第二章离散傅里叶变换及其快速算法(下)
- 格式:ppt
- 大小:1.17 MB
- 文档页数:91
信号实验一离散傅里叶变换及其快速算法一、实验目的1、掌握计算序列的离散傅里叶变换(FFT)的方法;2、掌握实现时间抽取快速傅里叶变换(FFT)编程方法;3、加深对DFT与序列的傅里叶变换和Z变换之间的关系的理解;4、复习复数序列的运算方法。
二、程序设计框图1.码位倒置程序框图2.蝶形图运算程序框图三、实验程序实验程序的源代码如下:#include"math.h"#include"stdio.h"/*------------------------------------------------------------------------------------------子函数部分------------------------------------------------------------------------------------------*/ void swap(float *a,float *b)//交换变量子函数{float T;T=*a;*a=*b;*b=T;}void fft (float A [],float B [],unsigned M)//数组A为序列的实部, 数组B为序列的虚部{unsigned long N,I,J,K,L,LE,LE1,P,Q,R;float Wr,Wi,W1r,W1i,WTr,WTi,theta,Tr,Ti;N=1<<M;J=0;for(I=0;I<N-1;I++){if(J>I){swap(&A [I],&A [J]);swap(&B [I],&B [J]);}K=N>>1;while(K>=2&&J>=K){J-=K;K>>=1;}J+=K;}for(L=1;L<=M;L++){LE=1<<L;LE1=LE/2;Wr=1.0;Wi=0.0;theta=(-1)*3.1415926536/LE1;W1r=cos (theta);W1i=sin (theta);for(R=0;R<LE1;R++){for(P=R;P<N-1;P+=LE){Q=P+LE1;//基本蝶形图的复数运算Tr=Wr*A[Q]-Wi*B[Q];Ti=Wr*B[Q]+Wi*A[Q];A[Q]=A[P]-Tr;B[Q]=B[P]-Ti;A[P]+=Tr;B[P]+=Ti;}WTr=Wr;WTi=Wi;Wr=WTr*W1r-WTi*W1i;Wi=WTr*W1i+WTi*W1r;}}return;}/*------------------------------------------------------------------------------------------主函数部分------------------------------------------------------------------------------------------*/ void main(){float A[20],B[20];char t1,t2,file_name[20];int M,N,i,iiff;FILE *fp;/*************************************数据读取部分************************************/ printf("请输入文件名:");//输入数据文件名scanf("%s",file_name);printf("FFT变换还是IFFT变换?(FFT:1,IFFT:-1):");//输入变换方式, 1为FFT, -1为IFFTscanf("%d",&iiff);while(iiff!=1&&iiff!=-1)//检错: 检验上一步的输入是否有错, 有错则重新输入{printf("输入错误, 请重新输入! ");printf("FFT or IFFT?(FFT:1,IFFT:-1):");scanf("%d",&iiff);}fp=fopen(file_name,"r");//打开文件并读入数据fscanf(fp,"%d",&M);N=pow(2,M);//计算序列总数for(i=0;i<N;i++)//读取文件中的数据{fscanf(fp,"%f%c%c%f",&A[i],&t1,&t2,&B[i]);if(iiff==-1)//根据FFT或IFFT修正BB[i]=B[i]*-1;if(t2!='j')//检错: 检验读取格式是否有错{printf("输入格式错误\n");break;}if(t1=='+')//判断虚部的正负号B[i]=B[i];else if(t1=='-')B[i]=-B[i];}/****************************************变换部分****************************************/ fft(A,B,M);//FFT变换/**************************************数据输出部分**************************************/ fp=fopen("fft_result.txt","w"); //输出结果if(iiff==-1)fprintf(fp,"IFFT变换的输出结果是: \n");elsefprintf(fp,"FFT变换的输出结果是: \n");for(i=0;i<N;i++){if(iiff==-1) //根据FFT或IFFT修正B{B[i]=B[i]*-1/N;A[i]=A[i]/N;}if(B[i]>=0)//修正虚部的输出格式fprintf(fp,"%f+j%f\n",A[i],B[i]);else if(B[i]<0)fprintf(fp,"%f-j%f\n",A[i],-B[i]);else if(B[i]==0)fprintf(fp,"%f\n",A[i]);}fclose(fp);}四、程序运行结果检验(1) 1.对序列进行FFT变换输入文件fft_input.txt:21+j02+j0-1+j04+j0控制台输入:请输入文件名: fft_input.txtFFT变换还是IFFT变换?(FFT:1,IFFT:-1): 1输出文件fft_result.txt:FFT变换的输出结果是:6.00000+j0.000002.00000+j2.00000-6.00000+j0.000002.00000+j-2.00000运行结果分析:程序运行输出结果与计算结果相同, 表示傅里叶正变换(FFT)成功。
离散傅里叶变换及其快速算法离散傅里叶变换(Discrete Fourier Transform,DFT)是一种将离散信号转换为频域表示的数学工具。
它在信号处理、图像处理、通信等领域有广泛的应用。
而快速傅里叶变换(Fast Fourier Transform,FFT)是一种能够高效计算DFT的算法,大大减少了计算量。
首先,我们来看一下DFT的原理。
给定一个有限长度的离散信号序列x(n),DFT将其转换为频谱X(k),其中k为频率索引,取值范围为0到N-1,N为序列的长度。
DFT的定义公式如下:X(k) = Σ x(n) * exp(-j * 2π * nk / N)其中,exp为自然指数函数,j为虚数单位。
DFT将信号分解为了N个复数的和,这些复数代表了不同频率分量在信号中的贡献。
然而,直接计算DFT的时间复杂度非常高,为O(N^2)。
为了提高计算效率,Cooley和Tukey于1965年提出了FFT算法。
FFT算法基于以下性质:若N为2的整数次幂,则DFT可以被分解为两个较小长度的DFT的线性组合。
具体来说,将N个点的DFT拆分为长度为N/2的两个DFT,然后再对这两个子序列进行DFT,最后将两个子序列的结果组合起来。
这个过程可以递归地进行,直到序列长度为1,即可得到最终的DFT结果。
FFT算法的时间复杂度为O(NlogN),远远小于直接计算DFT的复杂度。
这使得FFT成为了处理大规模数据的首选方法之一、此外,FFT还有其他一些优点,如可并行化计算、对称性质等。
FFT算法可以采用不同的实现方式,最著名的是基于蝶形运算的Cooley-Tukey算法。
这种实现方式将FFT过程分为了两个阶段:置换阶段和蝶形运算阶段。
置换阶段通过将信号重新排序,将原始序列分为奇偶两个子序列,并计算每个子序列的DFT。
这个过程可以递归地应用于子序列,直到长度为1蝶形运算阶段是FFT算法的核心部分。
蝶形运算是指将两个频域上的复数进行运算,得到新的复数。