第4章 离散傅里叶变换的计算
- 格式:pptx
- 大小:974.00 KB
- 文档页数:30
离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。
同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。
1. 离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展n j e ω-开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率ω变量。
时间序列x[n]的离散时间傅里叶变换定义如下:)(ωj e X (1.1)∑∞-∞=-=nnj j e n x e X ωω][)(通常是实变量的复数函数同时也是周期为的周期函数,并且)(ωj e X ωπ2的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。
)(ωj e X ωω这是由于:(1.2))()()(tan )()()()(sin )()()(cos )()(222ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X =+===由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出:)(ωj e X 1(1.3)ωπωππωd e eX n x n j j )(21][⎰-=故可以称该式为离散时间傅里叶逆变换(IDTFT ),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。
上述定义给出了计算DTFT 的方法,对于大多数时间序列其DTFT 可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单n α的封闭形式。
离散傅⾥叶变换(DFT) 对于第⼀幅图来说,它侧重展⽰傅⾥叶变换的本质之⼀:叠加性,每个圆代表⼀个谐波分量。
第⼆幅图直观的表⽰了⼀个周期信号在时域与频域的分解。
周期信号的三⾓函数表⽰ 周期信号是每隔⼀定时间间隔,按相同规律⽆始⽆终重复变化的信号。
任何周期函数在满⾜狄利克雷条件下(连续或只有有限个间断点,且都是第⼀类间断点;只有有限个极值点),都可以展开成⼀组正交函数的⽆穷级数之和。
使⽤三⾓函数集的周期函数展开就是傅⾥叶级数。
对于周期为T 的信号f(t),可以⽤三⾓函数集的线性组合来表⽰,即f(t)=a_0+\sum_{n=1}^{\infty }(a_n\cos n\omega t+b_n\sin n \omega t) 式中\omega=\frac{2\pi}{T}是周期信号的⾓频率,也成基波频率,n\omega称为n次谐波频率;a_0为信号的直流分量,a_n和b_n分别是余弦分量和正弦分量幅度。
根据级数理论,傅⾥叶系数a_0、a_n、b_n的计算公式为:\left\{\begin{matrix}a_0=\frac{1}{T}\int _{\frac{-T}{2}}^{\frac{T}{2}}f(t)dt \\ a_n=\frac{2}{T}\int _{\frac{-T}{2}}^{\frac{T}{2}}f(t)\cos{n\omegat}dt,n=1,2,3,... \\ b_n=\frac{2}{T}\int _{\frac{-T}{2}}^{\frac{T}{2}}f(t)\sin{n\omega t}dt,n=1,2,3,... \end{matrix}\right. 若将式⼦中同频率的正弦项和余弦项合并,得到另⼀种形式的周期信号的傅⾥叶级数,即f(t)=A_0+\sum_{n=1}^{\infty}A_n\cos(n\omega t+\varphi_n) 其中,A_0为信号的直流分量;A_1\cos(\omega t+\varphi_1)为信号的基频分量,简称基波;A_n\cos(n\omega t+\varphi_n)为信号的n次谐波,n ⽐较⼤的谐波,称为⾼次谐波。
离散傅里叶变化如何计算幅值与相位下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, suchas educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!离散傅里叶变换(DFT)是一种数学工具,用于将一个时域序列转换成频域序列。
离散傅里叶变换和傅里叶变换离散傅里叶变换(Discrete Fourier Transform, DFT)和傅里叶变换(Fourier Transform)是信号处理和频谱分析中非常重要的概念。
它们可以帮助我们理解信号的频率成分,对信号进行频域分析,以及在数字信号处理中起到了非常重要的作用。
本篇文章将从简单到复杂,从浅入深地介绍离散傅里叶变换和傅里叶变换的概念和应用,帮助大家更深入地理解这两个概念。
一、离散傅里叶变换1. 概念概述离散傅里叶变换是傅里叶变换在离散域上的表示。
它将一个离散的信号转化为一组离散的频谱成分,用于分析信号的频域特性。
在许多数字信号处理的应用中,离散傅里叶变换被广泛应用,比如音频分析、图像处理等领域。
2. 计算公式离散傅里叶变换的计算公式可以表示为:$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{\frac{-j2\pi kn}{N}}$其中,$X_k$表示频谱分量,$x_n$表示输入信号的离散样本,而$e^{\frac{-j2\pi kn}{N}}$则是复指数函数。
3. 应用场景离散傅里叶变换在数字信号处理中有着广泛的应用,包括语音处理、图像处理、通信系统等。
它可以帮助我们分析信号的频谱特性,对信号进行压缩、滤波等操作。
二、傅里叶变换1. 概念概述傅里叶变换是一种数学变换,将一个时域上的信号转化为频域上的表示。
通过傅里叶变换,我们可以将信号分解为不同频率成分,从而更好地理解信号的频谱特性。
2. 计算公式傅里叶变换的计算公式可以表示为:$X(f) = \int_{-\infty}^{\infty}x(t) \cdot e^{-j2\pi ft} dt$其中,$X(f)$表示频谱成分,$x(t)$表示输入信号,而$e^{-j2\pi ft}$则是复指数函数。
3. 应用场景傅里叶变换在信号处理、通信系统、图像处理等领域都有着非常重要的应用。
它可以帮助我们分析信号的频谱特性,进行滤波、压缩等操作,同时也在图像处理中起到了重要作用。