理论力学11梁的位移计算
- 格式:ppt
- 大小:6.26 MB
- 文档页数:42
位移计算的一般公式————————————————————————————————作者:————————————————————————————————日期:位移计算的一般公式(一)位移计算的一般公式利用虚功原理求结构位移需要两个状态:实际位移状态和虚设力状态。
要求的位移是由给定的荷载、温度变化和材料胀缩、支座移动和制造误差等因素引起的,以此作为结构的实际位移状态;再虚设一个恰当的力状态,即在所求位移处沿所求位移方向加相应的单位荷载,让虚设力在实际位移上作功,利用虚功方程即可求得所求位移。
这种计算位移的方法称为单位荷载法。
利用单位荷载法,由虚功方程(1-3)可得平面杆件结构位移计算的一般公式(1-4) 式中:和、、——虚设单位荷载引起的支座反力和微段上的内力;和、、——实际位移状态中支座位移和微段上的变形。
公式(1-4)适合静定结构和超静定结构、弹性体系和非弹性体系在各种因素下产生的位移计算。
【注意】采用单位荷载法求结构位移,应注意以下几点:(1)每假设一个虚拟状态,只能求出一个未知位移;(2)所加的单位荷载应与所求位移相对应;(3)虚设单位荷载的指向可以任意假定,结果为正,说明所假设单位荷载方向与实际位移方向相同;结果为负,则说明与实际位移相反。
(二)荷载作用下的位移计算公式计算荷载作用下的位移时,式(1-4)中的应变、、0是由荷载引起的,可按下列顺序求出:荷载——内力——应力——应变下面列出在荷载作用下,静定结构的单位位移的具体计算步骤:(1)根据荷载情况,求出结构各截面的弯矩、剪力、轴力。
(2)根据内力,求出相应的弯曲、拉伸和剪切应变:(1-5a)(1-5b)(1-5c)式中:E和G分别为材料的弹性模量和剪切弹性模量:A和I分别是杆件截面的面积和惯性矩。
EI、GA、EA分别是杆件截面的抗弯、抗剪、抗拉刚度;是剪应力分布不均匀系数。
(3)将式(1-5)代入式(1-4),即得到在荷载作用下的位移计算公式(1-6)须指出:上式(1-6)只适用于线弹性平面杆系结构。
简支梁位移计算公式
简支梁的位移计算公式可以通过梁的弯曲理论来推导。
在简支
梁的情况下,当集中力作用于梁上时,梁会发生弯曲变形,导致梁
的位移。
位移计算公式可以通过弯曲理论和梁的几何特征来推导。
首先,我们可以使用弹性力学理论中的梁弯曲方程来描述梁的
位移。
对于简支梁而言,可以使用Euler-Bernoulli梁理论来进行
分析。
根据这个理论,简支梁在受到集中力作用时的最大位移可以
通过以下公式来计算:
δ = (F L^3) / (3 E I)。
在这个公式中,δ代表梁的最大位移,F代表作用在梁上的力
的大小,L代表梁的长度,E代表梁的弹性模量,I代表梁的惯性矩。
这个公式适用于简支梁在受到集中力作用时的情况。
另外,如果梁上分布有均匀载荷,则可以使用不同的公式来计
算梁的位移。
对于简支梁在均匀载荷作用下的位移,可以使用以下
公式:
δ = (5 w L^4) / (384 E I)。
在这个公式中,δ代表梁的最大位移,w代表均匀分布载荷的大小,L代表梁的长度,E代表梁的弹性模量,I代表梁的惯性矩。
需要注意的是,以上提到的公式都是针对简支梁在弹性范围内的情况下推导得出的。
在实际工程中,还需要考虑许多其他因素,例如梁的材料特性、截面形状等,因此在使用这些公式进行位移计算时,需要结合具体情况进行综合考虑。
位移计算的一般公式(一)位移计算的一般公式利用虚功原理求结构位移需要两个状态:实际位移状态和虚设力状态。
要求的位移是由给定的荷载、温度变化和材料胀缩、支座移动和制造误差等因素引起的,以此作为结构的实际位移状态;再虚设一个恰当的力状态,即在所求位移处沿所求位移方向加相应的单位荷载,让虚设力在实际位移上作功,利用虚功方程即可求得所求位移。
这种计算位移的方法称为单位荷载法。
利用单位荷载法,由虚功方程(1-3)可得平面杆件结构位移计算的一般公式(1-4) 式中:和、、——虚设单位荷载引起的支座反力和微段上的内力;和、、——实际位移状态中支座位移和微段上的变形。
公式(1-4)适合静定结构和超静定结构、弹性体系和非弹性体系在各种因素下产生的位移计算。
【注意】采用单位荷载法求结构位移,应注意以下几点:(1)每假设一个虚拟状态,只能求出一个未知位移;(2)所加的单位荷载应与所求位移相对应;(3)虚设单位荷载的指向可以任意假定,结果为正,说明所假设单位荷载方向与实际位移方向相同;结果为负,则说明与实际位移相反。
(二)荷载作用下的位移计算公式计算荷载作用下的位移时,式(1-4)中的应变、、0是由荷载引起的,可按下列顺序求出:荷载——内力——应力——应变下面列出在荷载作用下,静定结构的单位位移的具体计算步骤:(1)根据荷载情况,求出结构各截面的弯矩、剪力、轴力。
(2)根据内力,求出相应的弯曲、拉伸和剪切应变:(1-5a)(1-5b)(1-5c)式中:E和G分别为材料的弹性模量和剪切弹性模量:A和I分别是杆件截面的面积和惯性矩。
EI、GA、EA分别是杆件截面的抗弯、抗剪、抗拉刚度;是剪应力分布不均匀系数。
(3)将式(1-5)代入式(1-4),即得到在荷载作用下的位移计算公式(1-6)须指出:上式(1-6)只适用于线弹性平面杆系结构。
关于内力的正负号可规定如下:●轴力——以拉力为正;●剪力——使微段顺时针转动者为正;●弯矩——只规定乘积的正负号。
梁位移计算公式梁的位移计算公式基于梁的受力平衡和材料力学的基本原理。
在这里,我们将讨论一维梁的位移计算方法,即假设梁只在一个平面内受力,并且假设梁的截面尺寸和材料性质均为均匀的。
我们需要确定梁的边界条件。
常见的边界条件有两种:固定边界条件和自由边界条件。
在固定边界条件下,梁的两端被固定,不允许有任何位移和旋转;而在自由边界条件下,梁的两端可以自由位移。
接下来,我们需要确定梁的受力情况。
通常,梁在两端受到外部荷载作用,这些荷载可以是集中力、均布力或者集中力和均布力的组合。
此外,梁还可能受到自重的影响。
在计算位移时,我们需要将这些荷载转化为梁上的内力分布。
针对不同的受力情况,我们可以使用不同的位移计算方法。
在本文中,我们将重点介绍三种常见的位移计算方法:拉梁法、剪梁法和挠梁法。
拉梁法是一种基于受力平衡的位移计算方法。
它假设梁的变形是由拉伸和压缩引起的,而不考虑剪切变形。
根据拉梁法,我们可以通过梁上任意一点的变形位移和受力来计算梁的位移。
剪梁法是一种基于受力平衡和材料切变变形的位移计算方法。
它假设梁的变形是由剪切引起的,并考虑了横截面的形状和材料的性质。
根据剪梁法,我们可以通过梁上任意一点的切变位移和受力来计算梁的位移。
挠梁法是一种基于弯曲变形的位移计算方法。
它假设梁的变形是由弯曲引起的,并考虑了横截面的形状和材料的性质。
根据挠梁法,我们可以通过梁上任意一点的弯曲位移和受力来计算梁的位移。
在实际应用中,我们可以将以上三种方法结合起来,综合考虑拉伸、压缩、剪切和弯曲等因素,来计算梁的位移。
此外,我们还可以使用计算机辅助工具,如有限元分析软件,来进行更精确和复杂的梁位移计算。
需要注意的是,梁的位移计算是一个复杂的过程,需要综合考虑各种因素和假设。
在实际工程中,我们应该根据具体情况选择适当的位移计算方法,并进行合理的假设和简化,以确保计算结果的准确性和可靠性。
通过以上的讨论,我们可以看到,梁的位移计算是一个重要且复杂的问题。
结构力学位移计算公式结构力学是研究结构体系的力学性能和运动规律的学科,是工程力学的一个重要分支。
在结构力学中,位移是一个重要的物理量,它描述了结构体系在受外力作用下发生的变形情况。
位移计算公式是用来计算结构体系的位移的数学公式。
1.剪力梁位移计算公式:在剪力梁中,位移是一个表示结构体系纵向变形的物理量。
当在剪力梁上施加一个集中力作用时,位移可以通过以下公式进行计算:δ=(F*L)/(G*A)其中,δ表示位移,F表示施加在剪力梁上的集中力,L表示剪力梁的长度,G表示剪力梁的剪切模量,A表示剪力梁的截面面积。
2.弹性梁位移计算公式:在弹性梁中,位移是一个表示结构体系纵向变形的物理量。
当在弹性梁上施加一个力矩作用时,位移可以通过以下公式进行计算:θ=(M*L)/(E*I)其中,θ表示位移,M表示施加在弹性梁上的力矩,L表示弹性梁的长度,E表示弹性梁的弹性模量,I表示弹性梁的截面惯性矩。
3.压杆位移计算公式:在压杆中,位移是一个表示结构体系纵向变形的物理量。
当在压杆上施加一个轴向力作用时,位移可以通过以下公式进行计算:δ=(F*L)/(E*A)其中,δ表示位移,F表示施加在压杆上的轴向力,L表示压杆的长度,E表示压杆的弹性模量,A表示压杆的截面面积。
4.梁柱位移计算公式:在梁柱中,位移是一个表示结构体系纵向变形的物理量。
当在梁柱上施加一个集中力作用时,位移可以通过以下公式进行计算:δ=(F*L)/(E*A)其中,δ表示位移,F表示施加在梁柱上的集中力,L表示梁柱的长度,E表示梁柱的弹性模量,A表示梁柱的截面面积。
上述的位移计算公式是基于简化假设和力学理论推导得出的,适用于较为简单的结构体系。
在实际工程设计中,考虑到结构的复杂性和非线性效应,可能需要使用更为复杂的有限元分析等方法来计算位移。
在实际应用中,还需要根据具体情况进行适当的修正和调整,以获得更加准确的位移计算结果。
梁的最大位移计算公式梁的最大位移计算公式是用于计算梁在受力作用下发生的弯曲位移的公式。
梁是指在两个支点之间受力作用的一种结构。
梁的最大位移是指梁在受力作用下最大弯曲的位移值。
梁的位移计算涉及到材料力学和结构力学的知识,其中梁的形状、材料特性、受力情况等都会对最大位移的计算产生影响。
在计算梁的最大位移时,一般可以使用梁的弯曲理论来进行计算。
梁的弯曲理论可以通过假设梁是一根弯曲曲线的理论来进行推导。
根据弯曲理论,可以得到梁的最大位移计算公式。
δmax = (5 * Pl^4) / (384 * E * I)其中,δmax表示梁的最大位移;P表示梁上的受力值;l表示梁的长度;E表示梁所采用的材料的弹性模量;I表示梁的截面惯性矩。
这个公式是根据梁的弯曲理论推导得到的,可以用于计算梁在受力作用下的最大位移。
在使用这个公式进行计算时,需要知道梁的受力情况、几何形状和材料特性。
其中,受力情况包括梁上所受到的力和力的位置;几何形状包括梁的长度和截面形状;材料特性包括梁所采用的材料的弹性模量和截面惯性矩。
需要注意的是,这个公式是基于一些简化假设和梁的边界条件推导得到的,只适用于一些特定的情况。
在实际应用中,可能需要考虑更多的因素,如梁的支点、梁的侧向刚度、梁的动态响应等。
因此,在具体应用中需要根据实际情况,结合可能的简化假设和合适的分析方法进行位移计算。
总之,梁的最大位移计算公式用于计算梁在受力作用下的最大弯曲位移,其中涉及到梁的几何形状、受力情况和所采用的材料特性。
使用这个公式进行计算时,需要根据实际情况进行合理的简化和假设,并结合适当的分析方法来进行计算。
结构位移计算的一般公式1.梁的位移计算:对于均布荷载作用下的梁结构,可以使用梁的基本理论进行位移计算。
其中,梁的位移可以通过悬臂梁的位移公式进行计算。
对于简支梁,可以使用不同支座之间的相对位移进行计算。
梁的位移计算一般采用梁的位移方程,其中包含了梁的弹性变形和旋转变形。
对于梁的弹性变形,可以使用弹性力学理论中的位移方程进行计算。
2.柱的位移计算:柱的位移计算也是结构位移计算的重要内容之一、对于纯压力作用下的柱,可以使用柱的位移计算公式进行计算。
其中,柱的位移与柱的长度和截面性质有关,可以使用柱的弹性位移方程进行计算。
对于倾斜作用的柱,可以将倾斜柱看作由多个横截面组成的梁,然后进行梁的位移计算。
3.平面桁架的位移计算:平面桁架位移计算是结构力学中的常见问题之一、对于平面桁架结构,可以使用节点位移法进行位移计算。
节点位移法是一种基于平衡条件和相容条件的分析方法,通过计算每个节点的位移,然后通过节点位移与单元位移关系计算整个结构的位移。
4.二维和三维结构的位移计算:对于二维和三维结构,位移计算相对复杂。
一般来说,可以通过有限元分析进行位移计算。
有限元方法可以将结构分为有限数量的单元,每个单元具有独立的位移方程,然后通过确定每个单元的位移,计算整个结构的位移。
有限元方法可以将结构的位移计算问题转化为求解大规模线性方程组的问题。
综上所述,结构位移计算的一般公式包括梁的位移计算公式、柱的位移计算公式、平面桁架的位移计算公式,以及二维和三维结构的位移计算公式。
对于不同类型的结构,位移计算方法略有不同,但都可以通过基本的力学理论和方法进行计算。
梁的位移计算公式梁在工程结构中可是个常见的角色,咱今天就来聊聊梁的位移计算公式。
先来说说啥是梁的位移。
简单讲,就是梁在受力作用下位置发生的变化。
这就好比你用一根竹竿挑东西,竹竿会弯曲变形,这个变形的程度就是位移啦。
那梁的位移计算公式到底是啥呢?一般来说,我们常用的公式是基于材料力学的知识推导出来的。
比如说,对于简支梁在集中荷载作用下的位移计算公式,就包含了梁的长度、荷载大小、材料的弹性模量以及梁的截面惯性矩等因素。
给您举个例子吧。
有一次我去一个建筑工地,看到工人们正在搭建一个钢结构的厂房。
其中有一根大梁,承受着上面传来的各种荷载。
工程师们就在那拿着图纸和计算器,算着这根梁的位移。
我凑过去看了看,他们密密麻麻写了一堆公式和数字,那认真的劲儿,就好像在破解一个超级难题。
咱再深入点说,梁的位移计算可不是个简单事儿。
它得考虑好多因素,像梁的材料特性、受力情况、边界条件等等。
比如说,如果梁是用钢材做的,和用木材做的,那计算可就不太一样啦。
钢材的弹性模量一般比木材大,所以相同情况下,钢梁的位移可能就会小一些。
还有哦,梁的截面形状也会影响位移计算。
如果是个矩形截面的梁,和一个圆形截面的梁,它们的惯性矩就不同,算出来的位移也有差别。
这就好像同样是一根棍子,粗的和细的,承受力的能力肯定不一样。
在实际工程中,梁的位移计算可太重要了。
要是算错了,那后果不堪设想。
比如说,如果位移过大,可能会导致梁的结构不稳定,甚至出现裂缝、垮塌的危险。
所以啊,咱们搞工程的人,在计算梁的位移时,那可得小心谨慎,每个参数都要搞准确,每个公式都要运用得当。
这就像是一场精细的手术,容不得半点马虎。
总之,梁的位移计算公式虽然复杂,但只要我们掌握了其中的原理和方法,结合实际情况认真计算,就能确保梁的结构安全可靠。
这不仅是对工程质量的保障,也是对人们生命财产的负责。
希望大家在今后遇到梁的位移计算问题时,都能胸有成竹,算出准确的结果!。