离散傅里叶变换及快速算法
- 格式:pptx
- 大小:911.77 KB
- 文档页数:22
DFT及其快速算法DFT(离散傅里叶变换)是傅里叶变换在离散时间序列上的表示,具有广泛应用于信号处理和图像处理等领域。
DFT的计算复杂度通常为O(N^2),其中N为序列的长度。
为了减少计算复杂度,人们发展了许多快速算法,其中最著名的是快速傅里叶变换(FFT)。
DFT可以将一个信号或序列分解成一系列正弦和余弦函数的频谱成分。
它将时域的信号转换为频域的频谱,揭示了信号中各个频率成分的振幅和相位信息。
DFT可以用于信号滤波、频谱分析、数据压缩等许多应用。
DFT的定义如下:X[k]=Σ(x[n]*e^(-j*2πk*n/N)),其中0<=k<N该公式表示了将N个离散时间域样本x[n]变换为N个离散频率域样本X[k]的计算方式。
其中e^(-j*2π/N)为旋转因子,N为序列的长度。
DFT的计算复杂度为O(N^2),需要进行N次乘法和加法运算。
对于大规模的序列,计算速度较慢,为了提高计算效率,人们提出了FFT算法。
FFT是一种高效的DFT计算方法,它基于DFT的对称性质和递归算法来减少计算量。
FFT的计算复杂度为O(NlogN),比DFT快速得多。
FFT算法的基本思想是将一个长度为N的序列分解为两个长度为N/2的子序列,并利用子序列的DFT结果计算整个序列的DFT结果。
这个过程不断重复,直到达到长度为1的序列,也就是基本的正弦和余弦函数。
FFT算法主要有两种形式:快速递归FFT和快速迭代FFT。
快速递归FFT是通过递归的方式将序列分解为子序列,并利用子序列的DFT结果计算整个序列的DFT结果。
这个过程类似于分治法,将复杂的问题分解为简单的子问题,然后将子问题的解合并起来得到最终结果。
快速迭代FFT是通过迭代的方式将序列分解为子序列,然后利用旋转因子和蝶形运算来计算序列的DFT结果。
蝶形运算是FFT算法中的基本操作,通过两两配对的方式进行乘法和加法运算,将两个输入序列转换为两个输出序列。
这个过程可以通过迭代的方式进行,并且可以实现并行计算,提高计算速度。
信号实验一离散傅里叶变换及其快速算法一、实验目的1、掌握计算序列的离散傅里叶变换(FFT)的方法;2、掌握实现时间抽取快速傅里叶变换(FFT)编程方法;3、加深对DFT与序列的傅里叶变换和Z变换之间的关系的理解;4、复习复数序列的运算方法。
二、程序设计框图1.码位倒置程序框图2.蝶形图运算程序框图三、实验程序实验程序的源代码如下:#include"math.h"#include"stdio.h"/*------------------------------------------------------------------------------------------子函数部分------------------------------------------------------------------------------------------*/ void swap(float *a,float *b)//交换变量子函数{float T;T=*a;*a=*b;*b=T;}void fft (float A [],float B [],unsigned M)//数组A为序列的实部, 数组B为序列的虚部{unsigned long N,I,J,K,L,LE,LE1,P,Q,R;float Wr,Wi,W1r,W1i,WTr,WTi,theta,Tr,Ti;N=1<<M;J=0;for(I=0;I<N-1;I++){if(J>I){swap(&A [I],&A [J]);swap(&B [I],&B [J]);}K=N>>1;while(K>=2&&J>=K){J-=K;K>>=1;}J+=K;}for(L=1;L<=M;L++){LE=1<<L;LE1=LE/2;Wr=1.0;Wi=0.0;theta=(-1)*3.1415926536/LE1;W1r=cos (theta);W1i=sin (theta);for(R=0;R<LE1;R++){for(P=R;P<N-1;P+=LE){Q=P+LE1;//基本蝶形图的复数运算Tr=Wr*A[Q]-Wi*B[Q];Ti=Wr*B[Q]+Wi*A[Q];A[Q]=A[P]-Tr;B[Q]=B[P]-Ti;A[P]+=Tr;B[P]+=Ti;}WTr=Wr;WTi=Wi;Wr=WTr*W1r-WTi*W1i;Wi=WTr*W1i+WTi*W1r;}}return;}/*------------------------------------------------------------------------------------------主函数部分------------------------------------------------------------------------------------------*/ void main(){float A[20],B[20];char t1,t2,file_name[20];int M,N,i,iiff;FILE *fp;/*************************************数据读取部分************************************/ printf("请输入文件名:");//输入数据文件名scanf("%s",file_name);printf("FFT变换还是IFFT变换?(FFT:1,IFFT:-1):");//输入变换方式, 1为FFT, -1为IFFTscanf("%d",&iiff);while(iiff!=1&&iiff!=-1)//检错: 检验上一步的输入是否有错, 有错则重新输入{printf("输入错误, 请重新输入! ");printf("FFT or IFFT?(FFT:1,IFFT:-1):");scanf("%d",&iiff);}fp=fopen(file_name,"r");//打开文件并读入数据fscanf(fp,"%d",&M);N=pow(2,M);//计算序列总数for(i=0;i<N;i++)//读取文件中的数据{fscanf(fp,"%f%c%c%f",&A[i],&t1,&t2,&B[i]);if(iiff==-1)//根据FFT或IFFT修正BB[i]=B[i]*-1;if(t2!='j')//检错: 检验读取格式是否有错{printf("输入格式错误\n");break;}if(t1=='+')//判断虚部的正负号B[i]=B[i];else if(t1=='-')B[i]=-B[i];}/****************************************变换部分****************************************/ fft(A,B,M);//FFT变换/**************************************数据输出部分**************************************/ fp=fopen("fft_result.txt","w"); //输出结果if(iiff==-1)fprintf(fp,"IFFT变换的输出结果是: \n");elsefprintf(fp,"FFT变换的输出结果是: \n");for(i=0;i<N;i++){if(iiff==-1) //根据FFT或IFFT修正B{B[i]=B[i]*-1/N;A[i]=A[i]/N;}if(B[i]>=0)//修正虚部的输出格式fprintf(fp,"%f+j%f\n",A[i],B[i]);else if(B[i]<0)fprintf(fp,"%f-j%f\n",A[i],-B[i]);else if(B[i]==0)fprintf(fp,"%f\n",A[i]);}fclose(fp);}四、程序运行结果检验(1) 1.对序列进行FFT变换输入文件fft_input.txt:21+j02+j0-1+j04+j0控制台输入:请输入文件名: fft_input.txtFFT变换还是IFFT变换?(FFT:1,IFFT:-1): 1输出文件fft_result.txt:FFT变换的输出结果是:6.00000+j0.000002.00000+j2.00000-6.00000+j0.000002.00000+j-2.00000运行结果分析:程序运行输出结果与计算结果相同, 表示傅里叶正变换(FFT)成功。
·54· 第3章 离散傅里叶变换(DFT )及其快速算法(FFT )3.1 引 言本章是全书的重点,更是学习数字信号处理技术的重点内容。
因为DFT (FFT )在数字信号处理这门学科中起着不一般的作用,它使数字信号处理不仅可以在时域也可以在频域进行处理,使处理方法更加灵活,能完成模拟信号处理完不成的许多处理功能,并且增加了若干新颖的处理内容。
离散傅里叶变换(DFT )也是一种时域到频域的变换,能够表征信号的频域特性,和已学过的FT 和ZT 有着密切的联系,但是它有着不同于FT 和ZT 的物理概念和重要性质。
只有很好地掌握了这些概念和性质,才能正确地应用DFT (FFT ),在各种不同的信号处理中充分灵活地发挥其作用。
学习这一章重要的是会应用,尤其会使用DFT 的快速算法FFT 。
如果不会应用FFT ,那么由于DFT 的计算量太大,会使应用受到限制。
但是FFT 仅是DFT 的一种快速算法,重要的物理概念都在DFT 中,因此重要的还是要掌握DFT 的基本理论。
对于FFT 只要掌握其基本快速原理和使用方法即可。
3.2 习题与上机题解答说明:下面各题中的DFT 和IDFT 计算均可以调用MA TLAB 函数fft 和ifft 计算。
3.1 在变换区间0≤n ≤N -1内,计算以下序列的N 点DFT 。
(1) ()1x n =(2) ()()x n n δ=(3) ()(), 0<<x n n m m N δ=- (4) ()(), 0<<m x n R n m N = (5) 2j()e, 0<<m n N x n m N π=(6) 0j ()e n x n ω=(7) 2()cos , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(8)2()sin , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(9) 0()cos()x n n ω=(10) ()()N x n nR n =(11) 1,()0n x n n ⎧=⎨⎩,解:(1) X (k ) =1N kn N n W -=∑=21j0eN kn nn π--=∑=2jj1e1ekN n k nπ---- = ,00,1,2,,1N k k N =⎧⎨=-⎩(2) X (k ) =1()N knNM n W δ-=∑=10()N n n δ-=∑=1,k = 0, 1, …, N -1(3) X (k ) =100()N knNn n n W δ-=-∑=0kn NW 1()N n n n δ-=-∑=0kn NW,k = 0, 1, …, N -1为偶数为奇数·55·(4) X (k ) =1m knN n W -=∑=11kmN N W W --=j (1)sin esin k m N mk N k N π--π⎛⎫⎪⎝⎭π⎛⎫ ⎪⎝⎭,k = 0, 1, …, N -1 (5) X (k ) =21j 0e N mn kn N N n W π-=∑=21j ()0e N m k nNn π--=∑=2j()2j()1e1em k N N m k Nπ--π----= ,0,,0≤≤1N k mk m k N =⎧⎨≠-⎩(6) X (k ) =01j 0eN nknN n W ω-=∑=021j 0e N k nN n ωπ⎛⎫-- ⎪⎝⎭=∑=002j 2j 1e1ek NN k N ωωπ⎛⎫- ⎪⎝⎭π⎛⎫- ⎪⎝⎭--= 0210j 202sin 2e2sin /2N k N N k N k N ωωωπ-⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦,k = 0, 1, …, N -1或 X (k ) =00j 2j 1e 1e Nk N ωωπ⎛⎫- ⎪⎝⎭--,k = 0, 1, …, N -1(7) X (k ) =102cos N kn N n mn W N -=π⎛⎫ ⎪⎝⎭∑=2221j j j 01e e e 2N mn mn kn N N N n πππ---=⎛⎫ ⎪+ ⎪⎝⎭∑=21j ()01e 2N m k n N n π--=∑+21j ()01e 2N m k n N n π--+=∑=22j ()j ()22j ()j ()11e 1e 21e 1e m k N m k N N N m k m k N N ππ--+ππ--+⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦=,,20,,N k m k N mk m k N M ⎧==-⎪⎨⎪≠≠-⎩,0≤≤1k N - (8) ()22j j 21()sin ee 2j mn mnN N x n mn N ππ-π⎛⎫== ⎪-⎝⎭ ()()112222j j j ()j ()0011()=e e ee 2j 2j j ,2=j ,20,(0≤≤1)N N kn mn mn m k n m k n N N N N N n n X k W Nk m N k N mk k N --ππππ---+===--⎧-=⎪⎪⎨=-⎪⎪-⎪⎩∑∑其他(9) 解法① 直接计算χ(n ) =cos(0n ω)R N (n ) =00j j 1[e e ]2n n ωω-+R N (n )X (k ) =1()N knNn n W χ-=∑=0021j j j 01[e e ]e 2N kn n n N n ωωπ---=+∑=0000j j 22j j 11e 1e 21e 1e N N k k N N ωωωω-ππ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦,k = 0, 1, … , N -1 解法② 由DFT 共轭对称性可得同样的结果。
离散傅里叶变换及其快速算法离散傅里叶变换(Discrete Fourier Transform,DFT)是一种将离散信号转换为频域表示的数学工具。
它在信号处理、图像处理、通信等领域有广泛的应用。
而快速傅里叶变换(Fast Fourier Transform,FFT)是一种能够高效计算DFT的算法,大大减少了计算量。
首先,我们来看一下DFT的原理。
给定一个有限长度的离散信号序列x(n),DFT将其转换为频谱X(k),其中k为频率索引,取值范围为0到N-1,N为序列的长度。
DFT的定义公式如下:X(k) = Σ x(n) * exp(-j * 2π * nk / N)其中,exp为自然指数函数,j为虚数单位。
DFT将信号分解为了N个复数的和,这些复数代表了不同频率分量在信号中的贡献。
然而,直接计算DFT的时间复杂度非常高,为O(N^2)。
为了提高计算效率,Cooley和Tukey于1965年提出了FFT算法。
FFT算法基于以下性质:若N为2的整数次幂,则DFT可以被分解为两个较小长度的DFT的线性组合。
具体来说,将N个点的DFT拆分为长度为N/2的两个DFT,然后再对这两个子序列进行DFT,最后将两个子序列的结果组合起来。
这个过程可以递归地进行,直到序列长度为1,即可得到最终的DFT结果。
FFT算法的时间复杂度为O(NlogN),远远小于直接计算DFT的复杂度。
这使得FFT成为了处理大规模数据的首选方法之一、此外,FFT还有其他一些优点,如可并行化计算、对称性质等。
FFT算法可以采用不同的实现方式,最著名的是基于蝶形运算的Cooley-Tukey算法。
这种实现方式将FFT过程分为了两个阶段:置换阶段和蝶形运算阶段。
置换阶段通过将信号重新排序,将原始序列分为奇偶两个子序列,并计算每个子序列的DFT。
这个过程可以递归地应用于子序列,直到长度为1蝶形运算阶段是FFT算法的核心部分。
蝶形运算是指将两个频域上的复数进行运算,得到新的复数。
第五章离散傅里叶变换及其快速算法 1离散傅里叶变换(DFT)的推导(1) 时域抽样:目的:解决信号的离散化问题。
效果:连续信号离散化使得信号的频谱被周期延拓。
⑵时域截断: 原因:工程上无法处理时间无限信号。
方法:通过窗函数(一般用矩形窗)对信号进行逐段截取。
结果:时域乘以矩形脉冲信号,频域相当于和抽样函数卷积。
(3)时域周期延拓:目的:要使频率离散,就要使时域变成周期信号。
方法:周期延拓中的搬移通过与 、:(t _nT s )的卷积来实现。
表示:延拓后的波形在数学上可表示为原始波形与冲激串序列的卷积。
结果:周期延拓后的周期函数具有离散谱。
经抽样、截断和延拓后,信号时域和频域都是离散、周期的。
过程见图抽样后0 fJif-用于截断原函数J L<Z 用于抽样i4LJI Ji WWtin1 f=1 ----------> --------------t-------------- ►fVtt截断后有卷积波纹i------------- ►t0 I------------------ rfJL 」L延拓后7角ii t飞7Vtfft \ \ t \ f定义DFT用于延拓「ITf处理后信号的连续时间傅里叶变换:I'U N *|nT sr 0 N图1 DFT 推导过程示意图〜 oo "N 4l ~(f)=£ IS h(nTs)ek =^O「j2 飞n/Nn=0-kf o )(i) l~(f)是离散函数,仅在离散频率点f二kf o k—处存在冲激,强度为a k,其T o NT s余各点为0。
〜N N 1(ii) H(f)是周期函数,周期为Nf o == 工,每个周期内有N个不同的幅值。
T o NT s T s(iii) 时域的离散时间间隔(或周期)与频域的周期(或离散间隔)互为倒数。
2 DFT及IDFT的定义DFT定义:设hnT s是连续函数h(t)的N个抽样值n=0,1,…,N J,这N个点的宽度为N 的DFT 为:DFT N h(nT s)]=^ h(nT s)e」2邢/N =H —— J (k =0,1,…,N _1)7 l NT s 丿IDFT定义:设H 上是连续频率函数H(f)的N个抽样值k =0,1,…,N J,这N个点(NT s 丿的宽度为N的IDFT为:DFT N1 H k丄7 H L e」2「nk/N厶nTs , (k =0,1,…,N —1)|L Ns N k 卫NT se^Rk/N称为N点DFT的变换核函数,e j2 flk/N称为N点IDFT的变换核函数。