1--插补的基本概念、脉冲增量插补与数据。。。。圆弧插补算法
- 格式:ppt
- 大小:167.50 KB
- 文档页数:31
插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补
脉冲增量插补和数据采样插补是实现插补的两种不同方法。
脉冲增量插补是将连续的运动轨迹离散化,以一定的脉冲数来表示,通过控制脉冲信号的频率和方向来控制机床的运动方向和速度。
而数据采样插补则是将预先生成的轨迹数据存储在内存中,通过对数据进行采样来得到机床的控制指令。
脉冲增量插补的特点是运算简单,系统响应速度较快,适合于高速运动控制;但由于其离散化的特点,可能会引入累积误差。
数据采样插补的特点是能够精确控制机床的运动轨迹,减小累积误差,但需要占用较大的内存空间。
逐点比较法是一种用于校正控制系统误差的方法。
其基本原理是通过对实际运动轨迹数据和预期轨迹数据进行逐点比较,根据比较结果来调整机床的控制指令,使实际运动轨迹尽可能地与预期轨迹一致。
逐点比较法的关键是选择合适的比较误差补偿算法,以实现高效准确的校正。
直线插补是指在机床坐标系下,按照直线轨迹进行插补运动。
直线插补的计算相对简单,只需要对坐标进行线性插值即可。
圆弧插补是指在机床坐标系下,按照圆弧轨迹进行插补运动。
圆弧插补的计算相对复杂,需要考虑起点、终点和半径等参数,通过数学运算得出插补指令。
总之,插补是机床运动控制的基础,脉冲增量插补和数据采样插补是两种常见的实现方式,逐点比较法是一种用于校正误差的方法,直线插补和圆弧插补则是两种常见的插补方式。
数控加工中两种插补原理及对应算法数控机床上进行加工的各种工件,大部分由直线和圆弧构成。
因此,大多数数控装置都具有直线和圆弧的插补功能。
对于非圆弧曲线轮廓轨迹,可以用微小的直线段或圆弧段来拟合。
插补的任务就是要按照进给速度的要求,在轮廓起点和终点之间计算出若干中间控制点的坐标值。
由于每个中间点计算的时间直接影响数控装置的控制速度,而插补中间点的计算精度又影响整个数控系统的精度,所以插补算法对整个数控系统的性能至关重要,也就是说数控装置控制软件的核心是插补。
插补的方法和原理很多,根据数控系统输出到伺服驱动装置的信号的不同,插补方法可归纳为脉冲增量插补和数据采样插补两种类型。
一、脉冲增量插补这类插补算法是以脉冲形式输出,每次插补运算一次,最多给每一轴一个进给脉冲。
把每次插补运算产生的指令脉冲输出到伺服系统,以驱动工作台运动。
一个脉冲产生的进给轴移动量叫脉冲当量,用δ表示。
脉冲当量是脉冲分配计算的基本单位,根据加工的精度选择,普通机床取δ=0.01mm,较为精密的机床取δ=1μm或0.1μm。
插补误差不得大于一个脉冲当量。
这种方法控制精度和进给速度低,主要运用于以步进电动机为驱动装置的开环控制系统中。
二、数据采样插补数据采样插补又称时间标量插补或数字增量插补。
这类插补算法的特点是数控装置产生的不是单个脉冲,而是数字量。
插补运算分两步完成。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来拟合给定曲线,每一微小直线段的长度△L都相等,且与给定进给速度有关。
粗插补时每一微小直线段的长度△L与进给速度F和插补T周期有关,即△L=FT。
数控原理与应用姓名:闫超学号:20092427班级:数控09-2插补原理插补的基本概念数控系统根据零件轮廓线型的有限信息,计算出刀具的一系列加工点、完成所谓的数据“密化”工作。
插补有二层意思:一是用小线段逼近产生基本线型<如直线、圆弧等);二是用基本线型拟和其它轮廓曲线。
插补运算具有实时性,直接影响刀具的运动。
插补运算的速度和精度是数控装置的重要指标。
插补原理也叫轨迹控制原理。
五坐标插补加工仍是国外对我国封锁的技术。
下面以基本线型直线、圆弧生成为例,论述插补原理插补方法的分类硬件插补器完成插补运算的装置或程序称为插补器软件插补器软硬件结合插补器1.基准脉冲插补每次插补结束仅向各运动坐标轴输出一个控制脉冲,各坐标仅产生一个脉冲当量或行程的增量。
脉冲序列的频率代表坐标运动的速度,而脉冲的数量代表运动位移的大小。
基准脉冲插补的方法很多,如逐点比较法、数字积分法、脉冲乘法器等。
2.数据采样插补采用时间分割思想,根据编程的进给速度将轮廓曲线分割为每个插补周期的进给直线段<又称轮廓步长)进行数据密化,以此来逼近轮廓曲线。
然后再将轮廓步长分解为各个坐标轴的进给量<一个插补周期的近给量),作为指令发给伺服驱动装置。
该装置按伺服检测采样周期采集实际位移,并反馈给插补器与指令比较,有误差运动,误差为零停止,从而完成闭环控制。
数据采样插补方法有:直线函数法、扩展DDA、二阶递归算法等逐点比较法早期数控机床广泛采用的方法,又称代数法,适用于开环系统。
1.插补原理及特点原理:每次仅向一个坐标轴输出一个进给脉冲,而每走一步都要通过偏差函数计算,判断偏差点的瞬时坐标同规定加工轨迹之间的偏差,然后决定下一步的进给方向。
每个插补循环由偏差判别、进给、偏差函数计算和终点判别四个步骤组成。
逐点比较法可以实现直线插补、圆弧插补及其它曲安插补。
特点:运算直观,插补误差不大于一个脉冲当量,脉冲输出均匀,调节方便。
逐点比较法直线插补<1)偏差函数构造对于第一象限直线OA上任一点(X,Y>:X/Y = Xe/Ye 若刀具加工点为Pi<Xi,Yi),则该点的偏差函数Fi可表示为若Fi= 0,表示加工点位于直线上;若Fi> 0,表示加工点位于直线上方;若Fi< 0,表示加工点位于直线下方。
1 引言1.1 各种插补算法的简介1.1.1 脉冲增量插补算法脉冲增量插补又称基准脉冲插补或行程标量插补,其特点是数控装置在每次插补结束时向各个运动坐标轴输出一个基准脉冲序列,控制机床坐标轴做相互协调的运动,从而加工出具有一定形状的零件轮廓的算法。
每个脉冲代表了刀具或工件的最小位移,脉冲的数量代表了刀具或工件移动的位移量,脉冲序列的频率代表了刀具或工件运动的速度。
显然易见,脉冲增量插补算法的输出是脉冲形式,并且每次仅产生一个单位的行程增量,故称之为脉冲增量插补。
而每个单位脉冲对应坐标轴的位移大小,称之为脉冲当量,一般用&表示或BLU表示。
脉冲当量是脉冲分配的基本单位,也对应于内部数据处理的一个二进制位,它决定了数控机床的加工精度,对于普通数控机床一般δ=0.01mm,对于较为精密的数控机床一般取δ=0.005mm、0.0025mm或0.001mm等。
这类插补算法比较简单,通常仅需几次加法和移位操作就可完成,比较容易用硬件实现,这也正是硬件数控系统较多采用这种算法的主要原因。
当然,也可用软件来模拟硬件实现这类咋不运算。
通常,属于这类插补算法的有:数字脉冲乘法器、逐点比较法、数字积分法以及一些相应的改进算法等。
一般来讲,脉冲增量插补算法较适合于中等精度(如0.1mm)和中等速度(如1~3m/min)的机床数控系统中。
由于脉冲增量插补误差不大于一个脉冲当量,并且其输出地脉冲频率主要受插补程序所用时间的限制,所以,数控系统精度与切削速度之间是相互影响的。
例如实现某脉冲增量插补算法大约需要40us的处理时间,当系统脉冲当量为0.001mm时,就可求得单个运动坐标轴的极限速度约为1.5m/min。
进一步当要求控制两个或两个以上坐标轴时,所获得的轮廓速度还将进一步降低。
反之,如果将系统单轴极限速度提高到15m/min,则要求将脉冲当量增大到0.01mm[1]。
1.1.2 数据采样插补法随着数控系统中计算机的引入,大大缓解了插补运算时间和计算机复杂性之间存在的矛盾,特别是高性能直流伺服系统和交流伺服系统的研制成功,为提高现代数控系统的综合性能创造了充分的条件。