通信原理第十二章正交编码与伪随机序列优秀课件
- 格式:ppt
- 大小:1.28 MB
- 文档页数:90
3正交编码与伪随机序列3. 正交编码与伪随机序列在数字通信中,正交编码与伪随机序列都是十分重要的技术。
正交编码不仅可以用作纠错编码,还可用来实现码分多址通信。
伪随机序列在误码率测量、时延测量、扩频通信、通信加密及分离多径等方面有十分广泛的应用。
3.1. 正交编码一、 几个概念 1、 互相关系数设长为n 的编码中码元只取+1、-1,x 和y 是其中两个码组)...,(21n x x x x =,)...,(21ny y y y =,其中)1,1(,-+∈iiy x则x 、y 间的互相关系数定义为∑==ni ii y x n y x 11),(ρ如果用0表示+1、1表示-1,则DA D A y x +-=),(ρ,其中A 是相同码元的个数,D 为不同码元的个数。
2、 自相关系数自相关系数定义为:∑=+=ni ji i x x x n j 11)(ρ,其中下标的计算按模n 计算。
3、 正交编码若码组C y x ∈∀,,(C 为所有编码码组的集合)满足0),(=y x ρ,则称C 为正交编码。
即:正交编码的任意两个码组都是正交的。
例1:已知编码的4个码组如下: )1,1,1,1();1,1,1,1();1,1,1,1();1,1,1,1(4321--=--=--=++++=S S S S试计算1S 的自相关系数、21,S S 的互相关系数。
4、 超正交编码若两个码组的互相关系数0<ρ,则称这两个码组互相超正交。
如果一种编码中任何两个码组间均超正交,则称这种编码为超正交编码。
例2:例1中取后三个码组,且去掉第1位构成的编码为超正交编码。
(0,1,1),(1,1,0)(1,0,1) 5、 双正交编码由正交编码及其反码便组成双正交编码。
例3:正交编码(1,1,1,1)(1,1,0,0)(1,0,0,1)(1,0,1,0)反码为(0,0,0,0)(0,0,1,1)(0,1,1,0)(0,1,0,1)双正交码中任意两个码组间的互相关系数为0或-1。
扩频通信原理
一般的无线扩频通信系统都要进行三次调制。
一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制。
接收端有相应的射频解调,扩频解调和信息解调。
根据扩展频谱的方式不同,扩频通信系统可分为:直接序列扩频(DS)、跳频(FH)、跳时(TH)、线性调频以及以上几种方法的组合。
在发端,信息码经码率较高的PN码调制以后,频谱被扩展了。
在收端,扩频信号经同PN码解调以后,信息码被恢复;
信息码经调制、扩频传输、解调然后恢复的过程,类似与PN码进行了二次"模二相加的过程。
正交编码与伪随机序列————————————————————————————————作者: ————————————————————————————————日期:ﻩ3. 正交编码与伪随机序列在数字通信中,正交编码与伪随机序列都是十分重要的技术。
正交编码不仅可以用作纠错编码,还可用来实现码分多址通信。
伪随机序列在误码率测量、时延测量、扩频通信、通信加密及分离多径等方面有十分广泛的应用。
3.1. 正交编码一、几个概念 1、互相关系数设长为n的编码中码元只取+1、-1,x 和y是其中两个码组)...,(21n x x x x =,)...,(21n y y y y =,其中)1,1(,-+∈i i y x则x、y 间的互相关系数定义为∑==ni i i y x n y x 11),(ρ如果用0表示+1、1表示-1,则DA DA y x +-=),(ρ,其中A 是相同码元的个数,D 为不同码元的个数。
2、自相关系数自相关系数定义为:∑=+=ni j i i x x x n j 11)(ρ,其中下标的计算按模n 计算。
3、正交编码若码组C y x ∈∀,,(C 为所有编码码组的集合)满足0),(=y x ρ,则称C 为正交编码。
即:正交编码的任意两个码组都是正交的。
例1:已知编码的4个码组如下:)1,1,1,1();1,1,1,1();1,1,1,1();1,1,1,1(4321--=--=--=++++=S S S S试计算1S 的自相关系数、21,S S 的互相关系数。
4、超正交编码若两个码组的互相关系数0<ρ,则称这两个码组互相超正交。
如果一种编码中任何两个码组间均超正交,则称这种编码为超正交编码。
例2:例1中取后三个码组,且去掉第1位构成的编码为超正交编码。
(0,1,1),(1,1,0)(1,0,1) 5、双正交编码由正交编码及其反码便组成双正交编码。
例3:正交编码(1,1,1,1)(1,1,0,0)(1,0,0,1)(1,0,1,0) 反码为(0,0,0,0)(0,0,1,1)(0,1,1,0)(0,1,0,1) 双正交码中任意两个码组间的互相关系数为0或-1。