数字信号处理第3章 离散傅里叶变换
- 格式:ppt
- 大小:1.29 MB
- 文档页数:3
第三章离散傅里叶变换及其快速算法习题答案参考3.1 图P3.1所示的序列(xn 是周期为4的周期性序列。
请确定其傅里叶级数的系数(X k。
解:(111*0((((((N N N nk nk nk N N N n n n X k x n W x n W x n W X k X k −−−−−=====−= =−=∑∑∑3.2 (1设(xn 为实周期序列,证明(x n 的傅里叶级数(X k 是共轭对称的,即*((X k X k =− 。
(2证明当(xn 为实偶函数时,(X k 也是实偶函数。
证明:(1 111**((([(]((N nk N n N N nk nkNNn n Xk x n W Xk x n W xn W X−−=−−−==−=−===∑∑∑ k(2因(xn 为实函数,故由(1知有 *((Xk X k =− 或*((X k X k −= 又因(xn 为偶函数,即((x n x n =− ,所以有(111*0((((((N N N nk nk nk N N N n n n X k x n W x n W x n W X k X k −−−−−=====−= =−=∑∑∑3.3 图P3.3所示的是一个实数周期信号(xn 。
利用DFS 的特性及3.2题的结果,不直接计算其傅里叶级数的系数(Xk ,确定以下式子是否正确。
(1,对于所有的k; ((10Xk X k =+ (2((Xk X k =− ,对于所有的k; (3; (00X=(425(jkX k eπ,对所有的k是实函数。
解:(1正确。
因为(x n 一个周期为N =10的周期序列,故(X k 也是一个周期为N=10的周期序列。
(2不正确。
因为(xn 一个实数周期序列,由例3.2中的(1知,(X k 是共轭对称的,即应有*((Xk X = k −,这里(X k 不一定是实数序列。
(3正确。
因为(xn (0n ==在一个周期内正取样值的个数与负取样值的个数相等,所以有 10(0N n Xx −=∑ (4不正确。
·54· 第3章 离散傅里叶变换(DFT )及其快速算法(FFT )3.1 引 言本章是全书的重点,更是学习数字信号处理技术的重点内容。
因为DFT (FFT )在数字信号处理这门学科中起着不一般的作用,它使数字信号处理不仅可以在时域也可以在频域进行处理,使处理方法更加灵活,能完成模拟信号处理完不成的许多处理功能,并且增加了若干新颖的处理内容。
离散傅里叶变换(DFT )也是一种时域到频域的变换,能够表征信号的频域特性,和已学过的FT 和ZT 有着密切的联系,但是它有着不同于FT 和ZT 的物理概念和重要性质。
只有很好地掌握了这些概念和性质,才能正确地应用DFT (FFT ),在各种不同的信号处理中充分灵活地发挥其作用。
学习这一章重要的是会应用,尤其会使用DFT 的快速算法FFT 。
如果不会应用FFT ,那么由于DFT 的计算量太大,会使应用受到限制。
但是FFT 仅是DFT 的一种快速算法,重要的物理概念都在DFT 中,因此重要的还是要掌握DFT 的基本理论。
对于FFT 只要掌握其基本快速原理和使用方法即可。
3.2 习题与上机题解答说明:下面各题中的DFT 和IDFT 计算均可以调用MA TLAB 函数fft 和ifft 计算。
3.1 在变换区间0≤n ≤N -1内,计算以下序列的N 点DFT 。
(1) ()1x n =(2) ()()x n n δ=(3) ()(), 0<<x n n m m N δ=- (4) ()(), 0<<m x n R n m N = (5) 2j()e, 0<<m n N x n m N π=(6) 0j ()e n x n ω=(7) 2()cos , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(8)2()sin , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(9) 0()cos()x n n ω=(10) ()()N x n nR n =(11) 1,()0n x n n ⎧=⎨⎩,解:(1) X (k ) =1N kn N n W -=∑=21j0eN kn nn π--=∑=2jj1e1ekN n k nπ---- = ,00,1,2,,1N k k N =⎧⎨=-⎩(2) X (k ) =1()N knNM n W δ-=∑=10()N n n δ-=∑=1,k = 0, 1, …, N -1(3) X (k ) =100()N knNn n n W δ-=-∑=0kn NW 1()N n n n δ-=-∑=0kn NW,k = 0, 1, …, N -1为偶数为奇数·55·(4) X (k ) =1m knN n W -=∑=11kmN N W W --=j (1)sin esin k m N mk N k N π--π⎛⎫⎪⎝⎭π⎛⎫ ⎪⎝⎭,k = 0, 1, …, N -1 (5) X (k ) =21j 0e N mn kn N N n W π-=∑=21j ()0e N m k nNn π--=∑=2j()2j()1e1em k N N m k Nπ--π----= ,0,,0≤≤1N k mk m k N =⎧⎨≠-⎩(6) X (k ) =01j 0eN nknN n W ω-=∑=021j 0e N k nN n ωπ⎛⎫-- ⎪⎝⎭=∑=002j 2j 1e1ek NN k N ωωπ⎛⎫- ⎪⎝⎭π⎛⎫- ⎪⎝⎭--= 0210j 202sin 2e2sin /2N k N N k N k N ωωωπ-⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦,k = 0, 1, …, N -1或 X (k ) =00j 2j 1e 1e Nk N ωωπ⎛⎫- ⎪⎝⎭--,k = 0, 1, …, N -1(7) X (k ) =102cos N kn N n mn W N -=π⎛⎫ ⎪⎝⎭∑=2221j j j 01e e e 2N mn mn kn N N N n πππ---=⎛⎫ ⎪+ ⎪⎝⎭∑=21j ()01e 2N m k n N n π--=∑+21j ()01e 2N m k n N n π--+=∑=22j ()j ()22j ()j ()11e 1e 21e 1e m k N m k N N N m k m k N N ππ--+ππ--+⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦=,,20,,N k m k N mk m k N M ⎧==-⎪⎨⎪≠≠-⎩,0≤≤1k N - (8) ()22j j 21()sin ee 2j mn mnN N x n mn N ππ-π⎛⎫== ⎪-⎝⎭ ()()112222j j j ()j ()0011()=e e ee 2j 2j j ,2=j ,20,(0≤≤1)N N kn mn mn m k n m k n N N N N N n n X k W Nk m N k N mk k N --ππππ---+===--⎧-=⎪⎪⎨=-⎪⎪-⎪⎩∑∑其他(9) 解法① 直接计算χ(n ) =cos(0n ω)R N (n ) =00j j 1[e e ]2n n ωω-+R N (n )X (k ) =1()N knNn n W χ-=∑=0021j j j 01[e e ]e 2N kn n n N n ωωπ---=+∑=0000j j 22j j 11e 1e 21e 1e N N k k N N ωωωω-ππ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦,k = 0, 1, … , N -1 解法② 由DFT 共轭对称性可得同样的结果。
第三章离散傅立叶变换(DFT)3.1 引言有限长序列在数字信号处理是很重要的一种序列,当然可以用Z变换和傅里叶变换来研究它,但是,可以导出反映它的"有限长"特点的一种有用工具是离散傅里叶变换(DFT)。
离散傅里叶变换除了作为有限长序列的一种傅里叶表示法在理论上相当重要之外,而且由于存在着计算离散傅里叶变换的有效快速算法,因而离散傅里叶变换在各种数字信号处理的算法中起着核心的作用。
有限长序列的离散傅里叶变换(DFT)和周期序列的离散傅里叶级数(DFS)本质上是一样的。
为了更好地理解DFT,需要先讨论周期序列的离散傅里叶级数DFS。
而为了讨论离散傅里叶级数及离散傅里叶变换,我们首先来回顾并讨论傅里叶变换的几种可能形式。
(连续时间信号:如果在讨论的时间间隔内,除若干不连续点之外,对于任意时间值都可给出确定的函数值,此信号就称为连续时间信号。
)一、连续时间、连续频率——连续傅立叶变换(FT)设x(t)为连续时间非周期信号,傅里叶变换关系如下图所示:可以看出时域连续函数造成频域是非周期的谱,而时域的非周期造成频域是连续的谱。
二、连续时间,离散频率------傅 里 叶 级 数设f(t)代表一个周期为T 1的周期性连续时间函数,f(t)可展成傅里叶级数,其傅里叶级数的系数为,f(t)和组成变换对,表示为:()注意符号:如果是周期性的采样脉冲信号p(t),周期用T 表示(采样间隔)。
采样脉冲信号的频率为可以看出时域连续函数造成频域是非周期的谱,而时域的周期造成频域是离散的谱三、离散时间,连续频率------序列的傅里叶变换n F n F tjn n n e F t f 1)(Ω∞-∞=∑=112Ω=πT dte tf T F TT t jn n ⎰-Ω-=221111)(1Ts π2=Ω正变换:DTFT[x(n)]=反变换:DTFT-1 级数收敛条件为||=可以看出时域离散函数造成频域是周期的谱,而时域的非周期造成频域是连续的谱四、离散时间,离散频率------离散傅里叶变换上面讨论的三种傅里叶变换对,都不适用在计算机上运算,因为至少在一个域(时域或频域)中,函数是连续的。
第三章离散时间信号的傅里叶变换课程:数字信号处理目录第三章离散时间信号的傅里叶变换 (3)教学目标 (3)3.1引言 (3)3.2傅里叶级数CFS (4)3.2.1傅里叶级数CFS定义 (4)3.2.2傅里叶级数CFS性质 (6)3.3傅里叶变换CFT (7)3.3.1傅里叶变换CFT定义 (7)3.3.2傅里叶变换CFT的性质 (8)3.4离散时间信号傅里叶变换DTFT (9)3.4.1离散时间信号傅里叶变换DTFT定义 (9)3.4.2离散时间信号傅里叶变换的性质 (10)3.5周期序列的离散傅里叶级数(DFS) (14)3.5.1周期序列的离散傅里叶级数的定义 (14)3.5.2周期序列的离散傅里叶级数的性质 (18)3.6离散傅里叶变换(DFT) (20)3.6.1离散傅里叶变换(DFT) (20)3.6.2离散傅里叶变换的性质 (23)3.7CFS、CFT、DTFT、DFS和DFT的区别与联系 (25)3.8用DFT计算模拟信号的傅里叶分析 (28)3.9实验 (30)本章小结 (32)习题 (33)参考文献: (36)第三章离散时间信号的傅里叶变换教学目标本章讲解由时域到频域的傅里叶变换,频域观察信号有助于进一步揭示系统的本质,对于某些系统可以极大的简化其设计和分析过程。
通过本章的学习,要理解连续时间信号的傅里叶级数和傅里叶变换的和离散时间信号基本概念、性质和应用;了解一些典型信号的傅里叶变换;理解连续时间信号的傅里叶级数(CFS)、连续时间信号的傅里叶变换(CFT)、离散时间傅里叶变换(DTFT)、离散时间傅里叶级数(DTFS)和离散傅里叶变换(DFT)它们相互间的区别与联系;掌握傅里叶变换的参数选择,以及这些参数对傅里叶变换性能的影响;了解信号处理中其它算法(卷积、相关等)可以通过离散傅里叶变换(DFT)来实现。
3.1引言一束白光透过三棱镜,可以分解为不同颜色的光,这些光再通过三棱镜,就会得到白光。