SAS统计之第五章线性回归分析
- 格式:ppt
- 大小:729.73 KB
- 文档页数:47
用SAS/INSIGHT进行线性回归分析上面我们已经看到,用菜单“Analyze | Fit (Y X)”就可以拟合一条回归直线,这是对回归方程的估计结果。
这样的线性回归可以推广到一个因变量、多个自变量的情况。
线性模型写成矩阵形式为下面列出了线性模型中常用的一些量和结论:∙为因变量向量∙为矩阵,一般第一列元素全是1,代表截距项∙为未知参数向量∙为随机误差向量,元素独立且方差为相等的(未知)。
∙正常情况下,系数的估计为∙拟合值(或称预报值)为∙其中是空间内向的列张成的线性空间投影的投影算子矩阵,叫做“帽子”矩阵。
∙拟合残差为∙残差平方和为∙误差项方差的估计为(要求设计阵满秩)均方误差(MSE)∙ 在线性模型的假设下,若设计阵 满秩, 和 分别是 和 的无偏估计,系数估计的方差阵 。
∙ 判断回归结果优劣的一个重要指标为复相关系数平方(决定系数)(其中),它代表在因变量的变差中用模型能够解释的部分的比例,所以 越大说明模型越好。
例如,我们在“Fit (Y X)”的选择变量窗口选Y 变量(因变量)为体重(WEIGHT ),选X 变量(自变量)为身高(HEIGHT )和年龄(AGE ),则可以得到体重对身高、年龄的线性回归结果。
下面对基本结果进行说明。
回归基本模型:WEIGHT = HEIGHT AGEResponse Distribution: NormalLink Function: Identity回归模型方程:Model EquationWEIGHT = - 141.2238 + 3.5970 HEIGHT + 1.2784 AGE 拟合概况:Summary of FitMean of Response 100.0263 R-Square 0.7729 Root MSE 11.5111 Adj R-Sq 0.7445 其中Mean of Response 为因变量(Response )的均值,Root MSE 叫做根均方误差,是均方误差的平方根,R-Square 即复相关系数平方,Adj R-Sq 为修正的复相关系数平方,其公式为 ,其中 当有截距项时取1,否则取0,这个公式考虑到了自变量个数 的多少对拟合的影响,原来的随着自变量个数的增加总会增大,而修正的则因为 对它有一个单调减的影响所以 增大时修正的不一定增大,便于不同自变量个数的模型的比较。
回归分析-简单线性回归、多元线性回归比较:方差分析是处理试验数据的一类统计方法。
这类统计方法的特点是所考察的指标(因变量)Y 是测量得到的数值变量(连续变量),而影响指标的因子(自变量)水平是试验者安排的几个不同值(称这种因子为分类变量或离散变量)。
试验的目的是找出影响指标的主要因子及水平。
在实际问题中,还经常遇到这样一些数据,它们不是有意安排的试验得到的数据,而是对生产过程测量记录下来的数据。
对它们进行分析,目的是想找出对我们所关心的指标(因变量)Y 有影响为因素(也称自变量或回归变量)m x x x ,......,,21,并建立用m x x x ,......,,21预报Y 的经验公式。
对于现实世界,不仅要知其然,而且要知其所以然。
顾客对商品和服务的反映对于商家是至关重要的,但是仅仅有满意顾客的比例是不够的,商家希望了解什么是影响顾客观点的因素,以及这些因素是如何起作用的。
类似地,医疗卫生部门不能仅仅知道某流行病的发病率,而且想知道什么变量影响发病率,如何影响发病率的。
发现变量之间的统计关系,并且用此规律来帮助我们进行决策才是统计实践的最终目的。
一般来说,统计可以根据目前所拥有的信息(数据)来建立人们所关心的变量和其他有关变量的关系。
这种关系一般称为模型(model )。
假如用Y 表示感兴趣的变量,用X 表示其他可能与Y 有关的变量(x 也可能是若干变量组成的向量)。
则所需要的是建立一个函数关系Y=f(X)。
这里Y 称为因变量或响应变量(dependent variable, response variable ),而X 称为自变量,也称为解释变量或协变量(independent variable ,explanatory variable, covariate)。
建立这种关系的过程就叫做回归(regression )。
一旦建立了回归模型,除了对各种变量的关系有了进一步的定量理解之外,还可以利用该模型(函数或关系式)通过自变量对因变量做预测(prediction )。
快速上手使用SAS进行统计分析和建模第一章:引言SAS(Statistical Analysis System)是一种功能强大的统计分析和建模工具,广泛应用于各个领域的数据分析。
本文将介绍如何快速上手使用SAS进行统计分析和建模。
我们将按照不同的步骤和技巧,逐步介绍如何运用SAS进行数据处理、描述统计、假设检验、回归分析以及模型建立与评估等。
第二章:数据处理在使用SAS进行统计分析之前,我们首先需要对数据进行处理。
这包括数据清洗、格式转换、合并和抽样等操作。
通过使用SAS的数据步骤(Data Step)和数据流程(Data Flow)技术,我们可以对数据集中的缺失值、异常值等进行处理,保证数据的准确性和完整性。
第三章:描述统计分析描述统计分析是数据分析的基础,通过对数据的基本特征进行分析,我们可以获得关于数据集的详细信息。
SAS提供了丰富的描述统计分析方法,包括均值、方差、相关系数、频率分布等。
我们可以使用PROC MEANS、PROC UNIVARIATE、PROC FREQ等过程来进行描述统计分析,并得到直观的统计图表。
第四章:假设检验假设检验是统计分析中常用的方法,用于验证研究假设的合理性。
SAS提供了多种假设检验方法,包括t检验、方差分析、卡方检验等。
我们可以使用PROC TTEST、PROC ANOVA、PROC CORR等过程来进行假设检验,并得出显著性结论,进一步推断总体参数。
第五章:回归分析回归分析是用于研究变量之间关系的重要方法,旨在构建预测模型和解释变量之间的关系。
SAS提供了强大的回归分析工具,包括线性回归、逻辑回归、多元回归等。
我们可以使用PROC REG、PROC LOGISTIC、PROC GLM等过程来进行回归分析,并获取模型的系数、拟合优度等统计结果。
第六章:模型建立与评估模型建立与评估是统计建模的关键环节,通过选择合适的变量和建立合理的模型,我们可以对数据进行预测和推断。
线性回归20094788 陈磊 计算2SouthWest JiaoT ong U niversity-------------------------------------------------------------------线性回归分为一元线性回归和多元线性回归。
一元线性回归的模型为Y=β0+β1X+ε,这里X是自变量,Y是因变量,ε是随机误差项。
通常假设随机误差的均值为0,方差为σ2(σ2>0),σ2与X的值无关。
若进一步假设随机误差服从正态分布,就叫做正态线性模型。
一般情况,设有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是由于自变量的影响,即表示为自变量的函数,其中函数形式已知,但含有一些未知参数;另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。
当函数形式为未知参数的线性函数时,称为线性回归分析模型。
如果存在多个因变量,则回归模型为:Y=β0+β1X1+β2X2+⋯+βi X i+ε。
由于直线模型中含有随机误差项,所以回归模型反映的直线是不确定的。
回归分析的主要目的是要从这些不确定的直线中找出一条最能拟合原始数据信息的直线,并将其作为回归模型来描述因变量和自变量之间的关系,这条直线被称为回归方程。
通常在回归分析中,对ε有以下最为常用的经典假设。
1、ε的期望值为0.2、ε对于所有的X而言具有同方差性。
3、ε是服从正态分布且相互独立的随机变量。
对线性回归的讲解,本文以例题为依托展开。
在下面的例题中既有一元回归分析,又有二元回归分析。
例题(《数据据分析方法》_习题2.4_page79)某公司管理人员为了解某化妆品在一个城市的月销量Y(单位:箱)与该城市中适合使用该化妆品的人数X1(单位:千人)以及他们人均月收入X2(单位:元)之间的关系,在某个月中对15个城市作了调查,得到上述各量的观测值如表2.12所示。
假设Y与X1,X2之间满足线性回归关系y i=β0+β1x i1+β2x i2+εi,i=1,2,…,15其中εi独立同分布于N(0,σ2).(1)求线性回归系数β0,β1,β2的最小二乘估计和误差方差σ2的估计,写出回归方程并对回归系数作解释;(2)求出方差分析表,解释对线性回归关系显著性检验结果。