第12章_正交编码与伪随机序列_2016
- 格式:pptx
- 大小:913.33 KB
- 文档页数:43
第十二章正交编码与伪随机序列12-1、设3级线性反馈移位寄存器的特征方程为:f(x)?1?x2?x3,试验证它为本原多项式。
解:由题意n=3,所以m?2?1?7。
而xm?1?x7?1?(x3?x2?1)(x4?x3?x2?1)上式说明f(x)可整除x?1,且f(x)既约,除不尽x6?1,x5?1,x4?1所以f (x)为本原多项式。
12-2、己知三级移位寄存器的原始状态为111,试写出两种m序列的输出序列。
解:因为反馈移存器能产生m序列的充要条件为:反馈移位寄存器的特征多项式为本原多项式。
当n=3时,有2个3阶本原多项式:7nf1(x)?x3?x?1,f2(x)?x3?x2?1f1(x)和f2(x)为互逆的本原多项式,都可以产生m序列。
根据第5题,由f1(x)?x3?x?1产生的m序列为11101000,同理,由f2(x)?x3?x2?1产生的m序列为11100100。
12-3、设4级线性反馈移存器的特征方程为:f(x)?1?x?x?x?x,试证明此移位寄存器产生的不是m序列。
证明:方法一:由题意n=4,得m?2?1?15。
因为(x?1)(x?x?x?x?1)?x?1f(x)可整除x?1,故f(x)不是本原多项式,它所产生的序列不是m序列。
方法二:由特征多项式f(x)?1?x?x?x?x构成的4级线性反馈移位寄存器如图9-4所示。
假设初始状态为:1 1 1 1状态转换位:0 1 1 11 0 1 11 1 0 11 1 1 01 1 1 1可见输出序列的周期为6?2?1?15,故不是m 序列。
45n2344325234 图12-112-4、己知一个由9级移位寄存器所产生的m序列,写出在每一周期内所有可能的游程长度的个数。
解:该m序列中共有2?256个游程。
根据m序列游程分布的性质,长度为k的游程数目占游程总数的2?k,1?k?(n?1)。
而且在长度为k的游程中[其中1?k?(n?2)],连“1”和连“0”的游程各占一半。
第十二章 正交编码与伪随机序列主要内容 主要内容 ¾ ¾正交编码 正交编码 ¾ ¾伪随机码 伪随机码 ¾ ¾伪随机序列应用 伪随机序列应用12.1 引言正交编码广泛用于纠错码、码分多址技术。
伪随机码广泛用于误码测量、扩频通信、通信加密等方面。
12.2 正交编码1. 正交的概念 模拟信号:周期为T的模拟信号s1(t),s1(t)相互正交,则有∫T0s1 (t )s 2 (t )dt = 0M个周期为T的模拟信号s1(t),s2(t),…,sM(t)构成正交信号集合∫T0s i (t )s j (t )dt = 0i ≠ j, i , j = 1,2,..., M数字信号:码组间的正交性用互相关系数表示。
x = ( x1 , x 2 ,..., x n )y = ( y 1 , y 2 ,..., y n )(1)xi,yj 取+1或-1,则x,y间的互相关系数定义为1 n ρ( x , y ) = ∑ x i y i n i =1若ρ=0,则称码组x,y正交。
− 1 ≤ ρ ≤ +1(2)xi,yj 取0或1,则x,y间的互相关系数可以表示为A−D ρ(x, y ) = A+DA: x,y中对应码元相同的个数, D: x,y中对应码元不同的个数.(3)若y为x的j次移位得到的码组,则得到x的自相关系数ρx(j). (4)若ρ<0, 则称两个码组互相超正交。
若编码中任意两码组间超正交, 则称这种编码为超正交编码。
(5)正交编码与其反码的集合构成双正交编码。
例:如图为4个数字信号波形。
1 4 由 ρ( x, y ) = ∑ x i y i 4 i =14个码组任意两个间的ρ=0均为0,故称 为正交编码。
2. 哈达玛(Hadamard)矩阵特点:其每一行(或列)均为正交码组,且由其容易构成超正交码和双正交码。
2阶H矩阵 高阶H矩阵⎡ + 1 + 1⎤ H2 = ⎢ ⎥ ⎣ + 1 − 1⎦或⎡+ + ⎤ H2 = ⎢ ⎥ ⎣+ − ⎦HN = HN/2 ⊗ H2⎡H 2 H4 = H2 ⊗ H2 = ⎢ ⎣H 2N = 2m+ + +⎤ − + −⎥ ⎥ + − −⎥ − − +⎥ ⎦+ − − + + − − + + + + + − − − − + − + − − + − + + + − − − − + + +⎤ −⎥ ⎥ −⎥ +⎥ −⎥ ⎥ +⎥ +⎥ ⎥ −⎦ ⎥⎡+ H 2 ⎤ ⎢+ =⎢ ⎥ − H 2 ⎦ ⎢+ ⎢ ⎣++ − + − + − + − + + − − + + − −⎡H H8 = H4 ⊗ H2 = ⎢ 4 ⎣H 4⎡+ ⎢+ ⎢ ⎢+ H 4 ⎤ ⎢+ =⎢ − H4 ⎥ ⎦ ⎢+ ⎢+ ⎢+ ⎢ ⎢+ ⎣H矩阵可以看成是一种长为n的正交编码,包含n个码组。
樊昌信《通信原理》(第6版)笔记和课后习题(含考研真题)详解第12章正交编码与伪随机序列12.1复习笔记一、正交编码1.正交编码的基本概念若M个周期为T模拟信号s1(t),s2(t),...,s M(t)构成一个正交集合,则有:设长为n的编码中码元只取+1和一1,以及x和y是其中的两个码组则x,y之间的相关系数为:若码组x和y正交,则:相关系数的性质:相关系数ρ的取值范围在±1之间,即有-1≤ρ≤1。
若两个码组间的相关系数ρ<0,则称这两个码组互相超正交;如果一种编码中任意两码组间均超正交,则称这种编码为超正交编码。
2.阿达玛矩阵哈达玛(Hadamard)矩阵是一种方阵,且仅由元素+1和-1构成。
H矩阵各行(或列)是相互正交的,所以H矩阵是正交方阵。
若把其中每一行都看作一个码组,则这些码组也是互相正交的,而整个H矩阵就是一种长为n的正交编码,它包含n个码组。
3.沃尔什函数和沃尔什矩阵沃尔什函数具有完备正交性,可以用来表示任一波形。
若将哈达玛中行的次序按“+1”和“-1”交变次数的多少重新排列,可得到沃尔什(Walsh)矩阵。
二、伪随机序列伪随机噪声具有类似于随机噪声的某些统计特性,同时又能够重复产生。
1.m序列m序列是最长线性反馈移位寄存器的简称,它是由带线性反馈的移位寄存器产生的周期最长的序列。
(1)与产生m序列有关的3个方程:①递推方程:②特征方程:③母函数:用代数方程表示反馈移存器的输出序列{a},且有f(x)g(x)=h(x),式中,h(x)为次数低f(x)次数的多项式。
(2)原本多项式若一个n次多项式f(x)满足下列条件:①f(x)为既约的;②f(x)可整除(x m+1),m=2n-1;③f(x)除不尽(x q+1),q<m,q<m;则称f(x)为本原多项式。
(3)反馈移位寄存器能产生m序列的充要条件:反馈移存器的特征多项式为本原多项式。
一个n级线性反馈移位寄存器之相继状态具有周期性,周期为p<2n-1。
扩频通信原理
一般的无线扩频通信系统都要进行三次调制。
一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制。
接收端有相应的射频解调,扩频解调和信息解调。
根据扩展频谱的方式不同,扩频通信系统可分为:直接序列扩频(DS)、跳频(FH)、跳时(TH)、线性调频以及以上几种方法的组合。
在发端,信息码经码率较高的PN码调制以后,频谱被扩展了。
在收端,扩频信号经同PN码解调以后,信息码被恢复;
信息码经调制、扩频传输、解调然后恢复的过程,类似与PN码进行了二次"模二相加的过程。
正交编码与伪随机序列————————————————————————————————作者: ————————————————————————————————日期:ﻩ3. 正交编码与伪随机序列在数字通信中,正交编码与伪随机序列都是十分重要的技术。
正交编码不仅可以用作纠错编码,还可用来实现码分多址通信。
伪随机序列在误码率测量、时延测量、扩频通信、通信加密及分离多径等方面有十分广泛的应用。
3.1. 正交编码一、几个概念 1、互相关系数设长为n的编码中码元只取+1、-1,x 和y是其中两个码组)...,(21n x x x x =,)...,(21n y y y y =,其中)1,1(,-+∈i i y x则x、y 间的互相关系数定义为∑==ni i i y x n y x 11),(ρ如果用0表示+1、1表示-1,则DA DA y x +-=),(ρ,其中A 是相同码元的个数,D 为不同码元的个数。
2、自相关系数自相关系数定义为:∑=+=ni j i i x x x n j 11)(ρ,其中下标的计算按模n 计算。
3、正交编码若码组C y x ∈∀,,(C 为所有编码码组的集合)满足0),(=y x ρ,则称C 为正交编码。
即:正交编码的任意两个码组都是正交的。
例1:已知编码的4个码组如下:)1,1,1,1();1,1,1,1();1,1,1,1();1,1,1,1(4321--=--=--=++++=S S S S试计算1S 的自相关系数、21,S S 的互相关系数。
4、超正交编码若两个码组的互相关系数0<ρ,则称这两个码组互相超正交。
如果一种编码中任何两个码组间均超正交,则称这种编码为超正交编码。
例2:例1中取后三个码组,且去掉第1位构成的编码为超正交编码。
(0,1,1),(1,1,0)(1,0,1) 5、双正交编码由正交编码及其反码便组成双正交编码。
例3:正交编码(1,1,1,1)(1,1,0,0)(1,0,0,1)(1,0,1,0) 反码为(0,0,0,0)(0,0,1,1)(0,1,1,0)(0,1,0,1) 双正交码中任意两个码组间的互相关系数为0或-1。
第12章正交编码与伪随机序列思考题12-1 何谓正交编码?什么是超正交码?什么是双正交码?答:(1)几个码组中任意两者之间的相关系数为零,即这些码组两两正交,把这种两两正交的编码称为正交编码。
(2)如果一种编码中任意两码组间均超正交,则称这种编码为超正交码。
(3)由正交码和其反码构成的码称为双正交码。
12-2 何谓阿达玛矩阵?它的主要特性如何?答:(1)定义:每一行(或列)都是一个正交码组的矩阵称为阿达玛矩阵。
(2)特性:仅由元素+1和-1构成,交换任意两行,或交换任意两列,或改变任一行中每个元素的符号,或改变任一列中每个元素的符号,都不会影响矩阵的正交性质。
12-3 何谓m序列?答:m序列是指由带线性反馈的位移寄存器产生的周期最长的序列,是最长线性反馈位移寄存器序列的简称。
12-4 何谓本原多项式?答:若一个几次多项式f(x)满足下列条件:(1)f(x)为既约的;(2)f(x)可整除(x m+1),m=2n-1;(3)f(x)除不尽(x q+1),q<m;则称f(x)为本原多项式。
12-5 线性反馈移存器产生m序列的充要条件是什么?答:线性反馈移存器产生m序列的充要条件:一个n级移存器的特征多项式f(x)若为既约的,则由其产生的序列A={a k}的周期等于使f(x)能整除的(x p+1)中最小正整数p,再结合本原多项式的概念可知:反馈移存器产生m序列的充要条件是其特征多项式为本原多项式。
12-6 本原多项式的逆多项式是否也为本原多项式?为什么?答:本原多项式的逆多项式也是本原多项式,例如,(x4+x+1)与(x4+x3+1)互为逆多项式,即10011与11001互为逆码。
12-7 何谓m序列的均衡性?答:m序列的均衡性是指在m序列的一个周期中,“1”和“0”的数目基本相等。
准确的说,“1”的个数比“0”的个数多一个。
12-8 何谓“游程”?m序列的“游程”分布的一般规律如何?答:(1)定义:把一个序列中取值相同的那些相继的(连在一起的)元素合称为一个“游程”。
第12章 正交编码与伪随机序列12.1 本章要点详解本章要点■引言■正交编码■伪随机序列■扩展频道通信■伪随机序列的其他应用重难点导学一、正交编码1.正交编码的基本概念若M 个周期为T 模拟信号s 1(t),s 2(t),...,s M (t)构成一个正交集合,则有设长为n 的编码中码元只取+1和一1,以及x 和y 是其中的两个码组,即则x ,y 之间的互相关系数为若码组x 和y 正交,则同时自相关系数为把两两正交的码组称为正交编码,而若两个码组间的相关系数ρ<0,则称这两个码组互相超正交;如果一种编码中任意两码组间均超正交,则称这种编码为超正交编码。
2.哈达玛矩阵哈达玛矩阵是一种方阵,且仅由元素+1和-1构成。
例如二阶哈达玛矩阵。
H 矩阵各行(或列)是相互正交的,所以H 矩阵是正交方阵。
若把其中每一行都看作一个码组,则这些码组也是互相正交的,而整个H 矩阵就是一种长为n 的正交编码,它包含n 个码组。
3.沃尔什函数和沃尔什矩阵沃尔什函数具有完备正交性,可以用来表示任一波形。
若将哈达玛中行的次序按“+1”和“-1”交变次数的多少重新排列,可得到沃尔什(Walsh)矩阵。
二、伪随机序列伪随机噪声具有类似于随机噪声的某些统计特性,同时又能够重复产生。
1.m 序列m 序列是最长线性反馈移位寄存器的简称,它是由带线性反馈的移位寄存器产生的周期最长的序列。
产生m 序列的一般框图如图12-1所示。
图12-1 一般的线性反馈移存器原理方框图(1)与产生m 序列有关的3个方程①递推方程:②特征方程:③母函数:三个方程与m 序列的关系为:①,式中,h (x )为次数低于f (x )的次数的多项式。
②一个n 级线性反馈移存器之相继状态具有周期性,周期为p 2n -1。
③若序列A ={a k }具有最长周期(p =2n -1),则其特征多项式f (x )应为既约多项式。
④一个n 级移存器的特征多项式f (x )若为既约的,则由其产生的序列A = {a k }的周期等于使f (x )能整除的(x p +1)中最小正整数p 。
通信原理(第七版)思考题及答案第一章绪论1.以无线广播和电视为例,说明图1-3模型中的信息源,受信者及信道包含的具体内容是什么在无线电广播中,信息源包括的具体内容为从声音转换而成的原始电信号,收信者中包括的具体内容就是从复原的原始电信号转换乘的声音;在电视系统中,信息源的具体内容为从影像转换而成的电信号。
收信者中包括的具体内容就是从复原的原始电信号转换成的影像;二者信道中包括的具体内容分别是载有声音和影像的无线电波2.何谓数字信号,何谓模拟信号,两者的根本区别是什么数字信号指电信号的参量仅可能取有限个值;模拟信号指电信号的参量可以取连续值。
他们的区别在于电信号参量的取值是连续的还是离散可数的3.何谓数字通信,数字通信有哪些优缺点传输数字信号的通信系统统称为数字通信系统;优缺点:1.抗干扰能力强;2.传输差错可以控制;3.便于加密处理,信息传输的安全性和保密性越来越重要,数字通信的加密处理比模拟通信容易的多,以话音信号为例,经过数字变换后的信号可用简单的数字逻辑运算进行加密,解密处理;4.便于存储、处理和交换;数字通信的信号形式和计算机所用的信号一致,都是二进制代码,因此便于与计算机联网,也便于用计算机对数字信号进行存储,处理和交换,可使通信网的管理,维护实现自动化,智能化;5.设备便于集成化、微机化。
数字通信采用时分多路复用,不需要体积较大的滤波器。
设备中大部分电路是数字电路,可用大规模和超大规模集成电路实现,因此体积小,功耗低;6.便于构成综合数字网和综合业务数字网。
采用数字传输方式,可以通过程控数字交换设备进行数字交换,以实现传输和交换的综合。
另外,电话业务和各种非话务业务都可以实现数字化,构成综合业务数字网;缺点:占用信道频带较宽。
一路模拟电话的频带为4KHZ带宽,一路数字电话约占64KHZ。
4.数字通信系统的一般模型中的各组成部分的主要功能是什么数字通行系统的模型见图1-4所示。
其中信源编码与译码功能是提高信息传输的有效性和进行模数转换;信道编码和译码功能是增强数字信号的抗干扰能力;加密与解密的功能是保证传输信息的安全;数字调制和解调功能是把数字基带信号搬移到高频处以便在信道中传输;同步的功能是在首发双方时间上保持一致,保证数字通信系统的有序,准确和可靠的工作。
12-1、设3级线性反馈移位寄存器的特征方程为:23()1f x x x =++,试验证它为本原多 项式。
解:由题意n=3,所以217nm =-=。
而73243211(1)(1)mx x x x x x x +=+=+++++上式说明()f x 可整除71x +,且()f x 既约,除不尽6541,1,1x x x +++所以f (x)为本原多项式。
12-2、己知三级移位寄存器的原始状态为111,试写出两种m 序列的输出序列。
解:因为反馈移存器能产生m 序列的充要条件为:反馈移位寄存器的特征多项式为本原多项式。
当n=3时,有2个3阶本原多项式:31()1f x x x =++,322()1f x x x =++1()f x 和2()f x 为互逆的本原多项式,都可以产生m 序列。
根据第5题,由31()1f x x x =++产生的m 序列为11101000, 同理,由322()1f x x x =++产生的m 序列为11100100。
12-3、设4级线性反馈移存器的特征方程为:234()1f x x x x x =++++,试证明此移位寄 存器产生的不是m 序列。
证明:方法一:由题意n =4,得2115nm =-=。
因为 4325(1)(1)1x x x x x x +++++=+()f x 可整除51x +,故()f x 不是本原多项式,它所产生的序列不是m 序列。
方法二:由特征多项式234()1f x x x x x =++++构成的4级线性反馈移位寄存器如图9-4所示。
假设初始状态为:1 1 1 1 状态转换位: 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1可见输出序列的周期为462115≠-=,故不是m 序列。
图 12-112-4、己知一个由9级移位寄存器所产生的m 序列,写出在每一周期内所有可能的游程长度的个数。
解:该m 序列中共有82256=个游程。