生物可降解材料
- 格式:pdf
- 大小:2.55 MB
- 文档页数:17
生物基 PLA 材料是一种新型的生物降解材料,它是由可再生的生物质资源如玉米、木薯等经过发酵、聚合等工艺制成的。
相比传统的石油基塑料,生物基 PLA 材料具有以下优点:
1. 可降解性:生物基 PLA 材料在自然环境中可以被微生物分解为二氧化碳和水,不会对环境造成污染。
2. 良好的物理性能:生物基 PLA 材料具有较好的力学强度、透明度和柔韧性,可以用于制作各种塑料制品。
3. 原料可再生:生物基 PLA 材料的原料来自于可再生的生物质资源,不会消耗有限的石油资源。
4. 良好的生物相容性:生物基 PLA 材料具有良好的生物相容性,可以用于制作医疗器械、药品包装等领域。
总之,生物基 PLA 材料是一种具有广阔应用前景的新型生物降解材料,它的推广和应用将有助于减少塑料污染,保护环境,促进可持续发展。
需要注意的是,生物基 PLA 材料的性能和成本仍然需要进一步优化和降低,以满足不同领域的需求。
同时,也需要加强对生物基 PLA 材料的回收和处理,以确保其可持续发展。
⽣物可降解材料可⽣物降解的材料有天然⾼分⼦、⽣物合成⾼分⼦、⼈⼯合成⾼分⼦、⽣物活性玻璃、磷酸三钙等。
天然⾼分⼦均为亲⽔性材料,如胶原、明胶、甲壳素、淀粉、纤维素、透明质酸等,它们在⼈体内的降解速度与材料在⼈体⽣理环境下的溶解特性有关。
例如明胶分⼦能够溶于与体液相似pH 值为714 的⽣理盐⽔中,因⽽必须先进⾏交联才能作为材料在⼈体中使⽤[4~6 ] ,其交联产物在⼈体内降解2溶解的速度很快,⼏天内就可被⼈体完全吸收。
与此相对应,在正常⽣理环境下不溶解的天然⾼分⼦,如甲壳素(在酸性环境下溶解) [7 ] ,其降解速率就要慢得多。
磷酸三钙具有良好的⽣物相容性、⽣物活性以及⽣物降解性,是理想的⼈体硬组织修复和替代材料,在⽣物医学⼯程学领域⼀直受到⼈们的密切关注。
医学上通常使⽤的是磷酸三钙的⼀种特殊形态—β-磷酸三钙。
β-磷酸三钙主要是由钙、磷组成,其成分与⾻基质的⽆机成分相似,与⾻结合好。
动物或⼈体细胞可以在β-磷酸三钙材料上正常⽣长,分化和繁殖。
通过⼤量实验研究证明:β-磷酸三钙对⾻髓造⾎机能⽆不良反应,⽆排异反应,⽆急性毒性反应,不致癌变,⽆过敏现象。
因此β-磷酸三钙可⼴泛应⽤于关节与脊柱融合、四肢创伤、⼝腔颌⾯的外科、⼼⾎管外科,以及填补⽛周的空洞等⽅⾯。
随着⼈们对β-磷酸三钙研究的不断深⼊,其应⽤形式也出现了多样化,幵在临床医学中体现了较好的性能。
梁⼽等通过实验发现其溶⾎程度<5%,当β-磷酸三钙被植⼊⼈体内后,其在体液中能发⽣降解和吸收,钙、磷被体液吸收后进⼊⼈体循环系统,⼀定时间后植⼊⼈体的β-磷酸三钙逐渐溶解消失,形成新⾻。
Arai等利⽤β-磷酸三钙多孔陶瓷填充8~15cm 的腓⾻节段缺损,获得了腓⾻再⽣。
平均术后2个⽉即可达到重建。
不会发⽣踝关节及胫⾻的移位。
郑承泽等将β-磷酸三钙与⾃体⾻髓复合应⽤于临床,修复包括肿瘤性⾻缺损和陈旧性⾻折⾻缺损,经术后调查,结果显⽰植⼊材料的成⾻作⽤明显,说明β-磷酸三钙与⾃体⾻髓复合是⼀种治疗⾻缺损理想的⽅法。
1.2 生物可降解材料概述随着高分子材料在国民经济、国防建设和尖端技术等领域的广泛应用,其产生的白色污染也严重影响到人类生存的环境。
尤其在环境保护越来越受人们关注的今天,生物可降解高分子材料(塑料、香蕉、纤维等)的开发和应用研究已受到世界各国的重视。
生物可降解材料能在微生物分泌酶的作用下由大分子分解成小分子,从而能够改善原来的高分子材料使用后无法自然分解而产生大量废弃物的缺点,就能从根本上解决废弃物造成的白色污染。
1.2.1 生物可降解材料的定义及降解机理生物可降解高分子材料是指在一定时间和适当的自然条件下能够被微生物(如细菌、真菌、藻类等)或其分泌物在酶或化学分解作用下发生降解的材料。
生物降解是指高分子材料通过简单水解、酶反应或者溶剂化作用,以及其他有机体转化为相对简单的中间产物,进而转变成小分子的过程。
降解过程一般分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。
(翟美玉)水合作用是由依靠范德华力和氢键维系的二次、三次结构的破裂而引发的水合作用,其后高分子主链可能因化学或酶催化水解而破裂,高分子材料的强度降低。
对交联高分子材料强度的降低,可由高分子主链、交联剂、外悬基团的开裂等造成。
高分子链的进一步断裂会导致质量损失和相对分子质量降低,最后相对分子质量足够低的分子链小段被酶进一步代谢为水、二氧化碳等物质。
生物降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用、相互促进的物理化学过程。
到目前为止,有关生物降解的机理尚未完全阐述清楚。
因此,除了生物降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。
一般认为高分子材料的生物降解是经过两个过程进行的。
首先,微生物向体外分泌水解酶与材料表面结合,通过水解切断表面的高分子链,生成分子量小于500g/mol以下的小分子量化合物(有机酸、糖等),然后降解的生成物被微生物摄入体内,经过种种代谢路线,合成为微生物体物或转化为微生物活动的能量,最终转化成二氧化碳和水。
生物可降解高分子材料
生物可降解高分子材料是一种在多年的发展中被越来越多地采用的材料,它具有良好
的可降解性能,而且没有环境污染。
生物可降解材料一般都是指通过有机物质,如细菌、
酵母等,用生物酶受体产生和降解可生物降解的高分子材料。
生物可降解高分子材料的主要原料可以分为葡萄糖类和植物油脂类两大类,葡萄糖类
材料主要来源于玉米、大豆等蛋白质类植物,如羟基玉米淀粉;植物油脂类材料主要来源
于油料豆类植物,如棉籽、玉米籽等。
生物可降解高分子材料可以通过有机物质,如细菌、酵母等,催化发生降解,产生CO2和H2O,不会产生废料污染环境。
今天,生物可降解高分子材料主要应用于食品包装、医疗、地膜、种植培养板、耕作
层及各种收集装置。
聚乳酸(PLA)是一种绿色、可降解和可生物降解的高分子材料,是
生物可降解高分子材料中最经典的材料之一。
同时,由于它具有乳白色、柔软的性能、抗
静电的性能以及耐温性,因此也可以用于汽车内饰,电子产品和家具等方面的应用。
总之,随着我们对环境及社会的日益重视,生物可降解高分子材料的使用将越来越多,取得越来越好的结果。
它可以有效地帮助我们去减少环境污染,保护我们的环境,提高我
们生活的品质。
生物可降解高分子材料生物可降解高分子材料,是指以天然有机物为主要原料制备的高分子材料,经过特殊处理后能够在自然环境中被微生物或其他生物降解,最终转化成二氧化碳、水和生物质等无害物质的材料。
与传统的合成塑料相比,生物可降解高分子材料具有许多优势,如低碳排放、资源可再生、对环境友好等。
生物可降解高分子材料的原料主要来自于可再生的植物和动物资源,如淀粉、纤维素、蛋白质等。
它们通过特殊的加工技术,如酯交换反应、水解反应等,转化成生物可降解高分子材料。
这些材料在使用过程中通常不会对环境造成污染,因为它们可以被微生物分解并与自然界无害物质循环。
生物可降解高分子材料具有许多优点。
首先,它们能够显著减少对环境的污染。
传统塑料制品通常需要数百年才能被降解,对环境造成严重威胁。
而生物可降解高分子材料的降解速度远远快于传统塑料,减少了对土壤和水源的污染。
其次,生物可降解高分子材料可以降低碳排放。
生产生物可降解高分子材料的过程中,相对于传统塑料,其二氧化碳排放量更低,对气候变化的影响更小。
此外,生物可降解高分子材料可以有效利用可再生资源,不会对非可再生资源造成枯竭。
与此同时,生物可降解高分子材料本身也能作为良好的土壤改良剂和植物营养源,促进土壤生态系统健康发展。
然而,生物可降解高分子材料也存在一些挑战和限制。
首先,由于生物可降解高分子材料通常比传统塑料价格更高,其成本仍然是一个制约因素。
其次,目前的生物可降解高分子材料在性能上还无法完全替代传统塑料。
例如,在机械性能、热稳定性和耐化学性等方面,生物可降解高分子材料仍然存在一定差距,不能满足一些特殊行业的需求。
此外,生物可降解高分子材料的降解速度也需要控制,否则可能会造成不必要的资源浪费。
为了推动生物可降解高分子材料的广泛应用,需要加强相关技术的研究和开发。
首先,需要提高生物可降解高分子材料的性能,使其能够满足广泛的应用需求。
这可以通过改进材料配方、加强材料加工和改良材料结构等方式来实现。
生物可降解材料分类
生物可降解材料可以根据来源、物理性质、化学性质等特点进行分类。
1.来源分类
(1)天然生物可降解材料:如淀粉、纤维素、蛋白质等,是自然界中存在的有机物质,分子结构相对简单,易于生物降解。
(2)合成生物可降解材料:是通过化学合成手段制得的生物可降解材料,通常是由生物基质和降解基质两部分组成。
生物基质通常为高分子材料,如聚乳酸、聚羟基脂肪酸酯;降解基质则是支持生物降解反应的化合物,如淀粉、纤维素、蛋白质等天然材料。
2.物理性质分类
(1)可注塑材料:如聚乳酸、聚己内酯等,可通过注塑工艺制成各种形状的制品。
(2)可拉伸材料:如淀粉基袋、纤维素基薄膜等,适用于制造各种包装材料。
(3)可压制材料:如压制型淀粉、压制型纤维素等,适用于制造
各种盒子、餐具等。
3.化学性质分类
(1)聚乳酸类:是目前生产规模最大的生物可降解材料之一,具
有优良的机械性能和稳定性,适用于制造各种包装材料和医疗器械。
(2)聚己内酯类:具有良好的热稳定性、韧性和生物降解性,适
用于制造各种医疗器械和特殊包装材料。
(3)淀粉类:具有良好的生物降解性和可加工性,适用于制造各
种食品包装、土壤修复材料等。
(4)蛋白质类:具有良好的生物相容性和生物降解性,适用于制
造各种医疗器械、组织修复材料等。
以上是生物可降解材料的分类介绍,每种材料都有其特定的应用
领域和优点,目前在环保、生活用品和医疗器械等方面得到广泛应用。
随着科技的发展和人们对环境保护意识的提高,生物可降解材料将成
为未来发展的重要方向之一。