给水管网计算表空表
- 格式:xls
- 大小:22.50 KB
- 文档页数:1
第三章给水排水管道系统水力计算基础本章内容:1、水头损失计算2、无压圆管的水力计算3、水力等效简化本章难点:无压圆管的水力计算第一节基本概念一、管道内水流特征进行水力计算前首先要进行流态的判别。
判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。
对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。
二、有压流与无压流水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。
水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。
从水流断面形式看,在给水排水管道中采用圆管最多三、恒定流与非恒定流给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。
四、均匀流与非均匀流液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。
从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。
对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。
均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。
对于非满管流或明渠流,只要长距离截面不变,也没有转弯或交汇时,也可以近似为均匀流,按沿程水头损失公式进行水力计算,对于短距离或特殊情况下的非均匀流动则运用水力学理论按缓流或急流计算。
第8章建筑内部热水供应系统8.4热水管网的水力计算8.4 热水管网的水力计算8.4热水管网的水力计算热水管网的水力计算是在完成热水供应系统布置,绘出热水管网系统图及选定加热设备后进行的。
水力计算的目的是:计算第一循环管网(热媒管网)的管径和相应的水头损失;计算第二循环管网(配水管网和回水管网)的设计秒流量、循环流量、管径和水头损失;确定循环方式,选用热水管网所需的各种设备及附件,如循环水泵、疏水器、膨胀设施等。
以热水为热媒时,热媒流量G按公式(8-8)计算。
热媒循环管路中的配、回水管道,其管径应根据热媒流量G、热水管道允许流速,通过查热水管道水力计算表确定,并据此计算出管路的总水头损失Hh 。
热水管道的流速,宜按表8-45选用。
8.4.1 第一循环管网的水力计算1.热媒为热水热水管道的流速表8-12当锅炉与水加热器或贮水器连接时,如图8-12所示,热媒管网的热水自然循环压力值H zr 按式(8-35)计算:)(8.921ρρ-∆=h H zr 图8-128.4热水管网的水力计算8.4.1 第一循环管网的水力计算式中H zr —热水自然循环压力,Pa ;Δh —锅炉中心与水加热器内盘管中心或贮水器中心垂直高度,m ;ρ1—锅炉出水的密度,kg/m 3;ρ2—水加热器或贮水器的出水密度,kg/m 3。
当H zr >H h 时,可形成自然循环,为保证运行可靠一般要求(8-36):h H 当H zr 不满足上式的要求时,则应采用机械循环方式,依靠循环水泵强制循环。
循环水泵的流量和扬程应比理论计算值略大一些,以确保可靠循环。
zr H ≥(1.1~1.15)hH2.热媒为高压蒸汽以高压蒸汽为热媒时,热媒流量G按公式(8-6)或(8-7)确定。
热媒蒸汽管道一般按管道的允许流速和相应的比压降确定管径和水头损失。
高压蒸汽管道的常用流速见表8-13。
高压蒸气管道常用流速表8-13 确定热媒蒸汽管道管径后,还应合理确定凝水管管径。
给水设计中贸易结算水表表径的计算及计量方式选择摘要:随着社会的发展,自来水已经成为了人们生产生活的重要组成部分,在自来水供应过程中,如何保证自来水贸易计算数据的准确性是供需双方共同关注的问题。
影响水表计量精度控制结果的关键要素除水表本身的质量和结构外,与水表的口径息息相关,为此在选择水表口径时,需要做好当地的压力和流量测试工作,让自来水管道的管道水压和流量始终保持在一个相对平衡的位置上,保证水量计算结果的准确性。
基于此,本文主要探讨在自来水给水设计中贸易结算水表表径的计算方式和计量方式,根据现场的实际情况选择最佳的水表表径计算方式,保证计算结果的准确性,以期为得到供需双方认可的现代化用水量计算方式的建立打下良好基础。
关键词:给水设计;贸易结算;水表表径;计算及计量方式选择策略随着居民环境保护意识的不断提高,节约自然资源的意识逐渐增强,对于用水量的精准控制需求也在不断增加,然而生产生活方式的变化导致人们在某段时间内的用水需求不断增加,现有的管道口径和水流量无法满足人们的生产生活用水需求,但盲目改造管道增加水压与水流量容易导致贸易结算水表测试结果出现偏差,在这种情况下如何在尽可能保证居民用水需求的同时提升水表计量的准确性是供水企业需要面对和解决的问题。
1明确当前水表分类和标准水表表径和水流口径影响着水表用水量计算的准确性,小口径水表的最小可测流量较小,对于自来水公司来说这种用水方式能够有效避免水损,提高测量精度,随着人们生产生活用水量的增加,小口径的供水管道已经无法满足人们的用水需求,然而扩大输水口径意味着要使用大口径水表来提升最大可测流量标准,然而大孔径水表的最小可测流量相对较大,而居民用水流量极不稳定,因此会增加不可测用水损耗[1]。
1.1测量原理不同导致水表类型存在差异贸易结算水平的测量方式和测量原理以及计量等级存在一定差别,按照测量原理划分水表类型,可以将其分为速度是水表和容积式水表两种类型。
课程设计计算书目录1总用水量的估算 (3)1.1办公楼最大时用水量 (3)1.2餐饮部最大使用水量 (4)1.3小餐厅人数计算 (4)2.卫生间给水系统设计计算 (4)2.1设计秒流量计算 (4)2. 2管网水力计算 (5)3.卫生间排水系统设计计算 (7)3.1排水设计秒流量 (7)3. 2排水管网水力计算 (7)4.雨水管网水力计算 (9)5.化粪池的设计 (9)6.隔油池的设计 (10)1总用水量的估算:本设计建筑物为办公楼,不考虑消防,其内给水只包括生活用水量。
根据建筑物的性质及室内用水情况计算用水量:1.1办公楼最大时用水量:根据具体图纸,测量得到办公楼有效而积为2253",经过查表,每位员工占用而积按照a=lm2/人计算,生活用水量标准(最高日)为401/〃,取时变化系数心为1.3厶/〃:办公楼人数:=生=竽= 321(人)J 7办公楼最大时用水量:Q] ="•呛=321x40 = 12840(/7〃)Gi *2 =1.3x组=1.3X£^-=0.58(L/S),H " p,T8x36001.2餐饮部最大使用水量:经过查表,小餐厅指标按照3.3/(川座“),食堂指标按照1.5/(赤.座巧, 生活用水量标准(最高日)为25厶/d, T则按工作8小时计算,取时变化系数伦为1.3厶/〃,1.3小餐厅人数计算:“2 = 18.033x3.3 = 59(人)食堂人数计算:M =192.35 x 1.5 = 288(人)餐厅最大时用水量:Qd2 =(M + “3) Wd2 = (288 +59)x25= 8675 {Lid)8675° = K/ Q”,= 1.3 x 空■ = 1.3 x -------- = 0.39(厶 / s)八T8x3600此建筑最大时用水量为:Q h = Q M +Q I I2= 0.58 + 0.39 = 0.97(厶/s)2 •卫生间给水系统设计计算2.1设计秒流量计算根据轴测图,确定最不利点的位置是三楼的洗脸盆,顾计算管路为0、1、2、……31。
给水排水管网设计(给水部分)一、给水系统的布置(1)给水系统的给水布置给水系统有统一给水系统,分系统给水系统(包括分质给水系统、分区给水系统及分压给水系统),多水源给水系统和分地区给水系统。
本设计城市规模较小,地形较为平坦,其工业用水在总供水量所占比例较小,且城市内工厂位置分散,用水量少,故可采用同一系统供应生活、生产和消防等各种用水,即使其供水有统一的水质和水压。
鉴于城市规模小,且管道铺设所需距离较长,本设计选择单水源给水系统。
从设计施工费用等方面考虑,单水源统一给水系统的投资也相对较小,较为经济。
综上所诉,本设计采用单水源统一给水系统。
(2)给水管网布置形式城市给水官网的基本布置形式主要有环状与树枝状两种。
树状网的供水安全性较差,当管中某一段管线损坏时,在该管段以后的所有管线就会断水。
而且,由于枝状网的末端,因用水量已经很小,管中的水流缓慢,因此水质容易变坏,环状网是管线连接成环状,某一管段损坏时,可以关闭附近的阀门是和其余管线隔开,以进行检修,其余管线仍能够正常工作,断水的地区可以缩小,从而保证供水的安全可靠性。
另外,还可以大大减小因水锤作用产生的危害,在树状网中,则往往一次而是管线损坏。
但是其造价明显比树状网为高。
一般大中城市采用环状管网,而供水安全性要求较低的小城镇则可以猜用树状管网。
但是,为了提高城镇供水的安全可靠性以及保证远期经济的发展,本实例仍然采用环状网,并且是有水塔的环状网给水管网。
(3)二级泵房供水方式综合考虑居民用水情况以及具体地形情况,拟在管网末端设置对置水塔,由于水塔可调节水泵供水和用水之间的流量差,二泵站的供水量可以与用水量不相等,即水泵可以采用分级供水的办法,分级供水的原则是:(1)泵站各级供水线尽量接近用水线,以减小水塔的调节容积,分级输一般不多于三级:(2)分级供水时,应注意每级能否选到合适的水泵,以及水泵机组的合理搭配,尽可能满足今后和一段时间内用水量增长的需要。
第三章给水排水管道系统水力计算基础本章内容:1、水头损失计算2、无压圆管的水力计算3、水力等效简化本章难点:无压圆管的水力计算第一节基本概念一、管道内水流特征进行水力计算前首先要进行流态的判别。
判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。
对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。
二、有压流与无压流水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。
水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。
从水流断面形式看,在给水排水管道中采用圆管最多三、恒定流与非恒定流给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。
四、均匀流与非均匀流液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。
从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。
对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。
均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。
对于非满管流或明渠流,只要长距离截面不变,也没有转弯或交汇时,也可以近似为均匀流,按沿程水头损失公式进行水力计算,对于短距离或特殊情况下的非均匀流动则运用水力学理论按缓流或急流计算。