当前位置:文档之家› 高等代数教案 北大版 第二章

高等代数教案 北大版 第二章

高等代数教案 北大版 第二章
高等代数教案 北大版 第二章

就是说,行列式等于某一行的元素分别与它们代数余子式的

高等代数北大版课程教案-第5章二次型

第五章 二次型 §1 二次型的矩阵表示 一 授课内容:§1 二次型的矩阵表示 二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同. 三 教学重点:矩阵表示二次型 四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程: 定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 n n n x x a x x a x a x x x f 11211221112122),,,( n n x x a x a 2222222 (2) n nn x a (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型. 例如:2 3 322231212 13423x x x x x x x x x 就是有理数域上的一个3元二次型. 定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式 n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4) 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0 ij c ,那么线性替换(4)就称为非退化的. 二次型的矩阵表示:

令 ji ij a a ,j i 由于 i j j i x x x x ,那么二次型(3)就可以写为 n n n x x a x x a x a x x x f 112112211121),,,( n n x x a x a x x a 2222221221 …+2 2211n nn n n n n x a x x a x x a n i n j j i ij x x a 11 (5) 把(5)的系数排成一个n n 矩阵 nn n n n n a a a a a a a a a A 21 22221 112 11 它称为二次型(5)的矩阵.因为ji ij a a ,n j i ,,2,1, ,所以 A A . 我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的. 令 n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, n x x x AX X 2 1 nn n n n n a a a a a a a a a 21 22221 11211 n x x x 21 n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 221 122221 21121211121 n i n j j i ij x x a 11. 故 AX X x x x f n ),,,(21 .

高等代数北大版教案-第5章二次型

高等代数北大版教案- 第5章二次型 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

48 第五章 二次型 §1 二次型的矩阵表示 一 授课内容:§1 二次型的矩阵表示 二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同. 三 教学重点:矩阵表示二次型 四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程: 定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 ++++=n n n x x a x x a x a x x x f 11211221112122),,,( +++n n x x a x a 2222222 (2) n nn x a + (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型. 例如:2 3 322231212 13423x x x x x x x x x +++++ 就是有理数域上的一个3元二次型. 定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式 ???????+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4) 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0≠ij c ,那么线性替换(4)就称为非退化的. 二次型的矩阵表示:

49 令 ji ij a a = ,j i < 由于 i j j i x x x x =,那么二次型(3)就可以写为 ++++=n n n x x a x x a x a x x x f 112112211121),,,( ++++n n x x a x a x x a 2222221221 …+2 2211n nn n n n n x a x x a x x a +++ ∑∑===n i n j j i ij x x a 11 (5) 把(5)的系数排成一个n n ?矩阵 ?? ? ? ? ?? ??=nn n n n n a a a a a a a a a A 2122221 112 11 它称为二次型(5)的矩阵.因为ji ij a a =,n j i ,,2,1, =,所以 A A ='. 我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的. 令???? ?? ? ??=n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, ()n x x x AX X 2 1 ='??????? ??nn n n n n a a a a a a a a a 2 1 22221 11211??? ? ? ? ? ??n x x x 21 ()? ??? ??? ??+++++++++=n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 221 122221 2112121112 1 ∑∑===n i n j j i ij x x a 11.

高等代数(张禾瑞版)教案-第5章矩阵

高等代数(张禾瑞版) 教案-第5章矩阵 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第五章 矩 阵 教学目的: 1. 掌握矩阵的加法,乘法及数与矩阵的乘法运算法则。及其基本性质,并熟练地对矩阵进行运算。 2. 了解几种特殊矩阵的性质。 教学内容: 5.1 矩阵的运算 1 矩阵相等 我们将在一个数域上来讨论。令F 是一个数域。用F 的元素a ij 作成的一个m 行n 列矩阵 A= ?????? ? ??a a a a a a a a a mn m m n n 2 1 222 2111211 叫做F 上一个矩阵。A 也简记作(a ij )。为了指明 A 的行数和列数,有时也把它记作A mn 或 (a ij )mn 。 一个 m 行n 列矩阵简称为一个m*n 矩阵。特别,把一个n*n 矩阵叫做一个 n 阶正方阵,或n 阶矩阵。 F 上两个矩阵,只有在它们有相同的行数和列数,并且对应位置上的 元素都相等时,才认为上相等的。 以下提到矩阵时,都指的是数域F 上的矩阵。 我们将引进三种运算:数与矩阵的乘法,矩阵的加法以及矩阵的乘法。 先引入前两种运算。 2 矩阵的线性运算 定义 1 数域F 的数 a 与F 上一个m*n 矩阵A=(a ij ) 的乘法aA 指的是m*n 矩阵(aa ij ) 定义 2 两个m*n 矩阵A=(a ij ),B=(b ij ) 的和A+B 指的是m*n 矩阵(a ij +b ij )。 注意 ,我们只能把行数相同,列数相同的两个矩阵相加。 以上两种运算的一个重要特例是数列的运算。 现在回到一般的矩阵。我们把元素全是零的矩阵叫做零矩阵,记作0。如果矩阵 A=(a ij ), 我们就把矩阵(- a ij ),叫做A 的负矩阵,记作—A 。 3 矩阵线性运输的规律 A+B=B+A ; (A+B)+C=A+(B+C); 0+A=A ; A+(-A)=0; a(A+B)=Aa+Ab ; (a+b)A=Aa+Ba ; a(bA)=(ab)A ; 这里A,B 和 C 表示任意m*n 矩阵,而a 和 b 表示 F 中的任意数。 利用负矩阵,我们如下定义矩阵的减法: A —B=A+(— B )。 于是有 A+B=C ?A=C —B 。 由于数列是矩阵的特例,以上运算规律对于数列也成立。 4 乘法

(完整word版)高等代数教案北大版第六章.doc

授课内容教学时数教学目标教学重点教学难点 教学方法与 手段 教 学 过 程 第六章线性空间第一讲集合映射 2授课类型讲授通过本节的学习, 掌握集合映射的有关定义、运算, 求和号与乘积号的定义 集合映射的有关定义 集合映射的有关定义 讲授法启发式 1.集合的运算 , 集合的映射 ( 像与原像、单射、满射、双射 ) 的概念 定义 : ( 集合的交、并、差 ) 设S是集合 , A与B的公共元素所组成的集合 成为 A 与 B 的交集,记作A B ;把 A 和B中的元素合并在一起组成的集合成 为 A 与 B 的并集,记做 A B ;从集合 A中去掉属于 B 的那些元素之后剩下的元素组成的集合成为 A 与B的差集,记做A B . 定义 : ( 集合的映射 ) 设 A B 为集合 . 如果存在法则 f , 使得 A 中任意元素 、 a 在法则f下对应B中唯一确定的元素( 记做f (a) ), 则称f是A到B的一个映射 , 记为 f : A B, a f (a). 如果 f (a) b B , 则 b 称为a在 f 下的像,a称为 b 在 f 下的原像. A 的所有元素在 f 下的像构成的 B 的子集称为 A 在 f 下的像,记做 f ( A) ,即f ( A) f ( a) | a A . 若 a a' A, 都有 f (a) f (a'), 则称 f 为单射.若 b B, 都存在a A , 使得f (a) b ,则称 f 为满射 . 如果f既是单射又是满射, 则称f为双射 , 或称一一对应 . 2.求和号与求积号 (1)求和号与乘积号的定义

为了把加法和乘法表达得更简练 , 我们引进求和号和乘积号 . 设给定某个数域 K 上 n 个数 a 1, a 2 , , a n , 我们使用如下记号 : n n a 1 a 2 a n a i , a 1a 2 a n a i . i 1 i 1 当然也可以写成 a 1 a 2 a n a i , a 1 a 2 a n a i . 1 i n 1 i n (2) 求和号的性质 容易证明 , n n n n n n m m n a i a i , (a i b i ) a i b i , a ij a ij . i 1 i 1 i 1 i 1 i 1 i 1 j 1 j 1 i 1 事实上 , 最后一条性质的证明只需要把各个元素排成如下形状 : a 11 a 12 a 1 m a 21 a 22 a 2 m a n1 a n2 a nm 分别先按行和列求和 , 再求总和即可 . 讨论、练习与 作业 课后反思

高等代数北大版教案-第5章二次型教学内容

高等代数北大版教案-第5章二次型

仅供学习与交流,如有侵权请联系网站删除 谢谢48 第五章 二次型 §1 二次型的矩阵表示 一 授课内容:§1 二次型的矩阵表示 二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同. 三 教学重点:矩阵表示二次型 四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程: 定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 ++++=n n n x x a x x a x a x x x f 11211221112122),,,( +++n n x x a x a 2222222 (2) n nn x a + (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型. 例如:2 3 322231212 13423x x x x x x x x x +++++ 就是有理数域上的一个3元二次型. 定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式 ???????+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4)

仅供学习与交流,如有侵权请联系网站删除 谢谢49 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0≠ij c ,那么线性替换(4)就称为非退化的. 二次型的矩阵表示: 令 ji ij a a = ,j i < 由于 i j j i x x x x =,那么二次型(3)就可以写为 ++++=n n n x x a x x a x a x x x f 112112211121),,,( ++++n n x x a x a x x a 2222221221 …+2 2211n nn n n n n x a x x a x x a +++ ∑∑===n i n j j i ij x x a 11 (5) 把(5)的系数排成一个n n ?矩阵 ?? ? ? ? ?? ??=nn n n n n a a a a a a a a a A 2122221 112 11 它称为二次型(5)的矩阵.因为ji ij a a =,n j i ,,2,1, =,所以 A A ='. 我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的. 令???? ?? ? ??=n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, ()n x x x AX X 2 1 ='??????? ??nn n n n n a a a a a a a a a 2 1 22221 11211??? ? ? ? ? ??n x x x 21

高等代数北大版教案-第6章线性空间

第六章 线性空间 §1 集合映射 一 授课内容:§1 集合映射 二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和号 与乘积号的定义. 三 教学重点:集合映射的有关定义. 四 教学难点:集合映射的有关定义. 五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \. 定义:(集合的映射) 设A 、B 为集合.如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ).(,:a f a B A f → 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像.A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即 {}A a a f A f ∈=|)()(. 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射.若 ,B b ∈?都存在 A a ∈,使得b a f =)(,则称f 为满射.如果f 既是单射又是满射,则称f 为 双射,或称一一对应. 2.求和号与求积号 (1)求和号与乘积号的定义 为了把加法和乘法表达得更简练,我们引进求和号和乘积号. 设给定某个数域K 上n 个数n a a a ,,,21 ,我们使用如下记号:

高等代数北大版教案-第3章线性方程组

------------------------------------------------------------------------------------------------------------第三章 线性方程组 §1消元法 一 授课内容:§1消元法 二 教学目的:理解和掌握线性方程组的初等变换,同解变换,会用消元法解线性方程组. 三 教学重难点:用消元法解线性方程组. 四 教学过程: 所谓的一般线性方程组是指形式为 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ....................................................22112222212111212111 (1) 的方程组,其中n x x x ,,,21Λ代表n 个未知量,s 是方程的个数,ij a (s i ,,2,1Λ=,n j ,,2,1Λ=)称为方程组的系数,j b (s j ,,2,1Λ=)称为常数项. 所谓方程组(1)的的一个解就是指由n 个数 组成的有序数组(n k k k ,,,21Λ) ,当 n x x x ,,,21Λ分别用 n k k k ,,,21Λ 代入后,(1)中每个等式变为恒等式,方程组(1)的解的全体称为它的解集合. 解方程组实际上就是找出它的全部解,或则说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的. 显然,如果知道了一个线性方程组的全部系数和常数项,那么这个方程组就基本上确定了,确切的说,线性方程组(1)可以用如下的矩阵

高等代数北大版课程教案-第3章线性方程组

第三章 线性方程组 §1消元法 一 授课内容:§1消元法 二 教学目的:理解和掌握线性方程组的初等变换,同解变换,会用消元法解线性方程组. 三 教学重难点:用消元法解线性方程组. 四 教学过程: 所谓的一般线性方程组是指形式为 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ....................................................22112222212111212111 (1) 的方程组,其中n x x x ,,,21Λ代表n 个未知量,s 是方程的个数,ij a (s i ,,2,1Λ=,n j ,,2,1Λ=)称为方程组的系数,j b (s j ,,2,1Λ=)称为常数项. 所谓方程组(1)的的一个解就是指由n 个数 组成的有序数组(n k k k ,,,21Λ) ,当 n x x x ,,,21Λ分别用 n k k k ,,,21Λ 代入后,(1)中每个等式变为恒等式,方程组(1)的解的全体称为它的解集合. 解方程组实际上就是找出它的全部解,或则说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的. 显然,如果知道了一个线性方程组的全部系数和常数项,那么这个方程组就基本上确定了,确切的说,线性方程组(1)可以用如下的矩阵 ?????? ? ??s sn s s n n b b b a a a a a a a a a ΛΛΛΛΛΛΛΛ21212222111211 来表示. 在中学代数里,我们学习过用加减消元法和代入消元法解二元,三元

高等代数教师教学案(北大版)行列式计算方法

行列式计算方法 1. 利用行列式的定义直接计算:适用于行列式中零比较多的情形. 2. 化行列式为三角形行列式——初等变换法 1) 保留某行(列)不动,将其它的行(列)分别乘上常数加到这一行(列) 上。 2) 将某行(列)的倍数分别加到其它各行(列) 3) 逐行(列)相加 4) 加边法——在原行列式的边上增加一行一列,使行列式级数增加1, 但值不变。 例1 计算行列式 12121 2 n n n n a m a a a a m a D a a a m ++= +L L M M M L 3. 利用行列式展开定理。适用于某行(列)有较多零的行列式. 4. 其他方法 (一)析因子法——利用多项式的性质 例:计算22 1 1231223231 5 2 3 19x D x -=- 解:由行列式定义知D 为x 的4次多项式. 又,当1x =±时,1,2行相同,有0D =,1x ∴=±为D 的根. 当2x =±时,3,4行相同,有0,2D x =∴=±为D 的根. 故D 有4个一次因式,1,1,2,2x x x x +-+- 设 (1)(1)(2)(2),D a x x x x =+-+- 令0,x =则 1123 12231223152319 D = =-, 即,1(1)2(2)12.a ??-??-=- 3.a ∴=- 3(1)(1)(2)(2)D x x x x ∴=-+-+-

(二)箭形行列式 01211122 00 00,0,1,2,3.00n n i n n a b b b c a D c a a i n c a +=≠=L L L L L L L L L L 解:把所有的第1i +列(1,2)i n =L 的i i c a - 倍加到第1列,得:11201 ()n i i n n i i b c D a a a a a +==-∑ L 可转为箭形行列式的行列式: 121111111) 11 1n a a a +++L L L L L L L 122) n a x x x a x x x a L L L L L L L (第2至第n 行分别减去第1行,转为箭形行列式) (三)所有行(列)对应元素相加后相等的行列式 ()(1)1(1)11) (1)(1)1a b b a n b b b b b b a b a n b a b a b a n b b b a a n b b a b a +-+-==+-+-L L L L L L M M M M M M M M M M M L L L ()111(1,2)00()(1)00 i n b b r r i n a b a b a n b a b --=-=-+--L L L M M M M L 12123112312 3411 341(1) 2) 211321132 12221 1221 n n n n n n n n n c c c n n n n n n n n n n n n --++++---------L L L L M M M L M M M M M L M M L L L L L

高等代数北大版教案-第2章行列式

第二章 行列式 §1引言 在中学代数中学过,对于二元线性方程组 ?? ?=+=+22221 211 212111b x a x a b x a x a 当二级行列式 022 21 1211≠a a a a 时,该方程组有唯一解,即 22 21 121122212 1 1a a a a a b a b x = ,22 2112112 211112a a a a b a b a x =. 对于三元线性方程组有类似的结论,在这一章我们把这个结论推广到n 元线性方程组 ?????? ?=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112) 222212********* 的情形.为此,我们首先给出n 级行列式的定义并讨论它的性质. §2 排列 一 授课内容:§2 排列 二 教学目的:理解掌握排列、逆序、逆序数的求法. 三 教学重难点:逆序数的求法. 四 教学过程;

定义1 由n ,......,2,1组成的一个有序数组称为一个级排列 例 2431是一个4级排列,45321是一个5级排列 显然,n 级排列的总数是 21).......2)(1(--n n n . 我们记 !)1(21n n n =-??????? 读为“n 阶乘”. 定义2 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的个数称为这个排列的逆序数. 例 2431中,21,43,41,31是逆序,2431的逆序数是4.45321的逆序数为9.排列n j j j ......21的逆序数记为τ(n j j j ......21) 定义3 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列. 例如 2431为偶排列,45321为奇排列. 定义 把一个排列中两个数的位置互换,而其余的数不动,就得到另一个排列.这样的一个变换称为对换. 定理1 对换改变排列的奇偶性. 推论 奇数次对换改变排列的奇偶性,偶数次不改变排列的奇偶性 定理2 任意一个n 级排列与排列12……n 都可以经过一系列的对换互变,并且所做的对换的个数与这个排列有相同的奇偶性. §3 n 级行列式 一 授课内容:§3 n 级行列式 二 教学目的:理解掌握行列式的定义与简单性质. 三 教学重难点:n 级行列式的定义 四 教学过程; 在给出n 级行列式的定义之前,先看一下二级行列式与三级行列式的定义

高等代数北大版教案线性方程组

第三章线性方程组 §1消元法 一授课内容:§1消元法 二教学目的:理解和掌握线性方程组的初等变换,同解变换,会用消元法解线性方程组. 三教学重难点:用消元法解线性方程组. 四教学过程: 所谓的一般线性方程组是指形式为 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ....................................................22112222212111212111(1) 的方程组,其中n x x x ,,,21Λ代表n 个未知量,s 是方程的个数,ij a (s i ,,2,1Λ=,n j ,,2,1Λ=)称为方程组的系数,j b (s j ,,2,1Λ=)称为常数项. 所谓方程组(1)的的一个解就是指由n 个数组成的有序数组(n k k k ,,,21Λ),当n x x x ,,,21Λ分别用n k k k ,,,21Λ代入后,(1)中每个等式变为恒等式,方程组(1)的解的全体称为它的解集合. 解方程组实际上就是找出它的全部解,或则说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的. 显然,如果知道了一个线性方程组的全部系数和常数项,那么这个方程组就基本上确定了,确切的说,线性方程组(1)可以用如下的矩阵 来表示. 在中学代数里,我们学习过用加减消元法和代入消元法解二元,三元线性方程组,实际上,这个方法比用行列式解方程组更具有普遍性. 分析一下消元法,不难看出,它实际上是反复的对方程组进行变换,而所做的变换也只是由以下三种基本的变换所构成: 1.用一非零的数乘某一方程.

高等代数北大版教案-第8章λ-矩阵

·91· 第八章 λ-矩阵 本章主要介绍λ-矩阵及其性质,并用这些性质证明若当标准形的主要定理。 §1 λ-矩阵 如果一个矩阵的元素是λ的多项式,即][λP 的元素,这个矩阵就称为λ-矩阵。 为了与λ-矩阵相区别,我们把以数域P 中的数为元素的矩阵称为数字矩阵。由于数域中的数也是][λP 中的元素,所以在λ-矩阵中包括以数为元素的矩阵,即数字矩阵为λ-矩阵的一个特殊情形。 同样可以定义一个λ-矩阵的行列式,既然有行列式,也就有λ-矩阵的子式的概念。利用这个概念。我们有 定义 1 如果λ-矩阵)(λA 中有一个r )1(≥r 级子狮不为零。而所有1+r 级子式(如果有的话)全为零,则称)(λA 的秩为r ,零矩阵的秩规定为零。 定义2 一个n n ?的λ-矩阵)(λA 称为可逆的,如果有一个n n ?的λ-矩阵)(λB 使 )(λA )(λB =)(λB )(λA =E (1) 这里E 是n 级单位矩阵。适合(1)的矩阵)(λB (它是唯一的)称为)(λA 的逆矩阵,记为)(1λ-A 关于λ-矩阵可逆的条件有 定理1 一个n n ?的λ-矩阵)(λA 是可逆的充分必要条件为行列式|)(|λA 是一个非零的数。

·92· §2 λ-矩阵在初等变换下的标准形 λ-矩阵也有初等变换。 定义3 下面的三种变换叫做λ-矩阵的初等变换: (1)矩阵的两行(列)互换位置; (2)矩阵的某一行(列)乘以非零的常数c ; (3)矩阵的某一行(列)加另一行(列)的)(λΦ倍,)(λΦ是一个多项式。 初等变换都是可逆的,并且有 ))(())((),,(),(111---==c i p c i p j i p j i p ,))(,())(,(1?φ-=-j i p j i p 。 为了写起来方便起见,我们采用以下的记号: ],[j i 代表j i ,行(列)互换位置; )]([c i 代表用非零的数c 去乘i 行(列) ; )]([φj i +代表把j 行(列)的)(λφ倍加到i 行(列)。 定义4 λ-矩阵)(λA 称为与)(λB 等价,如果可以经过一系列初等变换将)(λA 化为)(λB 。 等价是λ-矩阵之间的一种关系,这个关系,显然具有下列三个性质: (1) 反身性:每一个λ-矩阵与自己等价。 (2) 对称性:若)(λA 与)(λB 等价,则)(λB 与)(λA 等价。这是由于 初等变换具有可逆性的缘故。 (3) 传递性:若)(λA 与)(λB 等价,)(λB 与)(λC 等价,则)(λA 与 )(λC 等价, 引理 设λ-矩阵)(λA 的左上角0)(11≠λa ,并且)(λA 中至少有一个元素不能被它除尽,那么一定可以找到一个与)(λA 等价的矩阵)(λB ,它的左上角元素也不为零,但是次数比)(11λa 的次数低。

高等代数北大版教案λ矩阵

第八章λ-矩阵 本章主要介绍λ-矩阵及其性质,并用这些性质证明若当标准形的主要定理。 §1λ-矩阵 如果一个矩阵的元素是λ的多项式,即][λP 的元素,这个矩阵就称为λ-矩阵。 为了与λ-矩阵相区别,我们把以数域P 中的数为元素的矩阵称为数字矩阵。由于数域中的数也是][λP 中的元素,所以在λ-矩阵中包括以数为元素的矩阵,即数字矩阵为λ-矩阵的一个特殊情形。 同样可以定义一个λ-矩阵的行列式,既然有行列式,也就有λ-矩阵的子式的概念。利用这个概念。我们有 定义1如果λ-矩阵)(λA 中有一个r )1(≥r 级子狮不为零。而所有 1+r 级子式 (如果有的话)全为零,则称)(λA 的秩为r ,零矩阵的秩规定为零。 定义2一个n n ?的λ-矩阵)(λA 称为可逆的,如果有一个n n ?的λ-矩阵)(λB 使 )(λA )(λB =)(λB )(λA =E (1) 这里E 是n 级单位矩阵。适合(1)的矩阵)(λB (它是唯一的)称为)(λA 的逆矩阵,记为)(1λ-A 关于λ-矩阵可逆的条件有 定理1一个n n ?的λ-矩阵)(λA 是可逆的充分必要条件为行列式|)(|λA 是一个非零的数。 §2λ-矩阵在初等变换下的标准形 λ-矩阵也有初等变换。

定义3下面的三种变换叫做λ-矩阵的初等变换: (1)矩阵的两行(列)互换位置; (2)矩阵的某一行(列)乘以非零的常数c ; (3)矩阵的某一行(列)加另一行(列)的)(λΦ倍,)(λΦ是一个多项式。 初等变换都是可逆的,并且有 ))(())((),,(),(111---==c i p c i p j i p j i p ,)) (,())(,(1?φ-=-j i p j i p 。 为了写起来方便起见,我们采用以下的记号: ],[j i 代表j i ,行(列)互换位置; )]([c i 代表用非零的数c 去乘i 行(列); )]([φj i +代表把j 行(列)的)(λφ倍加到i 行(列)。 定义4λ-矩阵)(λA 称为与)(λB 等价,如果可以经过一系列初等变换将)(λA 化为)(λB 。 等价是λ-矩阵之间的一种关系,这个关系,显然具有下列三个性质: (1) 反身性:每一个λ-矩阵与自己等价。 (2) 对称性:若)(λA 与)(λB 等价,则)(λB 与)(λA 等价。这是由 于初等变换具有可逆性的缘故。 (3) 传递性:若)(λA 与)(λB 等价,)(λB 与)(λC 等价,则)(λA 与 )(λC 等价, 引理设λ-矩阵)(λA 的左上角0)(11≠λa ,并且)(λA 中至少有一个元素不能被它除尽,那么一定可以找到一个与)(λA 等价的矩阵)(λB ,它的左上角元素也不为零,但是次数比)(11λa 的次数低。 定理2任意一个非零的n s ?的λ-矩阵)(λA 都等价与下列形式的矩阵

高等代数教案(北大版)第一章 多项式

第一章多项式 多项式理论是高等代数研究得基本对象之一,在整个高等代数课程中既相对独立,又贯穿其它章节,换句话说,多项式理论得讨论可以不依赖于高等代数得其他内容而自成体系,却可为其它章节的内容提供范例和理论依据。 本章主要讨论多项式的基本概念和基本性质,包括数域的概念、一元多项式的定义与运算规律、整除性、因式分解及根等概念。 教学目的:通过本章的学习,要使学生了一元多项式及运算、整除、最大公因式、(不)可约多项式、重因式等基本概念,领会因式分解定理的基本内容及复数域和实数域上的因式分解的具体内容,掌握多项式的最大公因式的求法、因式分解的方法、重因式的求法及有理系数多项式的可约性的判定。 教学重点:最大公因式的求法、因式分解定理及其应用 教学难点:有理系数多项式 教学方法与手段:1. 理论课教学以讲授为主,部分介绍性内容用多媒体。 2.习题课以多媒体教学为主。 教学内容: §1 一元多项式的定义和运算 1. 多项式的定义 令R是一个数环, 并且R含有数1, 因而R含有全体整数。在这一章里, 凡是说到数环, 都作这样的约定, 不再每次重复。 先讨论R上一元多项式。 定义1 数环R上一个文字x的多项式或一元多项式指的是形式表达式 a0+a1x+ a2x2+…+ a n x n (1) 这里n是非负整数而a0, a1, a2, …, a n都是R中的数。 在多项式 (1)中, a0叫做零次项或常数项, a1x叫做一次项, 一般地,a i x i叫做第i次项, a i叫做第i次项的系数。 一元多项式常用符号f(x), g(x), …来表示。 2. 相等多项式: 定义2 若是数环R上两个一元多项式f(x)和g(x)有完全相同的项, 或者只差一些系数为零的项, 那么f(x)和g(x)说是相等; f (x)=g(x) 定义3a n x n叫做多项式a0+a1x+ a2x2+…+ a n x n, ( a n≠0)的最高次项,非负整数n叫做多项式a0+a1x+…+ a n x n, (a n≠0)的次数。称a n为多项式的首项系数。 系数全为零的多项式没有次数, 这个多项式叫做零多项式。按照定义2, 零多项式总可以记为0。以后谈到多项式f(x)的次数时, 总假定f(x)≠0。 多项式的次数有时就简单地记作?°(f(x))。

相关主题
文本预览
相关文档 最新文档