精选-通信原理-第12章 正交编码
- 格式:ppt
- 大小:2.67 MB
- 文档页数:77
第12章正交编码与伪随机序列12.1复习笔记一、正交编码1.正交编码的基本概念(1)正交编码的定义正交编码是指码组两两正交的编码方式。
(2)正交编码的正交性(ρ=0)①互相关系数a.码元为“+1”,“-1”设长为n 的编码中码元取值“+1”和“-1”,则码组x,y 的互相关系数为式中,x,y 表示两个码组,记为b.码元为“0”,“1”设二进制数字码元取值为“0”和“1”,则互相关系数为式中,A 为x 和y 中对应码元相同的个数;D 为x 和y 中对应码元不同的个数。
若码组x 和y 正交,则必有ρ(x,y)=0(11ρ-≤≤+)。
②自相关系数一个长为n的码组x的自相关系数为式中,x的下标按模n运算。
(3)超正交编码(ρ<0)①超正交编码的定义超正交编码是指编码中任两码组间均超正交的编码方式。
②超正交编码的特性任意两个码组间的相关系数ρ<0。
(4)双正交编码(ρ=0或-1)①双正交编码的定义双正交编码是指码组由正交编码和其反码构成的编码方式。
②双正交编码的特性任意两码组间的相关系数ρ为0或-1。
2.阿达玛矩阵(1)阿达玛矩阵的定义阿达玛矩阵是指由元素+1和-1构成,且其各行(或列)互相正交的方阵,记为H矩阵。
(2)阿达玛矩阵的表示阶数为2的幂的高阶H矩阵表示为式中,N=2m;为直积,指将中的每一个元素用矩阵H 2代替;H2为最低阶H 矩阵,下式中+1和-1简写为“+”和“-”,即(3)阿达玛矩阵的正规形式①正规阿达玛矩阵的定义正规阿达玛矩阵是指元素对称且第一行和第一列的元素全为“+”的H矩阵。
②正规阿达玛矩阵的特点正规H矩阵交换任意两行(或列),或改变任一行(或列)中每个元素的符号:a.不会影响矩阵的正交性质;b.交换后的矩阵H不一定正规。
3.沃尔什函数(1)沃尔什函数的定义沃尔什函数用差分方程定义为式中,p=0或1,j=0,1,2,…;指数中的[j/2]表示取j/2的整数部分。
(2)沃尔什函数的特点①函数取值仅为“+1”和“-1”;②任意两个沃尔什函数相乘积分的结果等于0,即满足两两正交;③具有数字信号的特性。
第十二章 正交编码与伪随机序列主要内容 主要内容 ¾ ¾正交编码 正交编码 ¾ ¾伪随机码 伪随机码 ¾ ¾伪随机序列应用 伪随机序列应用12.1 引言正交编码广泛用于纠错码、码分多址技术。
伪随机码广泛用于误码测量、扩频通信、通信加密等方面。
12.2 正交编码1. 正交的概念 模拟信号:周期为T的模拟信号s1(t),s1(t)相互正交,则有∫T0s1 (t )s 2 (t )dt = 0M个周期为T的模拟信号s1(t),s2(t),…,sM(t)构成正交信号集合∫T0s i (t )s j (t )dt = 0i ≠ j, i , j = 1,2,..., M数字信号:码组间的正交性用互相关系数表示。
x = ( x1 , x 2 ,..., x n )y = ( y 1 , y 2 ,..., y n )(1)xi,yj 取+1或-1,则x,y间的互相关系数定义为1 n ρ( x , y ) = ∑ x i y i n i =1若ρ=0,则称码组x,y正交。
− 1 ≤ ρ ≤ +1(2)xi,yj 取0或1,则x,y间的互相关系数可以表示为A−D ρ(x, y ) = A+DA: x,y中对应码元相同的个数, D: x,y中对应码元不同的个数.(3)若y为x的j次移位得到的码组,则得到x的自相关系数ρx(j). (4)若ρ<0, 则称两个码组互相超正交。
若编码中任意两码组间超正交, 则称这种编码为超正交编码。
(5)正交编码与其反码的集合构成双正交编码。
例:如图为4个数字信号波形。
1 4 由 ρ( x, y ) = ∑ x i y i 4 i =14个码组任意两个间的ρ=0均为0,故称 为正交编码。
2. 哈达玛(Hadamard)矩阵特点:其每一行(或列)均为正交码组,且由其容易构成超正交码和双正交码。
2阶H矩阵 高阶H矩阵⎡ + 1 + 1⎤ H2 = ⎢ ⎥ ⎣ + 1 − 1⎦或⎡+ + ⎤ H2 = ⎢ ⎥ ⎣+ − ⎦HN = HN/2 ⊗ H2⎡H 2 H4 = H2 ⊗ H2 = ⎢ ⎣H 2N = 2m+ + +⎤ − + −⎥ ⎥ + − −⎥ − − +⎥ ⎦+ − − + + − − + + + + + − − − − + − + − − + − + + + − − − − + + +⎤ −⎥ ⎥ −⎥ +⎥ −⎥ ⎥ +⎥ +⎥ ⎥ −⎦ ⎥⎡+ H 2 ⎤ ⎢+ =⎢ ⎥ − H 2 ⎦ ⎢+ ⎢ ⎣++ − + − + − + − + + − − + + − −⎡H H8 = H4 ⊗ H2 = ⎢ 4 ⎣H 4⎡+ ⎢+ ⎢ ⎢+ H 4 ⎤ ⎢+ =⎢ − H4 ⎥ ⎦ ⎢+ ⎢+ ⎢+ ⎢ ⎢+ ⎣H矩阵可以看成是一种长为n的正交编码,包含n个码组。
樊昌信《通信原理》(第6版)笔记和课后习题(含考研真题)详解第12章正交编码与伪随机序列12.1复习笔记一、正交编码1.正交编码的基本概念若M个周期为T模拟信号s1(t),s2(t),...,s M(t)构成一个正交集合,则有:设长为n的编码中码元只取+1和一1,以及x和y是其中的两个码组则x,y之间的相关系数为:若码组x和y正交,则:相关系数的性质:相关系数ρ的取值范围在±1之间,即有-1≤ρ≤1。
若两个码组间的相关系数ρ<0,则称这两个码组互相超正交;如果一种编码中任意两码组间均超正交,则称这种编码为超正交编码。
2.阿达玛矩阵哈达玛(Hadamard)矩阵是一种方阵,且仅由元素+1和-1构成。
H矩阵各行(或列)是相互正交的,所以H矩阵是正交方阵。
若把其中每一行都看作一个码组,则这些码组也是互相正交的,而整个H矩阵就是一种长为n的正交编码,它包含n个码组。
3.沃尔什函数和沃尔什矩阵沃尔什函数具有完备正交性,可以用来表示任一波形。
若将哈达玛中行的次序按“+1”和“-1”交变次数的多少重新排列,可得到沃尔什(Walsh)矩阵。
二、伪随机序列伪随机噪声具有类似于随机噪声的某些统计特性,同时又能够重复产生。
1.m序列m序列是最长线性反馈移位寄存器的简称,它是由带线性反馈的移位寄存器产生的周期最长的序列。
(1)与产生m序列有关的3个方程:①递推方程:②特征方程:③母函数:用代数方程表示反馈移存器的输出序列{a},且有f(x)g(x)=h(x),式中,h(x)为次数低f(x)次数的多项式。
(2)原本多项式若一个n次多项式f(x)满足下列条件:①f(x)为既约的;②f(x)可整除(x m+1),m=2n-1;③f(x)除不尽(x q+1),q<m,q<m;则称f(x)为本原多项式。
(3)反馈移位寄存器能产生m序列的充要条件:反馈移存器的特征多项式为本原多项式。
一个n级线性反馈移位寄存器之相继状态具有周期性,周期为p<2n-1。
通信原理第六版课后思考题第1章绪论1、何谓数字信号?何谓模拟信号?两者的根本区别是什么?答:数字信号:电信号的参量仅可能取有限个值;模拟信号:电信号的参量取值连续;两者的根本区别在于电信号的参量取值是有限个值还是连续的。
2、画出模拟通信系统的一般模型。
3、何谓数字通信?数字通信有哪些优缺点?答:数字通信即通过数字信号传输的通信,相对模拟通信,有以下特点:1)传输的信号是离散式的或数字的;2)强调已调参数与基带信号之间的一一对应;3)抗干扰能力强,因为信号可以再生,从而消除噪声积累;4)传输差错可以控制;5)便于使用现代数字信号处理技术对数字信号进行处理;6)便于加密,可靠性高;7)便于实现各种信息的综合传输3、画出数字通信系统的一般模型。
答:4、按调制方式,通信系统如何分类?答:分为基带传输和频带传输5、按传输信号的特征,通信系统如何分类?答:按信道中传输的是模拟信号还是数字信号,可以分为模拟通信系统和数字通信系统6、按传输信号的复用方式,通信系统如何分类?答:频分复用(FDM),时分复用(TDM),码分复用(CDM)7、通信系统的主要性能指标是什么?第3章随机过程1、随机过程的数字特征主要有哪些?它们分别表征随机过程的哪些特征?答:均值:表示随机过程的n 个样本函数曲线的摆动中心。
方差:表示随机过程在时刻t 相对于均值a(t)的偏离程度。
相关函数:表示随机过程在任意两个时刻上获得的随机变量之间的关联程度。
2、何谓严平稳?何谓广义平稳?它们之间的关系如何?答:严平稳:随机过程δ(t)的任意有限维分布函数与时间起点无关。
广义平稳:1)均值与t 无关,为常数a 。
2)自相关函数只与时间间隔τ=t 1-t 2有关。
严平稳随机过程一定是广义平稳的,反之则不一定成立。
4、平稳过程的自相关函数有哪些性质?它与功率谱的关系如何?答:自相关函数性质:(1) R(0)=E[ξ2(t)]——ξ(t)的平均功率。
(2) R(τ)=R(-τ)——τ的偶函数。
第12章 正交编码与伪随机序列一、填空题扩频通信能够有效______外系统引起的______干扰和无线信道引起的______干扰,但是它在______加性高斯白噪声方面的能力等同于______系统。
[北邮2006研;南京大学2010研]【答案】抑制;窄带;多径;非扩频【解析】扩频系统具有抗窄带干扰、多址干扰和多径干扰的能力,扩频系数N 越大,抗干扰性能越强。
二、简答题1.简述m 序列特点是什么?根据特征多项式f (x )=x 4+x +1,画出m 序列产生器。
[南邮2009研]答:(1)m 序列特点①均衡性:0的数目与1的数目基本相同;②游程分布:长度为k 的游程数目出现的概率为12k ; ③自相关函数:仅有两种取值(1和-1/m );④功率谱密度:00,m T T →∞→∞时,近似于白噪声特性;⑤移位相加性:p q g M M M ⊕=,其中,,p q M M 是任意次延迟产生的序列且p q M M ≠。
(2)m 序列产生器如图12-1所示。
图12-1 m 序列产生器2.已知线性反馈移存器序列的特征多项式为f (x )=x 3+x +1,求此序列的状态转移图,并说明它是否是m 序列。
[北京交通大学2005研]解:该序列的发生器逻辑框图如图12-2所示图12-2定义状态为矢量s =(s 1,s 2,s 3),假设起始状态是100,则状态转移图如图12-3所示图12-3由于其周期P=23-1=7,而三级线性移位存储器所能产生的周期最长的序列为7,所以此序列为m序列。
三、计算题一直接序列扩频通信系统如图12-4所示。
图中d(t)=是幅度为±1的双极性NRZ信号,脉冲g(t)在t∈[0,T]之外为0。
{a n}是独立等概的信息序列。
T是码元间隔。
C(t)是由一个m序列形成的幅度为±1的双极性NRZ信号。
该m 序列的码片速率为整数L是扩频因子。
m序列的特征多项式是f(x)=1+x+x4。
正交编码原理及波形-概述说明以及解释1.引言1.1 概述正交编码是一种在通信系统中广泛应用的编码技术,通过将信息信号与正弦、余弦基波进行正交编码,实现了信号在传输过程中的可靠性和稳定性。
在数字通信系统中,正交编码能够有效地降低信号传输过程中的误码率,提高系统的抗干扰能力,同时也能够提高信号传输的效率。
本文将深入探讨正交编码的原理及其在通信系统中的应用,并分析正交编码波形的特点,希望能为读者提供一些有益的信息和启发。
1.2 文章结构文章结构部分应该包括对整篇文章的框架和内容安排进行简要介绍,以便读者对整个文章有一个整体的了解。
在这部分内容中,可以提及本文主要分为引言、正文和结论三个部分,每个部分的重点内容和目的。
具体内容可以为:"本文主要分为引言、正文和结论三个部分。
在引言部分,将介绍正交编码的概念和基本原理,以及本文的目的和结构安排。
接着,在正文部分,将深入探讨正交编码的原理和应用,并分析正交编码的波形特点。
最后,在结论部分,将对正交编码原理进行总结,展望其未来应用前景,并进行最终的结语。
通过这样的结构安排,读者可以全面了解正交编码的相关知识和应用,从而更好地理解本文的内容。
"1.3 目的本文的目的是探讨正交编码的基本原理及其在通信领域的应用。
通过对正交编码的原理进行深入剖析,我们可以更好地理解其在数字通信中的重要性和作用。
同时,通过分析正交编码的波形特点,我们可以更好地了解信号在传输过程中的表现形式。
最终,本文旨在为读者提供关于正交编码的全面理解,以便进一步探讨其在实际应用中的重要性和潜在价值。
2.正文2.1 正交编码原理正交编码是一种通过在通信系统中引入正交基函数来实现数据传输的编码方式。
其基本原理是将原始信号分解为正交向量(即互相垂直的向量),然后在每个独立的向量上进行编码和调制。
在正交编码中,通常使用正交基函数来表示信号空间。
常见的正交编码方式包括正交振幅调制(QAM)、正交频分复用(OFDM)等。