(波普解析)有机化合物波谱解析
- 格式:ppt
- 大小:4.81 MB
- 文档页数:109
第七章有机化合物的波谱分析(一)概述研究或鉴圧一个有机化合物的结构,需对该化合物进行结构表征。
其基本程序如下: 分离提纯一物理常数测左一元素分析一确立分子式一确泄其可能的构适式(结构表 征(参见 P11-12)(1)结构表征的方法传统方法:(化学法)① 元素左性.泄量分析及相对分子质量测泄 —— 分子式:② 官能团试验及衍生物制备——分子中所含官能团及部分结构片断: ③ 将部分结构片断拼凑 —— 完整结构; ④ 查阅文献,对照标准样,验证分析结果。
特点:需要较多试样(半微量分析,用样虽为10-100mg ),大虽:的时间(吗啡碱,1805- 1952年).熟练的实验技巧,高超的智慧和坚韧不拔的精神。
缺点:①分子有时重排,导致错误结论;② P 及一C=C 一的构型确定困难。
波谱法:① 质谱(最好用元素分析仪验证)——分子式:② 各种谱图(UV 、IR 、NMR. MS ) —— 官能团及部分结构片断; ③ 拼凑——完整结构; ④ 标准谱图——确认。
特点:样品用量少(v30mg ),不损坏样品(质谱除外),分析速度快,对'C 及一C=C 一的 构型确左比较方便。
光谱法已成为有机结构分析的常规方法。
但是化学方法仍不可少,它与光谱法相辅相成, 相互补充,互为佐证。
(2)波谱过程分子运动:平动、振动、转动、核外电子运动等9量子化的(能量变化秘续)A 每个分子中只能存在一定数量的转? 动.振动、电子跃迁能级波谱过程可表示为:有机分子+电磁波选择性吸收 仪器记录用电磁波照射有机分子时, 分子便会吸收那些与分子内 的能级差相当的电磁波,引 起分子振动、转动或电子运 动能级跃迁,即分子可选择 性地吸收电磁波使分子内能 提高用仪器记录分子对不 同波长的电磁波的吸收情 况,就可得到光谱。
不饱和度亦称为分子中的环加双键数、缺氢指数、双键等价值等。
其定义为: 当一个化合物衍变为相应的绘后,与其同碳的饱和开链桂比较,每缺少2个氢为 1个不饱和度。
有机化合物波谱解析教案一、教学目标1. 理解有机化合物波谱解析的基本概念和方法。
2. 学会使用红外光谱、核磁共振谱、质谱等波谱进行分析。
3. 能够解析有机化合物的结构based on the information from the spectra.二、教学内容1. 红外光谱(IR)基本原理谱图解析功能团振动频率与结构的关系2. 核磁共振谱(NMR)基本原理谱图解析化学位移、耦合常数与结构的关系三、教学方法1. 讲授:讲解基本原理、概念和谱图解析方法。
2. 示例分析:分析具体化合物的红外光谱、核磁共振谱和质谱。
3. 练习:学生自行分析给定的谱图,得出结构结论。
四、教学准备1. 教学PPT:包含基本原理、概念、谱图解析方法和示例。
2. 谱图数据:用于示例分析和学生练习。
五、教学过程1. 导入:介绍有机化合物波谱解析的重要性。
2. 红外光谱(IR)讲解基本原理和谱图解析方法。
分析示例谱图,引导学生理解谱图与结构的关系。
3. 核磁共振谱(NMR)讲解基本原理和谱图解析方法。
分析示例谱图,引导学生理解谱图与结构的关系。
4. 练习:学生分析给定的谱图,得出结构结论。
教学反思:在课后,教师应反思教学效果,根据学生的反馈和练习情况,调整教学方法和难度,以便更好地达到教学目标。
六、质谱(MS)1. 基本原理介绍质谱仪的工作原理和质谱图的获取。
解释质谱图中的峰代表分子离子、碎片离子等。
2. 谱图解析讲解质谱图的解析方法,包括分子离子峰的确定、碎片离子的识别等。
引导学生理解质谱图与分子结构的关系。
七、紫外光谱(UV)1. 基本原理介绍紫外光谱的产生原理,如π-π、n-π等电子跃迁。
解释紫外光谱图中的吸收峰与分子结构的关系。
2. 谱图解析讲解紫外光谱图的解析方法,包括吸收峰的位置、强度和形状等。
引导学生理解紫外光谱图与分子结构的关系。
八、圆二色光谱(CD)1. 基本原理介绍圆二色光谱的产生原理,如手性分子的CD光谱。
有机化合物波谱解析教案一、教学目标1. 让学生了解有机化合物波谱解析的基本概念和原理。
2. 使学生掌握红外光谱、核磁共振氢谱、质谱等常见波谱的分析方法和技巧。
3. 培养学生运用波谱解析技术解决实际问题的能力。
二、教学内容1. 有机化合物波谱解析概述1.1 波谱解析的概念1.2 波谱解析的方法和分类2. 红外光谱分析2.1 红外光谱的基本原理2.2 红外光谱图的解读2.3 红外光谱的应用实例3. 核磁共振氢谱分析3.1 核磁共振氢谱的基本原理3.2 核磁共振氢谱图的解读3.3 核磁共振氢谱的应用实例4. 质谱分析4.1 质谱的基本原理4.2 质谱图的解读4.3 质谱的应用实例5. 波谱解析的综合应用5.1 波谱解析在有机合成中的应用5.2 波谱解析在有机结构鉴定中的应用5.3 波谱解析在其他领域的应用三、教学方法1. 讲授法:讲解基本概念、原理和分析方法。
2. 案例分析法:分析具体实例,让学生学会运用波谱解析技术解决问题。
3. 互动讨论法:引导学生提问、思考和探讨,提高学生的学习兴趣和积极性。
四、教学准备1. 教材或教学资源:《有机化合物波谱解析》相关教材或教学课件。
2. 实验设备:红外光谱仪、核磁共振仪、质谱仪等。
3. 计算机和投影仪:用于展示波谱图和教学课件。
五、教学评价1. 课堂参与度:观察学生在课堂上的提问、思考和讨论情况,评价学生的学习积极性。
2. 课后作业:布置相关练习题,评价学生对知识点的掌握程度。
3. 实验报告:评价学生在实验中的操作技能和分析能力。
4. 期末考试:设置有关波谱解析的题目,全面评价学生的学习效果。
六、教学活动安排1. 第一课时:有机化合物波谱解析概述1.1 波谱解析的概念1.2 波谱解析的方法和分类2. 第二课时:红外光谱分析2.1 红外光谱的基本原理2.2 红外光谱图的解读2.3 红外光谱的应用实例3. 第三课时:核磁共振氢谱分析3.1 核磁共振氢谱的基本原理3.2 核磁共振氢谱图的解读3.3 核磁共振氢谱的应用实例4. 第四课时:质谱分析4.1 质谱的基本原理4.2 质谱图的解读4.3 质谱的应用实例5. 第五课时:波谱解析的综合应用5.1 波谱解析在有机合成中的应用5.2 波谱解析在有机结构鉴定中的应用5.3 波谱解析在其他领域的应用七、教学反思在教学过程中,教师应不断反思自己的教学方法和解题策略,针对学生的反馈情况进行调整,以确保教学效果的最大化。
第一章 紫外光谱一、简答1.丙酮的羰基有几种类型的价电子。
试绘出其能级图,并说明能产生何种电子跃迁?各种跃迁可在何区域波长处产生吸收?2.指出下述各对化合物中,哪一个化合物能吸收波长较长的光线(只考虑π→π*跃迁)。
(2)(1)及NHR3CHCHOCH 3CH 及CH 3CH CH23.与化合物(A )的电子光谱相比,解释化合物(B )与(C )的电子光谱发生变化的原因(在乙醇中)。
(C)(B)(A)入max =420 εmax =18600入max =438 εmax =22000入max =475 εmax =320003N NNNO HC32(CH )2N NNNO H C 32(CH )2232(CH )(CH )23NNNNO4.苯胺在λmax 处的εmax 为1430,现欲制备一苯胺水溶液,使其透光率为30%(1cm 比色池),试问制备100ml 该溶液需取多少克苯胺?二、分析比较1.指出下列两个化合物在近紫外区中的区别:CH CH 32(A)(B)2.某酮类化合物,当溶于极性溶剂中(如乙醇中)时,溶剂对n →π*跃迁及π→π*跃迁有何影响?用能级图表示。
3.试述对二烷基苯甲酸在下面一些溶剂中的紫外光谱的区别:λ乙醚 max=277nm εmax =20600NRRCOOHλEtOH max=307nm εmax =19000λHCl max=307nm εmax =970三、试回答下列各问题1.某酮类化合物λhexanemax =305nm ,其λEtOH max=307nm,试问,该吸收是由n→π*跃迁还是π→π*跃迁引起的?2. 1,1二苯乙烯(A )在环己烷中的UV 光谱与蒽(B )的UV 光谱有相当大的区别。
在浓硫酸中这两个化合物UV 光谱非常相似,见表1-5,而在稀硫酸中又与环己烷中的UV 光谱相同,试问在浓硫酸中这两个化合物发生了什么变化?表1-1 化合物(A )和(B )在不同溶剂中的λma四.计算下述化合物的λmax :1. 计算下列化合物的λmax :2.计算全反式西红柿烯(结构如下)的λmax 及εmax :3.计算一叶萩碱在乙醇中的λmax :NOO4.计算下列化合物的λmax :(D)(C)(B)(A)2NH COOH3OH COCH O 33OOCH CH O五、结构判定1.由某挥发油中分得一种成分,其UVλhexane max=268nm,由其它方法初步确定该化合物的结构可能为A 或B ,试问可否用UV 光谱做出判断?(A)(B)2. 一化合物初步推断其结构不是A 就是B ,经测定UV λEtOH max=352nm,试问其结构为何?O O(A)(B)3. 2-(环己-1-烯基)-2-丙醇在硫酸存在下加热处理,得到主要产物的分子式为C 9H 14,产物经纯化,测紫外光谱λmax =242nm (εmax =10100),推断这个主要产物的结构,并讨论其反应过程。
第一章紫外光谱一、名词解释1、助色团:有n电子的基团,吸收峰向长波方向移动,强度增强.2、发色团:分子中能吸收紫外或可见光的结构系统.3、红移:吸收峰向长波方向移动,强度增加,增色作用.4、蓝移:吸收峰向短波方向移动,减色作用.5、增色作用:使吸收强度增加的作用.6、减色作用:使吸收强度减低的作用.7、吸收带:跃迁类型相同的吸收峰.二、选择题1、不是助色团的是:DA、-OHB、-ClC、-SHD、CH3CH2-2、所需电子能量最小的电子跃迁是:DA、σ→σ*B、n →σ*C、π→π*D、n →π*3、下列说法正确的是:AA、饱和烃类在远紫外区有吸收B、UV吸收无加和性C、π→π*跃迁的吸收强度比n →σ*跃迁要强10-100倍D、共轭双键数目越多,吸收峰越向蓝移4、紫外光谱的峰强用εmax表示,当εmax=5000~10000时,表示峰带:BA、很强吸收B、强吸收C、中强吸收D、弱吸收5、近紫外区的波长为:CA、4-200nmB、200-300nmC、200-400nmD、300-400nm6、紫外光谱中,苯通常有3个吸收带,其中λmax在230~270之间,中心为254nm的吸收带是:BA、R带B、B带C、K带D、E1带7、紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了CA、吸收峰的强度B、吸收峰的数目C、吸收峰的位置D、吸收峰的形状8、紫外光谱是带状光谱的原因是由于:DA、紫外光能量大B、波长短C、电子能级差大D、电子能级跃迁的同时伴随有振动及转动能级跃迁的原因9、π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大:AA、水B、乙醇C、甲醇D、正己烷10、下列化合物中,在近紫外区(200~400nm)无吸收的是:AA、B、C、D、11、下列化合物,紫外吸收λmax值最大的是:A(b)A、B、C、D、12、频率(MHz)为4.47×108的辐射,其波长数值为AA、670.7nmB、670.7μC、670.7cmD、670.7m13、化合物中,下面哪一种跃迁所需的能量最高AA、σ→σ*B、π→π*C、n→σ*D、n→π*第二章红外光谱一、名词解释:1、中红外区2、fermi共振3、基频峰4、倍频峰5、合频峰6、振动自由度7、指纹区8、相关峰9、不饱和度10、共轭效应11、诱导效应12、差频二、选择题(只有一个正确答案)1、线性分子的自由度为:AA:3N-5 B: 3N-6 C: 3N+5 D: 3N+62、非线性分子的自由度为:BA:3N-5 B: 3N-6 C: 3N+5 D: 3N+63、下列化合物的νC=C的频率最大的是:DA B C D4、下图为某化合物的IR图,其不应含有:DA :苯环B :甲基C :-NH 2D :-OHA 苯环B 甲基C -NH2D -OH5、下列化合物的νC=C 的频率最大的是:AA B C D6、亚甲二氧基与苯环相连时,其亚甲二氧基的δCH 特征强吸收峰为:AA : 925~935cm -1B :800~825cm -1C : 955~985cm -1D :1005~1035cm -17、某化合物在3000-2500cm -1有散而宽的峰,其可能为:AA : 有机酸B :醛C :醇D :醚8、下列羰基的伸缩振动波数最大的是:C9、 中三键的IR 区域在:BA ~3300cm -1B 2260~2240cm -1C 2100~2000cm -1D 1475~1300cm -110、偕三甲基(特丁基)的弯曲振动的双峰的裂距为:DA 10~20 cm -1 B15~30 cm -1 C 20~30cm -1 D 30cm -1以上第三章 核磁共振一、名词解释1、化学位移2、磁各向异性效应3、自旋-自旋驰豫和自旋-晶格驰豫4、屏蔽效应C R O R A C R O H B C R O F CR OClC DC N R5、远程偶合6、自旋裂分7、自旋偶合8、核磁共振9、屏蔽常数10.m+1规律11、杨辉三角12、双共振13、NOE效应14、自旋去偶15、两面角16、磁旋比17、位移试剂二、填空题1、1HNMR化学位移δ值范围约为0~14 。
波谱数据表—有机化合物的结构解析
波谱数据表用于有机化合物的结构解析,其中包括以下波谱数据:
1. 红外光谱(IR):提供有关化合物中功能团的信息,如官能团的位置和类型。
2. 质子核磁共振谱(^1H NMR):提供有关化合物分子中氢原子的位置和数量的信息。
3. 碳13核磁共振谱(^13C NMR):提供有关化合物中碳原子的位置和数量的信息。
4. 质子-质子相互作用谱(COSY):显示质子之间的相互作用。
5. 核磁共振旋转相准谱(NOESY):显示溶液中的分子之间的核磁共振相互作用。
6. 质子取代实验(HSQC和HMBC):用于确定化合物中异位质子和相邻碳原子的连接关系。
7. 致命作用产物谱(CID):使用质谱仪对化合物进行离解和质量分析,以确定其分子量和碎片信息。
综合使用这些波谱数据,可以确定有机化合物的分子结构,并提供有关化合物的一些基本特性,如官能团和键合情况。