回归分析预测法
- 格式:ppt
- 大小:519.00 KB
- 文档页数:36
利用多元线性回归分析进行预测多元线性回归是一种重要的统计分析方法,它可以使用多个自变量来预测一个连续的因变量。
在实际生活中,多元线性回归分析广泛应用于各个领域,如经济学、金融学、医学研究等等。
本文将介绍多元线性回归分析的基本原理、应用场景以及注意事项,并通过实例来展示如何进行预测。
首先,我们来了解一下多元线性回归的基本原理。
多元线性回归建立了一个线性模型,它通过多个自变量来预测一个因变量的值。
假设我们有p个自变量(x1, x2, ..., xp)和一个因变量(y),那么多元线性回归模型可以表示为:y = β0 + β1*x1 + β2*x2 + ... + βp*xp + ε其中,y是我们要预测的因变量值,β0是截距,β1, β2, ..., βp是自变量的系数,ε是误差项。
多元线性回归分析中,我们的目标就是求解最优的系数估计值β0, β1, β2, ..., βp,使得预测值y与实际观测值尽可能接近。
为了达到这个目标,我们需要借助最小二乘法来最小化残差平方和,即通过最小化误差平方和来找到最佳的系数估计值。
最小二乘法可以通过求解正规方程组来得到系数估计值的闭式解,也可以通过梯度下降等迭代方法来逼近最优解。
多元线性回归分析的应用场景非常广泛。
在经济学中,它可以用来研究经济增长、消费行为、价格变动等问题。
在金融学中,它可以用来预测股票价格、利率变动等。
在医学研究中,它可以用来研究疾病的风险因素、药物的疗效等。
除了以上领域外,多元线性回归分析还可以应用于市场营销、社会科学等各个领域。
然而,在进行多元线性回归分析时,我们需要注意一些问题。
首先,我们需要确保自变量之间不存在多重共线性。
多重共线性可能会导致模型结果不准确,甚至无法得出可靠的回归系数估计。
其次,我们需要检验误差项的独立性和常态性。
如果误差项不满足这些假设,那么回归结果可能是不可靠的。
此外,还需要注意样本的选取方式和样本量的大小,以及是否满足线性回归的基本假设。
回归预测法的基本步骤
1.确定预测目标:明确预测的具体目标,也就是确定因变
量。
例如,如果预测目标是下一年度的销售量,那么销售量Y就是因变量。
2.收集数据:收集与预测目标相关的影响因素的数据,这些
因素是自变量。
例如,可以收集市场调查和查阅资料来寻找与预测目标(销售量)的相关影响因素,并从中选出主要的影响因素。
3.进行相关分析:回归分析需要对具有因果关系的自变量
(影响因素)和因变量(预测对象)所进行的数理统计分析处理。
只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。
进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。
4.建立回归预测模型:依据自变量和因变量的历史统计资料
进行计算,在此基础上建立回归分析方程,即回归分析预测模型。
5.回归预测模型的检验:对回归预测模型进行检验,包括相
关性检验、F检验、t检验等,以确保模型的预测误差较小。
6.预测:利用回归预测模型计算预测值,并对预测值进行综
合分析,确定最后的预测值。
回归分析预测法回归分析预测法是通过研究分析一个应变量对一个或多个自变量的依赖关系,从而通过自变量的已知或设定值来估计和预测应变量均值的一种预测方法。
回归分析预测法又可分成线性回归分析法、非线性回归分析法、虚拟变量回归预测法三种。
(一)线性回归分析法的运用线性回归预测法是指一个或一个以上自变量和应变量之间具有线性关系(一个自变量时为一元线性回归,一个以上自变量时为多元线性回归),配合线性回归模型,根据自变量的变动来预测应变量平均发展趋势的方法。
散点圈分析: 自变量和因变量具备线性关系最小二乘法来估计模型的回归系数回归系数的估计值:(相关系数R可根据最小二乘原理及平均数的数学性质得到:估计标准差:预测区间:a为显著水平,n-2为自由度,为y在x o的估计值。
2.预测计算根据上面介绍的预测模型,下面就先计算第一季度的预测销售量。
(X为时间,Y为销售量)。
n=16;;;;;根据公式(5)、(6)、(7)、(8)、(9)有:(x i = 17)i0.025(14) = 2.145(二)非线性回归预测法的运用非线性回归预测法是指自变量与因变量之间的关系不是线性的,而是某种非线性关系时的回归预测法。
非线性回归预测法的回归模型常见的有以下几种:双曲线模型、二次曲线模型、对数模型、三角函数模型、指数模型、幂函数模型、罗吉斯曲线模型、修正指数增长模型。
散点图分析发现,抛物线形状,可用非线性回归的二次曲线模型来预测。
1.预测模型非线性回归二次曲线模型为:(10)令,则模型变化为:(11)上式的矩阵形式为:Y = XB + ε(12)用最小二乘法作参数估计,可设观察值与模型估计值的残差为E,则,根据小二乘法要求有:=最小值,(13)即:=最小值由极值原理,根据矩阵求导法,对B求导,并令其等于零,得:整理得回归系数向量B的估计值为:(14)二次曲线回归中最常用的检验是R检验和F检验,公式如下:(15)(16)在实际工作中,R的计算可用以下简捷公式:(17) 估计标准误差为:(18)预测区间为:·S (n<30)(19)·S (n>30)(20)2.预测计算根据上面介绍的预测模型,下面就先进行XT100-W的预测计算。