二个不等式进行求解,得到 x > -1。
•综合两个不等式的解集,得到 -1 < x < 5,即 x 的取值范围为开区间 (-1, 5)。
2. 比例不等式比例不等式是指含有比例符号的不等式。
比例不等式的求解步骤与常规不等式的求解步骤类似。
考虑比例不等式 a/x > b/y,其中 a、b 是正实数,x、y 是大于零的实数。
可以进行如下的求解:•将比例不等式转化为 a * y > b * x。
•根据不等式的性质进行求解,得到 x < a/b * y。
•结合 x 和 y 的约束条件,得到比例不等式的解集。
3. 幂函数不等式幂函数不等式是指不等式中含有幂函数的不等式。
幂函数不等式的求解需要根据幂函数的性质和不等式的性质进行判断。
常见的幂函数不等式包括二次函数不等式、立方函数不等式等。
在解这些不等式时,我们可以将幂函数不等式转化为对应的关于变量的一元二次不等式,并通过解二次不等式求解。
4. 参数不等式参数不等式是指含有未知参数的不等式。
不等式的性质二不等式是数学中常用的一类表示不同数值关系的工具。
在不等式的研究中,我们需要了解不等式的基本性质和特点,以便能够准确地推导和解决相关问题。
本文将讨论不等式的性质二,包括不等式的加减性、乘除性以及倒置性。
1. 不等式的加减性对于同一个不等式,如果两边同时加上(或减去)同一个数,不等式的不等关系保持不变。
举例来说,对于不等式2x > 4,我们可以在两边同时减去4,得到2x - 4 > 0。
这个新的不等式依然成立,因为无论原来的不等式中x的取值如何,其两边都减去同一个数,不等关系并未改变。
同样地,如果两边同时加上一个正数,不等式的不等关系保持不变;如果两边同时减去一个负数,也不等关系同样保持不变。
2. 不等式的乘除性对于同一个不等式,如果两边同时乘以(或除以)同一个正数,不等式的不等关系保持不变。
举例来说,对于不等式3x > 6,我们可以在两边同时除以3,得到x > 2。
这个新的不等式依然成立,因为无论原来的不等式中x的取值如何,其两边都乘以同一个正数,不等关系并未改变。
然而,如果两边乘以一个负数,不等式的不等关系将被倒置。
举例来说,对于不等式-2x < 4,如果我们在两边乘以-1,得到2x >-4。
这个新的不等式的不等关系与原来的不等式相反,因为我们将其两边乘以了一个负数。
3. 不等式的倒置性对于一个不等式,如果将其两边的不等关系互换,则得到一个新的不等式,称为原不等式的倒置。
举例来说,对于不等式2x > 4,如果我们将不等关系互换,则得到4 < 2x。
这个新的不等式是原不等式的倒置。
需要注意的是,倒置后的不等式的解与原不等式的解并不完全相同。
在倒置后的不等式中,不等式符号的方向也随之改变,因此其解的范围也会有所不同。
总结:不等式的性质二包括加减性、乘除性和倒置性。
根据这些性质,我们可以进行不等式的等价转化和推导。
在实际问题中,通过运用不等式的性质,我们可以更加灵活地求解和处理不等式方程,提高解题的效率和准确性。
课 题:不等式的基本性质(2课时)教学目标:1. 掌握作差比较大小的方法,并能证明一些不等式。
2. 掌握不等式的性质,掌握它们的证明方法及其功能,能简单运用。
3. 提高逻辑推理和分类讨论的能力;培养条理思维的习惯和认真严谨的学习态度。
教学重点:作差比较大小的方法;不等式的性质。
教学难点:不等式的性质的运用教学过程:第1课时:问题情境:现有A 、B 、C 、D 四个长方体容器,A 、B 容器的底面积为a 2,高分别为a 、b ,C 、D 容器的底面积为b 2,高分别为a 、b ,其中a ≠b 。
甲先从四个容器中取两个容器盛水,乙用剩下的两个容器盛水。
问如果你是甲,是否一定能保证两个容器所盛水比乙的多分析:依题意可知:A 、B 、C 、D 四个容器的容积分别为a 3、a 2b 、ab 2、b 3,甲有6种取法。
问题可以转化为比较容器两两和的大小。
研究比较大小的依据:我们知道,实数与数轴上的点是一一对应的。
在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大。
在右图中,点A 表示实数a ,点B 表示实数b ,点A 在点B 右边,那么a >b 。
而a -b 表示a 减去b 所得的差,由于a >b ,则差是一个正数,即a -b >0。
命题:“若a >b ,则a -b >0”成立;逆命题“若a -b >0,则a >b ”也正确。
类似地:若a <b ,则a -b <0;若a =b ,则a -b =0。
逆命题也都正确。
结论:(1)“a >b ”⇔“a -b >0”(2)“a =b ”⇔“a -b =0”(3)“a <b ”⇔“a -b <0”——以上三条即为比较大小的依据:“作差比较法”。
正负数运算性质:(1) 正数加正数是正数;(2) 正数乘正数是正数;(3) 正数乘负数是负数;(4) 负数乘负数是正数。
研究不等式的性质:性质1:若a >b ,b >c ,则a >c (不等式的传递性)证明:∵a >b ∴a -b >0∵b >c ∴b -c >0∴(a -b)+(b -c)=a -c >0 (正负数运算性质)则a >c反思:证明要求步步有据。