通信原理-正交编码与伪随机序列
- 格式:ppt
- 大小:1.62 MB
- 文档页数:93
第十二章 正交编码与伪随机序列主要内容 主要内容 ¾ ¾正交编码 正交编码 ¾ ¾伪随机码 伪随机码 ¾ ¾伪随机序列应用 伪随机序列应用12.1 引言正交编码广泛用于纠错码、码分多址技术。
伪随机码广泛用于误码测量、扩频通信、通信加密等方面。
12.2 正交编码1. 正交的概念 模拟信号:周期为T的模拟信号s1(t),s1(t)相互正交,则有∫T0s1 (t )s 2 (t )dt = 0M个周期为T的模拟信号s1(t),s2(t),…,sM(t)构成正交信号集合∫T0s i (t )s j (t )dt = 0i ≠ j, i , j = 1,2,..., M数字信号:码组间的正交性用互相关系数表示。
x = ( x1 , x 2 ,..., x n )y = ( y 1 , y 2 ,..., y n )(1)xi,yj 取+1或-1,则x,y间的互相关系数定义为1 n ρ( x , y ) = ∑ x i y i n i =1若ρ=0,则称码组x,y正交。
− 1 ≤ ρ ≤ +1(2)xi,yj 取0或1,则x,y间的互相关系数可以表示为A−D ρ(x, y ) = A+DA: x,y中对应码元相同的个数, D: x,y中对应码元不同的个数.(3)若y为x的j次移位得到的码组,则得到x的自相关系数ρx(j). (4)若ρ<0, 则称两个码组互相超正交。
若编码中任意两码组间超正交, 则称这种编码为超正交编码。
(5)正交编码与其反码的集合构成双正交编码。
例:如图为4个数字信号波形。
1 4 由 ρ( x, y ) = ∑ x i y i 4 i =14个码组任意两个间的ρ=0均为0,故称 为正交编码。
2. 哈达玛(Hadamard)矩阵特点:其每一行(或列)均为正交码组,且由其容易构成超正交码和双正交码。
2阶H矩阵 高阶H矩阵⎡ + 1 + 1⎤ H2 = ⎢ ⎥ ⎣ + 1 − 1⎦或⎡+ + ⎤ H2 = ⎢ ⎥ ⎣+ − ⎦HN = HN/2 ⊗ H2⎡H 2 H4 = H2 ⊗ H2 = ⎢ ⎣H 2N = 2m+ + +⎤ − + −⎥ ⎥ + − −⎥ − − +⎥ ⎦+ − − + + − − + + + + + − − − − + − + − − + − + + + − − − − + + +⎤ −⎥ ⎥ −⎥ +⎥ −⎥ ⎥ +⎥ +⎥ ⎥ −⎦ ⎥⎡+ H 2 ⎤ ⎢+ =⎢ ⎥ − H 2 ⎦ ⎢+ ⎢ ⎣++ − + − + − + − + + − − + + − −⎡H H8 = H4 ⊗ H2 = ⎢ 4 ⎣H 4⎡+ ⎢+ ⎢ ⎢+ H 4 ⎤ ⎢+ =⎢ − H4 ⎥ ⎦ ⎢+ ⎢+ ⎢+ ⎢ ⎢+ ⎣H矩阵可以看成是一种长为n的正交编码,包含n个码组。
樊昌信《通信原理》(第6版)笔记和课后习题(含考研真题)详解第12章正交编码与伪随机序列12.1复习笔记一、正交编码1.正交编码的基本概念若M个周期为T模拟信号s1(t),s2(t),...,s M(t)构成一个正交集合,则有:设长为n的编码中码元只取+1和一1,以及x和y是其中的两个码组则x,y之间的相关系数为:若码组x和y正交,则:相关系数的性质:相关系数ρ的取值范围在±1之间,即有-1≤ρ≤1。
若两个码组间的相关系数ρ<0,则称这两个码组互相超正交;如果一种编码中任意两码组间均超正交,则称这种编码为超正交编码。
2.阿达玛矩阵哈达玛(Hadamard)矩阵是一种方阵,且仅由元素+1和-1构成。
H矩阵各行(或列)是相互正交的,所以H矩阵是正交方阵。
若把其中每一行都看作一个码组,则这些码组也是互相正交的,而整个H矩阵就是一种长为n的正交编码,它包含n个码组。
3.沃尔什函数和沃尔什矩阵沃尔什函数具有完备正交性,可以用来表示任一波形。
若将哈达玛中行的次序按“+1”和“-1”交变次数的多少重新排列,可得到沃尔什(Walsh)矩阵。
二、伪随机序列伪随机噪声具有类似于随机噪声的某些统计特性,同时又能够重复产生。
1.m序列m序列是最长线性反馈移位寄存器的简称,它是由带线性反馈的移位寄存器产生的周期最长的序列。
(1)与产生m序列有关的3个方程:①递推方程:②特征方程:③母函数:用代数方程表示反馈移存器的输出序列{a},且有f(x)g(x)=h(x),式中,h(x)为次数低f(x)次数的多项式。
(2)原本多项式若一个n次多项式f(x)满足下列条件:①f(x)为既约的;②f(x)可整除(x m+1),m=2n-1;③f(x)除不尽(x q+1),q<m,q<m;则称f(x)为本原多项式。
(3)反馈移位寄存器能产生m序列的充要条件:反馈移存器的特征多项式为本原多项式。
一个n级线性反馈移位寄存器之相继状态具有周期性,周期为p<2n-1。
扩频通信原理
一般的无线扩频通信系统都要进行三次调制。
一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制。
接收端有相应的射频解调,扩频解调和信息解调。
根据扩展频谱的方式不同,扩频通信系统可分为:直接序列扩频(DS)、跳频(FH)、跳时(TH)、线性调频以及以上几种方法的组合。
在发端,信息码经码率较高的PN码调制以后,频谱被扩展了。
在收端,扩频信号经同PN码解调以后,信息码被恢复;
信息码经调制、扩频传输、解调然后恢复的过程,类似与PN码进行了二次"模二相加的过程。
正交编码与伪随机序列————————————————————————————————作者: ————————————————————————————————日期:ﻩ3. 正交编码与伪随机序列在数字通信中,正交编码与伪随机序列都是十分重要的技术。
正交编码不仅可以用作纠错编码,还可用来实现码分多址通信。
伪随机序列在误码率测量、时延测量、扩频通信、通信加密及分离多径等方面有十分广泛的应用。
3.1. 正交编码一、几个概念 1、互相关系数设长为n的编码中码元只取+1、-1,x 和y是其中两个码组)...,(21n x x x x =,)...,(21n y y y y =,其中)1,1(,-+∈i i y x则x、y 间的互相关系数定义为∑==ni i i y x n y x 11),(ρ如果用0表示+1、1表示-1,则DA DA y x +-=),(ρ,其中A 是相同码元的个数,D 为不同码元的个数。
2、自相关系数自相关系数定义为:∑=+=ni j i i x x x n j 11)(ρ,其中下标的计算按模n 计算。
3、正交编码若码组C y x ∈∀,,(C 为所有编码码组的集合)满足0),(=y x ρ,则称C 为正交编码。
即:正交编码的任意两个码组都是正交的。
例1:已知编码的4个码组如下:)1,1,1,1();1,1,1,1();1,1,1,1();1,1,1,1(4321--=--=--=++++=S S S S试计算1S 的自相关系数、21,S S 的互相关系数。
4、超正交编码若两个码组的互相关系数0<ρ,则称这两个码组互相超正交。
如果一种编码中任何两个码组间均超正交,则称这种编码为超正交编码。
例2:例1中取后三个码组,且去掉第1位构成的编码为超正交编码。
(0,1,1),(1,1,0)(1,0,1) 5、双正交编码由正交编码及其反码便组成双正交编码。
例3:正交编码(1,1,1,1)(1,1,0,0)(1,0,0,1)(1,0,1,0) 反码为(0,0,0,0)(0,0,1,1)(0,1,1,0)(0,1,0,1) 双正交码中任意两个码组间的互相关系数为0或-1。