2018届高考数学一轮复习第八章平面解析几何第七节抛物线学案文
- 格式:doc
- 大小:876.50 KB
- 文档页数:10
第七讲 抛物线知识梳理·双基自测知识梳理知识点一 抛物线的定义 抛物线需要满足以下三个条件: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离__相等__; (3)定点F 与定直线l 的关系为__点F ∉l __. 知识点二 抛物线的标准方程与几何性质 标准 方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F __⎝⎛⎭⎫p 2,0__F __⎝⎛⎭⎫-p2,0__ F __⎝⎛⎭⎫0,p2__ F __⎝⎛⎭⎫0,-p2__ 离心率 e =__1__准线方程 __x =-p2____x =p2____y =-p2____y =p 2__范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向 向右 向左 向上 向下 焦半径 (其中P (x 0,y 0))|PF |= __x 0+p 2__|PF |= __-x 0+p2__|PF |= __y 0+p 2__|PF |= __-y 0+p2__归纳拓展抛物线焦点弦的处理规律直线AB 过抛物线y 2=2px (p >0)的焦点F ,交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如图.(1)y 1y 2=-p 2,x 1x 2=p 24. (2)|AB |=x 1+x 2+p ,x 1+x 2≥2x 1x 2=p ,即当x 1=x 2时,弦长最短为2p . (3)1|AF |+1|BF |=2p. (4)弦长AB =2psin 2α(α为AB 的倾斜角).(5)以AB 为直径的圆与准线相切.(6)焦点F 对A ,B 在准线上射影的张角为90°. (7)A 、O 、D 三点共线;B 、O 、C 三点共线.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a4.( × )(3)抛物线既是中心对称图形,又是轴对称图形.( × ) (4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝⎛⎭⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( √ )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ )题组二 走进教材2.(必修2P 69例4)(2021·甘肃张掖诊断)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( B )A .9B .8C .7D .6[解析] 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.3.(2021·河南郑州名校调研)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( B )A .-1716B .-1516C .716D .1516[解析] 由抛物线的方程y =-4x 2,可得标准方程为x 2=-14y ,则焦点坐标为F ⎝⎛⎭⎫0,-116,准线方程为y =116,设M (x 0,y 0),则由抛物线的定义可得-y 0+116=1,解得y 0=-1516.故选B .题组三 走向高考4.(2019·课标全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p=( D )A .2B .3C .4D .8[解析] ∵抛物线y 2=2px (p >0)的焦点坐标为⎝⎛⎭⎫p 2,0, ∴椭圆x 23p +y 2p =1的一个焦点为⎝⎛⎭⎫p 2,0, ∴3p -p =p 24,∴p =8.故选D .5.(2020·新课标Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( C )A .2B .3C .6D .9[解析] A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,因为抛物线上的点到焦点的距离和到准线的距离相等,故有:9+p2=12⇒p =6;故选C .考点突破·互动探究考点一 抛物线的定义及应用——多维探究 角度1 轨迹问题例1 (1)动圆与定圆A :(x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是(D)A.直线B.椭圆C.双曲线D.抛物线[解析]设动圆的圆心为C,则C到定圆A:(x+2)2+y2=1的圆心的距离等于r+1,而动圆的圆心到直线x=1的距离等于r,所以动圆到直线x=2距离为r+1,即动圆圆心到定点(-2,0)和定直线x=2的距离相等,根据抛物线的定义知,动圆的圆心轨迹为抛物线,所以答案为D.角度2到焦点与到定点距离之和最小问题(2)①(2021·河北保定七校联考)已知M是抛物线x2=4y上一点,F为其焦点,C为圆(x +1)2+(y-2)2=1的圆心,则|MF|+|MC|的最小值为(B)A.2 B.3C.4 D.5②(2021·山西运城联考)已知抛物线C:x2=8y的焦点为F,O为原点,点P是抛物线C 的准线上的一动点,点A在抛物线C上,且|AF|=4,则|P A|+|PO|的最小值为(B) A.4 2 B.213C.313 D.4 6[解析]①设抛物线x2=4y的准线方程为l:y=-1,C为圆(x+1)2+(y-2)2=1的圆心,所以C的坐标为(-1,2),过M作l的垂线,垂足为E,根据抛物线的定义可知|MF|=|ME|,所以问题求|MF|+|MC|的最小值,就转化为求|ME|+|MC|的最小值,由平面几何的知识可知,当C,M,E在一条直线上时,此时CE⊥l,|ME|+|MC|有最小值,最小值为|CE|=2-(-1)=3,故选B.②由抛物线的定义知|AF|=y A+p2=y A+2=4,∴y A=2,代入x2=8y,得x A=±4,不妨取A(4,2),又O关于准线y=-2的对称点为O′(0,-4),∴|P A|+|PO|=|P A|+|PO′|≥|AO′|=(-4-2)2+(0-4)2=213,当且仅当A、P、O′共线时取等号,故选B.[引申]本例(2)①中,(ⅰ)|MC |-|MF |的最大值为__2__;最小值为__-2__;(ⅱ)若N 为⊙C 上任一点,则|MF |+|MN |的最小值为__2__.角度3 到准线与到定点距离之和最小问题(3)已知圆C :x 2+y 2+6x +8y +21=0,抛物线y 2=8x 的准线为l ,设抛物线上任意一点P 到直线l 的距离为d ,则d +|PC |的最小值为( A )A .41B .7C .6D .9[解析] 由题意得圆的方程为(x +3)2+(y +4)2=4,圆心C 的坐标为(-3,-4).由抛物线定义知,当d +|PC |最小时为圆心与抛物线焦点间的距离,即d +|PC |=(-3-2)2+(-4)2=41.角度4 到两定直线的距离之和最小问题(4)(2021·北京人大附中测试)点P 在曲线y 2=4x 上,过P 分别作直线x =-1及y =x +3的垂线,垂足分别为G ,H ,则|PG |+|PH |的最小值为( B )A .322B .2 2C .322+1D .2+2[解析] 由题可知x =-1是抛物线的准线,焦点F (1,0),由抛物线的性质可知|PG |=|PF |,∴|PG |+|PH |=|PF |+|PH |≤|FH |=|1-0+3|2=22,当且仅当H 、P 、F 三点共线时取等号,∴|PG |+|PH |的最小值为22.故选B .名师点拨利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线.(2)距离问题:涉及抛物线上的点到焦点的距离和到准线的距离问题时,注意在解题中利用两者之间的关系进行相互转化.(3)看到准线想焦点,看到焦点想准线,这是解决抛物线焦点弦有关问题的重要途径. 〔变式训练1〕(1)(角度1)到定点A (0,2)的距离比到定直线l :y =-1大1的动点P 的轨迹方程为__x 2=8y __.(2)(角度1)(2021·吉林省吉林市调研)已知抛物线y 2=4x 的焦点F ,点A (4,3),P 为抛物线上一点,且P 不在直线AF 上,则△P AF 周长取最小值时,线段PF 的长为( B )A .1B .134C .5D .214(3)(角度2)(2021·山西大学附中模拟)已知点Q (22,0)及抛物线y =x 24上一动点P (x ,y ),则y +|PQ |的最小值是__2__.(4)(角度3)(2021·上海虹口区二模)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和l 2的距离之和的最小值为( C )A .3716B .115C .2D .74[解析] (1)由题意知P 到A 的距离等于其到直线y =-2的距离,故P 的轨迹是以A 为焦点,直线y =-2为准线的抛物线,所以其方程为x 2=8y .(2)求△P AF 周长的最小值,即求|P A |+|PF |的最小值,设点P 在准线上的射影为D ,根据抛物线的定义,可知|PF |=|PD |,因此,|P A |+|PF |的最小值,即|P A |+|PD |的最小值.根据平面几何知识,可得当D ,P ,A 三点共线时|P A |+|PD |最小,此时P ⎝⎛⎭⎫94,3,且|PF |=94+1=134,故选B .(3)抛物线y =x 24即x 2=4y ,其焦点坐标为F (0,1),准线方程为y =-1.因为点Q 的坐标为(22,0),所以|FQ |=(22)2+12=3.过点P 作准线的垂线PH ,交x 轴于点D ,如图所示.结合抛物线的定义,有y +|PQ |=|PD |+|PQ |=|PH |+|PQ |-1=|PF |+|PQ |-1≥|FQ |-1=3-1=2,即y +|PQ |的最小值是2.(4)直线l 2:x =-1是抛物线y 2=4x 的准线,抛物线y 2=4x 的焦点为F (1,0),则点P 到直线l 2:x =-1的距离等于PF ,过点F 作直线l 1:4x -3y +6=0的垂线,和抛物线的交点就是点P ,所以点P 到直线l 1:4x -3y +6=0的距离和到直线l 2:x =-1的距离之和的最小值就是点F (1,0)到直线l 1:4x -3y +6=0的距离,所以最小值为|4-0+6|32+42=2,故选C .考点二 抛物线的标准方程——自主练透例2 (1)过点P (-3,2)的抛物线的标准方程为__y 2=-43x 或x 2=92y __.(2)焦点在直线x -2y -4=0上的抛物线的标准方程为__y 2=16x 或x 2=-8y __,准线方程为__x =-4或y =2__.(3)如图,过抛物线y 2=2px (p >0)的焦点F 的直线依次交抛物线及准线于点A ,B ,C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程为( B )A .y 2=32xB .y 2=3xC .y 2=92xD .y 2=9x[解析] (1)设所求抛物线的方程为y 2=-2px (p >0)或x 2=2py (p >0). ∵过点(-3,2),∴4=-2p ·(-3)或9=2p ·2. ∴p =23或p =94.∴所求抛物线的标准方程为y 2=-43x 或x 2=92y .(2)令x =0,得y =-2,令y =0,得x =4. ∴抛物线的焦点为(4,0)或(0,-2). 当焦点为(4,0)时,p2=4,∴p =8,此时抛物线方程为y 2=16x ; 当焦点为(0,-2)时,p2=2,∴p =4,此时抛物线方程为x 2=-8y .∴所求的抛物线的标准方程为y 2=16x 或x 2=-8y , 对应的准线方程分别是x =-4,y =2.(3)如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得|BC |=2a ,由定义得|BD |=a ,故∠BCD =30°. 在直角三角形ACE 中,∵|AE |=|AF |=3,|AC |=3+3a ,2|AE |=|AC |, ∴3+3a =6,从而得a =1.∵BD ∥FG ,∴|BD ||FG |=|BC ||FC |,即1p =23,求得p =32,因此抛物线的方程为y 2=3x .名师点拨求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,若焦点位置确定,因为未知数只有p ,所以只需一个条件确定p 值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.一般焦点在x 轴上的抛物线的方程可设为y 2=ax (a ≠0);焦点在y 轴上的抛物线的方程可设为x 2=ay (a ≠0).〔变式训练2〕(1)(2021·重庆沙坪坝区模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,过点(p,0)且垂直于x 轴的直线与抛物线C 在第一象限内的交点为A ,若|AF |=1,则抛物线C 的方程为( A )A .y 2=43xB .y 2=2xC .y 2=3xD .y 2=4x(2)(2021·安徽蚌埠一中期中)已知抛物线的顶点在原点,焦点在y 轴上,其上的点P (m ,-3)到焦点的距离为5,则抛物线方程为( D )A .x 2=8yB .x 2=4yC .x 2=-4yD .x 2=-8y[解析] (1)由题意知x A =p ,又|AF |=x A +p 2=3p 2=1,∴p =23,∴抛物线C 的方程为y 2=43x ,故选A .(2)由题意可知抛物线的焦点在y 轴负半轴上,故设其方程为x 2=-2py (p >0),所以3+p2=5,即p =4,所以所求抛物线方程为x 2=-8y ,故选D .考点三,抛物线的几何性质——师生共研例3 (1)(2021·广西四校联考)已知抛物线y 2=2px (p >0)上横坐标为4的点到此抛物线焦点的距离为9,则该抛物线的焦点到准线的距离为( C )A .4B .9C .10D .18(2)(理)(2021·四川眉山模拟)点F 为抛物线C :y 2=2px (p >0)的焦点,过F 的直线交抛物线C 于A ,B 两点(点A 在第一象限),过A 、B 分别作抛物线C 的准线的垂线段,垂足分别为M 、N ,若|MF |=4,|NF |=3,则直线AB 的斜率为( D )A .1B .724C .2D .247(文)(2021·四川师大附中期中)已知抛物线y 2=2px (p >0),F 为抛物线的焦点,O 为坐标原点A (x 1,y 1),B (x 2,y 2)为抛物线上的两点,A ,B 的中点到抛物线准线的距离为5,△ABO 的重心为F ,则p =( D )A .1B .2C .3D .4[解析] (1)抛物线y 2=2px 的焦点为⎝⎛⎭⎫p 2,0,准线方程为x =-p 2.由题意可得4+p2=9,解得p =10,所以该抛物线的焦点到准线的距离为10.故选C .(2)(理)由抛物线定义知|AM |=|AF |,|BN |=|BF |, ∴∠AFM +∠BFM =360°-∠MAF -∠NBF2=90°,∴∠MFN =90°, 又|MF |=4,|NF |=3, ∴|MN |=5,∴p =|KF |=|MF |·|NF ||MN |=125, 又∠AFM =∠AMF =∠MFK ,∴k AB =tan(180°-2∠MFK )=-2tan ∠MFK 1-tan 2∠MFK =-831-⎝⎛⎭⎫432=247.故选D .(文)x 1+x 22+p 2=5,x 1+x 2+03=p 2,∴10-p =3p2,所以p =4.故选D .名师点拨在解决与抛物线的性质有关的问题时,要注意利用几何图形形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.〔变式训练3〕(1)(2021·广东茂名五校联考)设抛物线y 2=2px (p >0)的焦点为F (1,0),过焦点的直线交抛物线于A 、B 两点,若|AF |=4|BF |,则|AB |=__254__. (2)(2021·湖北荆州模拟)从抛物线y 2=4x 在第一象限内的一点P 引抛物线准线的垂线,垂足为M ,且|PM |=9,设抛物线的焦点为F ,则直线PF 的斜率为( C )A .627B .1827C .427D .227[解析] (1)∵p2=1,∴p =2,不妨设直线AB 方程为x =my +1,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=4x x =my +1,得y 2-4my -4=0, ∴y 1y 2=-4,又|AF |=4|BF |,∴y 1=-4y 2, ∴y 2=-1,从而x 2=14,∴|BF |=1+14=54,∴|AB |=5|BF |=254. (2)设P (x 0,y 0),由抛物线y 2=4x , 可知其焦点F 的坐标为(1,0), 故|PM |=x 0+1=9,解得x 0=8,故P 点坐标为(8,42), 所以k PF =0-421-8=427.故选C .考点四,直线与抛物线的综合问题——师生共研例4 (1)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 212-y 24=1的一个焦点重合,直线y =x -4与抛物线交于A ,B 两点,则|AB |等于( B )A .28B .32C .20D .40(2)(2021·陕西师大附中期中)已知抛物线y 2=4x 的一条弦AB 恰好以P (1,1)为中点,则弦AB 所在直线的方程是( B )A .y =x -1B .y =2x -1C .y =-x +2D .y =-2x +3(3)(2021·湖南五市十校联考)已知抛物线C :y 2=2px (p >0),直线y =x -1与C 相交所得的长为8.①求p 的值;②过原点O 的直线l 与抛物线C 交于M 点,与直线x =-1交于H 点,过点H 作y 轴的垂线交抛物线C 于N 点,求证:直线MN 过定点.[解析] (1)双曲线x 212-y 24=1的焦点坐标为(±4,0),故抛物线的焦点F 的坐标为(4,0).因此p =8,故抛物线方程为y 2=16x ,易知直线y =x -4过抛物线的焦点.设A 、B 两点坐标分别为(x 1,y 1),(x 2,y 2).由⎩⎪⎨⎪⎧y 2=16x ,y =x -4,可得x 2-24x +16=0,故x 1+x 2=24. 故|AB |=x 1+x 2+p =24+8=32.故选B . (2)设A (x 1,y 1),B (x 2,y 2),∴y 1+y 2=2,由⎩⎪⎨⎪⎧y 21=4x 1y 22=4x 2,知k AB =y 1-y 2x 1-x 2=4y 1+y 2=2,∴AB 的方程为y -1=2(x -1),即2x -y -1=0,故选B .(3)①由⎩⎪⎨⎪⎧y 2=2px y =x -1,消x 可得y 2-2py -2p =0,∴y 1+y 2=2p ,y 1y 2=-2p , ∴弦长为1+12·(y 1+y 2)2-4y 1y 2=2·4p 2+8p =8,解得p =2或p =-4(舍去), ∴p =2,②由①可得y 2= 4x ,设M ⎝⎛⎭⎫14y 20,y 0, ∴直线OM 的方程y =4y 0x ,当x =-1时,∴y H =-4y 0,代入抛物线方程y 2=4x ,可得x N =4y 20,∴N ⎝⎛⎭⎫4y2,-4y 0, ∴直线MN 的斜率k =y 0+4y 0y 204-4y 20=4y 0y 20-4,直线MN 的方程为y -y 0=4y 0y 20-4⎝⎛⎭⎫x -14y 20, 整理可得y =4y 0y 20-4(x -1),故直线MN 过点(1,0).名师点拨(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要将两方程联立,消元,用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率问题一般用“点差法”求解. 〔变式训练4〕(1)(2021·甘肃诊断)直线l 过抛物线y 2=2px (p >0)的焦点,且交抛物线于A ,B 两点,交其准线于C 点,已知|AF |=4,CB →=3BF →,则p =( C )A .2B .43C .83D .4(2)(2021·安徽皖南八校模拟)已知抛物线C :y 2=2px (p >0)的焦点F 到直线x -y +1=0的距离为2.①求抛物线C 的方程;②过点F 的直线l 与C 交于A ,B 两点,交y 轴于点P .若|AB →|=3|BP →|,求直线l 的方程. [解析] (1)过A ,B 分别作准线的垂线交准线于E ,D 两点, 设|BF |=a ,根据抛物线的性质可知,|BD |=a , |AE |=4,根据平行线段比例可知|BD ||AE |=|CB ||AC |,即a 4=3a 3a +a +4,解得a =2, 又|BD ||GF |=|BC ||CF |,即a p =3a4a, 解得p =43a =83,故选C .(2)①由抛物线C :y 2=2px (p >0),可得焦点F ⎝⎛⎭⎫p 2,0, 因为焦点到x -y +1=0的距离为2,即⎪⎪⎪⎪p 2+12=2,解得p =2,所以抛物线C 的方程y 2=4x .②由①知焦点F (1,0),设直线l :y =k (x -1), A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =k (x -1)y 2=4x,整理得k 2x 2-(2k 2+4)x +k 2=0, 所以x 1+x 2=2+4k 2,①x 1x 2=1,②又由|AB →|=3|BP →|,得AB →=3BP →, 可得x 1=4x 2,③由②③,可得x 1=2,x 2=12,代入①,可得2+4k 2=52,解得k =±22,所以直线l 的方程为22x - y -22=0或22x +y -22=0.名师讲坛·素养提升巧解抛物线的切线问题例5 (1)抛物线C 1:x 2=2py (p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =(D )A .316B .38C .233D .433(2)(2019·新课标Ⅲ,节选)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .证明:直线AB 过定点.[解析] (1)抛物线C 1:x 2=2py (p >0)的焦点坐标为⎝⎛⎭⎫0,p 2,双曲线x 23-y 2=1的右焦点坐标为(2,0),两点连线的方程为y =-p4(x -2),联立⎩⎨⎧y =-p4(x -2),y =12p x 2,得2x 2+p 2x -2p 2=0.设点M 的横坐标为m ,易知在M 点处切线的斜率存在,则在点M 处切线的斜率为y ′⎪⎪⎪⎪x =m=⎝⎛⎭⎫12p x 2′x =m =m p. 又双曲线x 23-y 2=1的渐近线方程为x 3±y =0,其与切线平行,所以m p =33,即m =33p ,代入2x 2+p 2x -2p 2=0,得p =433或p =0(舍去).(2)设D ⎝⎛⎭⎫t ,-12,A (x 1,y 1), 则x 21=2y 1,由于y ′=x ,∴切线DA 的斜率为x 1,故y 1+12x 1-t =x 1,整理得:2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0. 故直线AB 的方程为2tx -2y +1=0,即y -12=tx .∴直线AB 过定点⎝⎛⎭⎫0,12.名师点拨利用导数工具解决抛物线的切线问题,使问题变得巧妙而简单,若用判别式解决抛物线的切线问题,计算量大,易出错.注意:直线与抛物线只有一个公共点是直线与抛物线相切的必要不充分条件,过抛物线外一点与抛物线只有一个公共点的直线有0条或3条;过抛物线上一点和抛物线只有一个公共点的直线有2条.〔变式训练5〕(1)已知抛物线C :y 2=2px (p >0),过点M ⎝⎛⎭⎫-p2,0作C 的切线,则切线的斜率为__±1__. (2)已知抛物线x 2=8y ,过点P (b,4)作该抛物线的切线P A ,PB ,切点为A ,B ,若直线AB恒过定点,则该定点为( C )A .(4,0)B .(3,2)C .(0,-4)D .(4,1)[解析] (1)设斜率为k ,则切线为y =k ⎝⎛⎭⎫x +p 2代入y 2=2px 中得k 2x 2+p (k 2-2)x +k 2p 24=0. Δ=0,即p 2(k 2-2)2-4·k 2·k 2p 24=0.解得k 2=1,∴k =±1.(2)设A ,B 的坐标为(x 1,y 1),(x 2,y 2), ∵y =x 28,y ′=x4,∴P A ,PB 的方程y -y 1=x 14(x -x 1),y -y 2=x 24(x -x 2),由y 1=x 218,y 2=x 228,可得y =x 14x -y 1,y =x 24x -y 2,∵切线P A ,PB 都过点P (b,4), ∴4=x 14×b -y 1,4=x 24×b -y 2,故可知过A ,B 两点的直线方程为4=b4x -y ,当x =0时,y =-4,∴直线AB 恒过定点(0,-4).故选C .。
第7讲抛物线,)1.抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F的距离与到定直线l的距离相等;(3)定点不在定直线上.2.抛物线的标准方程和几何性质1.辨明两个易误点(1)抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与定直线垂直的直线.(2)对于抛物线标准方程中参数p ,易忽视只有p >0才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义.2.与焦点弦有关的常用结论(以右图为依据)设A (x 1,y 1),B (x 2,y 2). (1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角).(3)1|AF |+1|BF |为定值2p. (4)以AB 为直径的圆与准线相切. (5)以AF 或BF 为直径的圆与y 轴相切.1.教材习题改编 抛物线8x 2+y =0的焦点坐标为( ) A .(0,-2) B .(0,2) C .⎝⎛⎭⎪⎫0,-132D .⎝ ⎛⎭⎪⎫0,132C 由8x 2+y =0,得x 2=-18y .2p =18,p =116,所以焦点为⎝⎛⎭⎪⎫0,-132,故选C.2.教材习题改编 以x =1为准线的抛物线的标准方程为( ) A .y 2=2x B .y 2=-2x C .y 2=4xD .y 2=-4xD 由准线x =1知,抛物线方程为y 2=-2px (p >0)且p2=1,p =2,所以方程为y 2=-4x ,故选D.3.M 是抛物线y 2=2px (p >0)位于第一象限的点,F 是抛物线的焦点,若|MF |=52p ,则直线MF 的斜率为( )A .43B .53C .54D .52A 设M (x 0,y 0),由|MF |=52p ,得x 0+p 2=5p2,所以x 0=2p .所以y 20=2px 0=4p 2,取正根得y 0=2p . 即M 的坐标为(2p ,2p ), 又F 的坐标为(p2,0),所以k MF =2p -02p -p 2=43,故选A.4.动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________. 设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .y 2=4x5.教材习题改编 抛物线x 2=2py (p >0)上的点P (m ,2)到焦点F 的距离为3,则该抛物线的方程为________.根据抛物线定义可知2+p2=3,所以p =2,所以抛物线的方程为x 2=4y .x 2=4y抛物线的定义及其应用(1)若抛物线y 2=2x 上一点M 到它的焦点F 的距离为32,O 为坐标原点,则△MFO的面积为( )A .22B .24C .12D .14(2)已知抛物线y 2=4x 的焦点是F ,点P 是抛物线上的动点,又有点B (3,2),则|PB |+|PF |的最小值为________.【解析】 (1)由题意知,抛物线准线方程为x =-12.设M (a ,b ),由抛物线的定义可知, 点M 到准线的距离为32,所以a =1,代入抛物线方程y 2=2x , 解得b =±2,所以S △MFO =12×12×2=24.(2)如图,过点B 作BQ 垂直准线于Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |,则有|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=4.即|PB |+|PF |的最小值为4. 【答案】 (1)B (2)4若本例(2)中的B 点坐标改为(3,4),试求|PB |+|PF |的最小值.由题意可知点(3,4)在抛物线的外部.因为|PB |+|PF |的最小值即为B ,F 两点间的距离,所以|PB |+|PF |≥|BF |=42+22=16+4=2 5.即|PB |+|PF |的最小值为2 5.抛物线定义的应用(1)利用抛物线的定义解决此类问题,应灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化.即“看到准线想到焦点,看到焦点想到准线”.(2)注意灵活运用抛物线上一点P (x ,y )到焦点F 的距离|PF |=|x |+p 2或|PF |=|y |+p2.1.(2017·云南省统一检测)设经过抛物线C 的焦点F 的直线l 与抛物线C 交于A 、B 两点,那么抛物线C 的准线与以AB 为直径的圆的位置关系为( )A .相离B .相切C .相交但不经过圆心D .相交且经过圆心B 设圆心为M ,过点A 、B 、M 作准线l 的垂线,垂足分别为A 1、B 1、M 1, 则|MM 1|=12(|AA 1|+|BB 1|).由抛物线定义可知|BF |=|BB 1|,|AF |=|AA 1|, 所以|AB |=|BB 1|+|AA 1|,|MM 1|=12|AB |,即圆心M 到准线的距离等于圆的半径, 故以AB 为直径的圆与抛物线的准线相切.2.(2017·长春调研)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,则抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .355B .2C .115D .3B 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点F 为(1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值即为焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.抛物线的标准方程及性质(高频考点)抛物线的标准方程及性质是高考的热点,考查时多以选择题、填空题形式出现,个别高考题有一定难度.高考对抛物线的考查主要有以下三个命题角度: (1)求抛物线方程;(2)由已知求参数p ; (3)抛物线方程的实际应用.(1)(2016·高考全国卷乙)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8(2)若抛物线的焦点为直线3x -4y -12=0与坐标轴的交点,则抛物线的标准方程为________.【解析】 (1)由题意,不妨设抛物线方程为y 2=2px (p >0),由|AB |=42,|DE |=25,可取A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5,设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,得p =4,所以选B.(2)对于直线方程3x -4y -12=0,令x =0,得y =-3,令y =0,得x =4,所以抛物线的焦点坐标可能为(0,-3)或(4,0).当焦点坐标为(0,-3)时,设方程为x 2=-2py (p >0),则p2=3,所以p =6,此时抛物线的标准方程为x 2=-12y ;当焦点坐标为(4,0)时,设方程为y 2=2px (p >0),则p2=4,所以p =8,此时抛物线的标准方程为y 2=16x . 所以所求抛物线的标准方程为x 2=-12y 或y 2=16x . 【答案】 (1)B (2)x 2=-12y 或y 2=16x(1)求抛物线的标准方程的方法①求抛物线的标准方程常用待定系数法,因为未知数只有p ,所以只需一个条件确定p 值即可.②因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量. (2)确定及应用抛物线性质的技巧①利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化成标准方程.②要结合图形分析,灵活运用平面几何的性质以图助解.角度一 求抛物线方程1.以x 轴为对称轴,原点为顶点的抛物线上的一点P (1,m )到焦点的距离为3,则抛物线的方程是( )A .y =4x 2B .y =8x 2C .y 2=4xD .y 2=8xD 设抛物线的方程为y 2=2px (p >0),则由抛物线的定义知1+p2=3,即p =4,所以抛物线方程为y 2=8x .角度二 由已知求参数p2.(2017·襄阳调研测试)抛物线y 2=2px 的焦点为F ,M 为抛物线上一点,若△OFM 的外接圆与抛物线的准线相切(O 为坐标原点),且外接圆的面积为9π,则p =( )A .2B .4C .6D .8B 因为△OFM 的外接圆与抛物线的准线相切,所以△OFM 的外接圆的圆心到准线的距离等于圆的半径,因为圆面积为9π,所以圆的半径为3,又因为圆心在OF 的垂直平分线上,|OF |=p2,所以p 2+p4=3,所以p =4.角度三 抛物线方程的实际应用3.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为________米.建立坐标系如图所示.则可设抛物线方程为x 2=-2py (p >0).因为点(2,-2)在抛物线上,所以p =1,即抛物线方程为x 2=-2y . 当y =-3时,x =± 6.所以水位下降1米后,水面宽为26米. 2 6直线与抛物线的位置关系(2016·高考全国卷乙)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.【解】 (1)由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t . 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t , ON 的方程为y =ptx ,代入y 2=2px ,整理得px 2-2t 2x =0, 解得x 1=0,x 2=2t2p.因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点.理由如下: 直线MH 的方程为y -t =p2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0, 解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=|x 1|+|x 2|+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.涉及弦的中点、斜率时,一般用“点差法”求解.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.(1)由题意得直线AB 的方程为y =22·⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,消去y 有4x 2-5px+p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =5p4+p =9,所以p =4,从而该抛物线的方程为y 2=8x . (2)由(1)得4x 2-5px +p 2=0, 即x 2-5x +4=0, 则x 1=1,x 2=4,于是y 1=-22,y 2=42,从而A (1,-22),B (4,42),设C (x 3,y 3), 则OC →=(x 3,y 3)=(1,-22)+λ(4,42) =(4λ+1,42λ-22). 又y 23=8x 3,所以2=8(4λ+1), 整理得(2λ-1)2=4λ+1, 解得λ=0或λ=2., )——忽视焦点位置而致误已知抛物线的顶点在原点,对称轴为y 轴,它与圆x 2+y 2=9相交,公共弦MN的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程.【解】 由题意,设抛物线方程为x 2=2ay (a ≠0). 设公共弦MN 交y 轴于A , 则|MA |=|AN |,且|AN |= 5. 因为|ON |=3,所以|OA |=32-(5)2=2,所以N (5,±2). 因为N 点在抛物线上,所以5=2a ·(±2),即2a =±52,故抛物线的方程为x 2=52y 或x 2=-52y .抛物线x 2=52y 的焦点坐标为⎝ ⎛⎭⎪⎫0,58,准线方程为y =-58.抛物线x 2=-52y 的焦点坐标为⎝⎛⎭⎪⎫0,-58,准线方程为y =58.(1)解决本题易忽视焦点位置可在y 轴的正半轴也可在负半轴上两种情况,误认为a >0,从而导致漏解.(2)对称轴确定,而开口方向不确定的抛物线方程有如下特点: ①当焦点在x 轴上时,可将抛物线方程设为y 2=ax (a ≠0); ②当焦点在y 轴上时,可将抛物线方程设为x 2=ay (a ≠0).若抛物线y 2=2px 的焦点与椭圆x 29+y 25=1的焦点重合,则抛物线的准线方程为________.由椭圆x 29+y 25=1,得c 2=9-5=4,即c =2,故椭圆的焦点坐标为(±2,0). 即抛物线的焦点坐标为(±2,0).所以当p >0时,抛物线的准线方程为x =-2; 当p <0时,抛物线的准线方程为x =2. x =2或x =-2, )1.若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1716 B .1516 C .78D .0B M 到准线的距离等于M 到焦点的距离, 又准线方程为y =-116,设M (x ,y ),则y +116=1,所以y =1516.2.若抛物线y 2=2x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( ) A .⎝ ⎛⎭⎪⎫14,±22B .⎝ ⎛⎭⎪⎫14,±1C .⎝ ⎛⎭⎪⎫12,±22D .⎝ ⎛⎭⎪⎫12,±1 A 设抛物线的顶点为O ,焦点为F ,P (x P ,y P ),由抛物线的定义知,点P 到准线的距离即为点P 到焦点的距离,所以|PO |=|PF |,过点P 作PM ⊥OF 于点M (图略),则M 为OF 的中点,所以x P =14,代入y 2=2x ,得y P =±22,所以P ⎝ ⎛⎭⎪⎫14,±22.3.(2016·高考全国卷甲)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A .12B .1C .32D .2D 易知抛物线的焦点为F (1,0),设P (x P ,y P ),由PF ⊥x 轴可得x P =1,代入抛物线方程得y P =2(-2舍去),把P (1,2)代入曲线y =k x(k >0)得k =2.4.设F 为抛物线y 2=2x 的焦点,A 、B 、C 为抛物线上三点,若F 为△ABC 的重心,则|FA →|+|FB →|+|FC →|的值为( )A .1B .2C .3D .4C 依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝ ⎛⎭⎪⎫12,0,x 1+x 2+x 3=3×12=32, 则|FA →|+|FB →|+|FC →|=⎝ ⎛⎭⎪⎫x 1+12+⎝ ⎛⎭⎪⎫x 2+12+⎝ ⎛⎭⎪⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3. 5.直线l 过抛物线y 2=-2px (p >0)的焦点,且与抛物线交于A 、B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A .y 2=12x B .y 2=-8x C .y 2=6xD .y 2=-4xB 设A (x 1,y 1)、B (x 2,y 2),由抛物线定义可得|x 1|+|x 2|+p =8,又AB 的中点到y 轴的距离为2,即|x 1|+|x 2|=4,所以p =4,所以y 2=-8x .故选B.6.已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则下列关于|AB |·|CD |的值的说法中,正确的是( )A .等于1B .等于4C .最小值是1D .最大值是4A 设直线l :x =ty +1,代入抛物线方程,得y 2-4ty -4=0.设A (x 1,y 1),D (x 2,y 2),根据抛物线的定义知,|AF |=x 1+1,|DF |=x 2+1,故|AB |=x 1,|CD |=x 2,所以|AB |·|CD |=x 1x 2=y 214·y 224=(y 1y 2)216.而y 1y 2=-4,故|AB |·|CD |=1.7.(2017·资阳模拟)顶点在原点,对称轴是y 轴,并且经过点P (-4,-2)的抛物线方程是________.设抛物线方程为x 2=my ,将点P (-4,-2)代入x 2=my ,得m =-8. 所以抛物线方程是x 2=-8y . x 2=-8y8.(2017·云南省第一次统一检测)已知抛物线C 的方程为y 2=2px (p >0),○· M 的方程为x 2+y 2+8x +12=0,如果抛物线C 的准线与○·M 相切,那么p 的值为________.将○·M 的方程化为标准方程:(x +4)2+y 2=4,圆心坐标为(-4,0),半径r =2,又因为抛物线的准线方程为x =-p2,所以⎪⎪⎪⎪⎪⎪4-p 2=2,p =12或4.12或49.经过抛物线C 的焦点F 作直线l 与抛物线C 交于A ,B 两点,如果A ,B 在抛物线C 的准线上的射影分别为A 1,B 1,那么∠A 1FB 1=________.由抛物线定义可知|BF |=|BB 1|,|AF |=|AA 1|,故∠BFB 1=∠BB 1F ,∠AFA 1=∠AA 1F . 又∠OFB 1=∠BB 1F ,∠OFA 1=∠AA 1F , 故∠BFB 1=∠OFB 1,∠AFA 1=∠OFA 1, 所以∠OFA 1+∠OFB 1=12×π=π2,即∠A 1FB 1=π2.π210.(2017·豫东、豫北十校联考)已知抛物线的顶点在原点,焦点在x 轴的正半轴上,若抛物线的准线与双曲线5x 2-y 2=20的两条渐近线围成的三角形的面积为45,则抛物线方程为________.由双曲线方程5x 2-y 2=20知其渐近线方程为y =±5x ,由题意可设抛物线方程为y2=2px (p >0),故其准线方程为x =-p2,设准线与双曲线的两条渐近线的交点为A ,B ,则不妨令A ⎝ ⎛⎭⎪⎫-p 2,52p ,B ⎝ ⎛⎭⎪⎫-p 2,-52p ,故S △ABO =12×5p ×p 2=54p 2=45,解得p 2=16,又因为p >0,所以p =4,故抛物线方程为y 2=8x .y 2=8x11.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥FA ,垂足为N ,求点N 的坐标. (1)抛物线y 2=2px 的准线为x =-p2,于是4+p2=5,所以p =2.所以抛物线方程为y 2=4x .(2)因为点A 的坐标是(4,4), 由题意得B (0,4),M (0,2). 又因为F (1,0),所以k FA =43,因为MN ⊥FA ,所以k MN =-34.所以FA 的方程为y =43(x -1),①MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,所以N 的坐标为⎝ ⎛⎭⎪⎫85,45.12.(2017·长春一模)过抛物线y 2=2px (p >0)的焦点F 且倾斜角为120°的直线l 与抛物线在第一、四象限分别交于A ,B 两点,则|AF ||BF |的值等于( )A .13B .23 C.34 D.43A 记抛物线y 2=2px 的准线为l ′,如图,作AA 1⊥l ′,BB 1⊥l ′,AC ⊥BB 1,垂足分别是A 1,B 1,C ,则有cos ∠ABB 1=|BC ||AB |=|BB 1|-|AA 1||AF |+|BF |=|BF |-|AF ||AF |+|BF |,即cos 60°=|BF |-|AF ||AF |+|BF |=12,由此得|AF ||BF |=13.13.已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A 、B 两点. (1)若线段AB 的中点在直线y =2上,求直线l 的方程; (2)若线段|AB |=20,求直线l 的方程.(1)由已知得抛物线的焦点为F (1,0).因为线段AB 的中点在直线y =2上,所以直线l 的斜率存在,设直线l 的斜率为k ,A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),则⎩⎪⎨⎪⎧x 0=x 1+x 22,y 0=y 1+y 22.由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x2得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),所以2y 0k =4. 又y 0=2,所以k =1,故直线l 的方程是y =x -1. (2)设直线l 的方程为x =my +1,与抛物线方程联立得⎩⎪⎨⎪⎧x =my +1,y 2=4x ,消元得y 2-4my -4=0,所以y 1+y 2=4m ,y 1y 2=-4,Δ=16(m 2+1)>0. |AB |=m 2+1|y 1-y 2|=m 2+1·(y 1+y 2)2-4y 1y 2 =m 2+1·(4m )2-4×(-4) =4(m 2+1).所以4(m 2+1)=20,解得m =±2, 所以直线l 的方程是x =±2y +1, 即x ±2y -1=0.14.已知圆C 过定点F ⎝ ⎛⎭⎪⎫-14,0,且与直线x =14相切,圆心C 的轨迹为E ,曲线E 与直线l :y =k (x +1)(k ∈R )相交于A ,B 两点.(1)求曲线E 的方程;(2)当△OAB 的面积等于10时,求k 的值.(1)由题意,点C 到定点F ⎝ ⎛⎭⎪⎫-14,0和直线x =14的距离相等, 故点C 的轨迹E 的方程为y 2=-x .(2)由方程组⎩⎪⎨⎪⎧y 2=-x ,y =k (x +1),消去x 后,整理得ky 2+y -k =0. 设A (x 1,y 1),B (x 2,y 2),由根与系数的关系有y 1+y 2=-1k,y 1y 2=-1.设直线l 与x 轴交于点N ,则N (-1,0). 所以S △OAB =S △OAN +S △OBN =12|ON ||y 1|+12|ON ||y 2|, =12|ON ||y 1-y 2| =12×1×(y 1+y 2)2-4y 1y 2 =12⎝ ⎛⎭⎪⎫-1k 2+4=10, 解得k =±16.。
第7讲第八章平面解析几何抛物线(3)定点—不在 定直线卜,1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 的距离与到定直线I 的距离 相等教材回顾▼夯实基础课本温故追根求源知-识“梳理/2・抛物线的标准方程和几何性质要点整食,1.辨明两个易误点(1)抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与定直线垂直的直线.(2)对于抛物线标准方程中参数p,易忽视只有p>0才能证明其几何意义是焦点F到准线Z的距离,否则无几何意义.y 2.与焦点弦有关的常用结论(以下图为依据)设Ji), B(X2, J2).2 _p2(1)J1J2=—P,XiX2—"J.i i 2⑶L4FI + LBFi为定值戸(5)以4F或BF为直径的圆与j轴相切.(4)以AB为直径的圆与准线相切.y(5)以4F 或BF 为直径的圆与j 轴相切.点(―1, 1),则该抛物线焦点坐标为( A. (-1, 0) C. (0, -1)B. (1, 0) D. (0, 1)解析:抛物线y 2=2px(p>0)ff)准线方程为兀= 由题设知—£=—1,艮片=1,所以焦点坐标为(1, 0). 乙Z双基自测,(2015•高考陕西卷)己知抛物线y 2=2px(p>0)^J 准线经过2.已知抛物线C与双曲线兀'一/=1有相同的焦点,且顶点在原点,则抛物线C的方程是(D )A.y2= ±2\[2xB. y2=±2xC. y2=+4x D・y2=±4\/2x 解析:因为双曲线的焦点为(一⑴,0), (\/2, 0).设抛物线方程为y=±2px(p>Q)9贝吃=竝所以卩=2竝所以抛物线方程为犷=±4伍.3.(选修1-1P59练习13⑴改编)抛物线x2=2py(p>0)上的点P(m, 2)到焦点F的距离为3,则该抛物线的方程为_£二^ 解析:根据抛物线定义可知2+|=3,所以p=2,所以抛物线的方程为x=4y.4・动圆过点(1, 0),且与直线兀=一1相切,则动圆的圆心的轨迹方程为一.解析:设动圆的圆心坐标为g j),则圆心到点(1, 0)的距离与到直线兀=一1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2= 4x.典例剖析▼考点突破*考点一 抛物线的定义及其应用的焦点为F, A(x 0,为)是C 上一点,L4FI=|x 0,则x 0=( c )A. 4B. 2C. 1 (2)已知抛物线y 2=4x 的焦点是F,点P 是抛物线上的动点,又有点B(3, 2),则IPBI+IPF I 的最小值为“名师导悟以例说法(1)(2014-高考课标全国卷I )已知抛物线G j 2=x[解析]⑴如图,F Q, 0),过A 作丄准线 所以 L4FI = IAA r|,所以 *O =X O +$=K +£所以兀0=1.过点B作B0垂直准线于0,交抛物线于点Pi,则IPi0= IPiFI,则有IPBI+ \PF\^IPiBI + \PiQ\= \BQ\= 4.即IPBI+ \PF\的最小值为4.抛物线定义的应用(1)利用抛物线的定义解决此类问题,应灵活地进行抛物线上 的点到焦点的距离与到准线距离的等价转化.即“看到准线 想到焦点,看到焦点想到准线” •(2)注意灵活运用抛物线上一点P(x,丿)到焦点F 的距离IPFI ■■■1.(1)(2016-云南省统一检测)设经过抛物线C的焦点F的直线Z与抛物线C交于A、B两点,那么抛物线C 的准线与以AB为直径的圆的位置关系为(B )A.相离B.相切C.D.相交且经过圆心(2)(2016-长春调研)已知直线人:4x— 3y+ 6= 0和直线心x=一1,则抛物线J2=4r±一动点P到直线人和直线厶的距离之和的最小值是(B )B.2D. 3解析:(1)设4、B、M作准线2的垂线,垂足分别为Bi、Mi,则MM I I=3(IAA I I+IBB I I).由抛物线定义可知= \AF\ = \AAi\9所以L4BI = IBBil + lAAil, IMMil=£lABI,即圆心M到准线的距离等于圆的半径,故以4B为直径的圆与抛物线的准线相切.(2)由题可知佐:兀=一1是抛物线y2=4x的准线,设抛物线的焦点F为(h 0),则动点尸到乙的距离等于则动点P到直线人和直线厶的距离之和的最小值即为焦点F到直=1线4x-3j+ 6= 0的距离,所以最小值是14-0+61考点二抛物线的标准方程及性质(高频考点)抛物线的标准方程及性质是高考的热点,考查时多以选择题、填空题形式出现,个别高考题有一定难度,高考对该内容的考查主要有以下三个命题角度:(1)求抛物线方程;(2)由已知求参数p;(3)与其他知识交汇求解综合问题.4伍的焦点,P 为C 上一点,若IPFI=40,则/XPOF 的面积为(° )A. 2D. 4(2)(2016-岳阳模拟)已知 P(0, 2),抛物线 C : y 2=2px(p>d)的焦点为F,线段PF 与抛物线C 的交点为过M 作抛 物线准线的垂线,垂足为0若ZPQF=9Q° ,则p =⑴(经典考题)0为坐标原点,F 为抛物线C : /=B. 2\[2[解析]⑴设Pdo,旳),则PF\=a+迄=4迄, 所以丸=3迄,所以农=4"\/2xo—4^/2 X 3 寸^—24 ‘所以Ijol—2^/6.因为F(V2, 0),所以8"0尸=才0刊• ly()l =空X寸^X意一点到准线的距离与到焦点的距离的比值为1,即相等) 得I0M1 = IMFI.又因为△P0F 为直角三角形且PF 为斜边(直角三角形斜边上的中线等于斜边的一半),所以IPM1=IMFI, 即点M 为线段PF 的中点.由磴,0), P (0,2)知M 点的£,1),又因为点M 在抛物线上,所以12=2pX? 所以p=\/i 或卩=—心(舍去).(2)由题意得点磴,0) 根据抛物线的定义(抛物线上的任坐标为(1)求抛物线的标准方程的方法①求抛物线的标准方程常用待定系数法,因为未知数只有P,所以只需一个条件确定P值即可.②因为抛物线方程有四种标准形式,因此求抛物线方程时, 需先定位,再定量.(2)确定及应用抛物线性质的技巧①利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化成标准方程.②要结合图形分析,灵活运用平面几何的性质以图助解.2.(1)(2016-襄阳调研测试)抛物线y 2=2px 的焦 点为F, M 为抛物线上一点,若△OFM 的外接圆与抛物线 的准线相切(O 为坐标原点),且外接911,则p=(B )A. 2B. 4C. 6D. 8(2)已知抛物线的顶点在原点,对称轴为y 轴,它与圆<+于=9相交,公共弦MN的长为2质,求该抛物线的方程,并写出它的焦点坐标与准线方程.解:⑴选B・因为△OFM的外接圆与抛物线C的准线相切,所以△OFM的外接径,因为圆面积为9n,所以圆的半径为3,又因为圆心在OF 的垂直平分线上,IOFI=f,所以彳+丫=3,所以p=4.(2)由题意,设抛物线方程为x=2ay(a^Q).设公共弦MN交丿轴于4贝l|IM4l = IA^I,且AN=\/5.因为IOM = 3,所以1041=祚一(质)2 = 2,所以N畑±2).因为N点在抛物线上,所以5=2«•仕2),即加=£,抛物线x2=|y的焦点坐标为@,汀准线方程为尸一|・抛物线x2=—|y的焦点坐标为@,一彳),准线方程为歹=|・故抛物线的方程为X2=|y 或x2=5一*考点三直线与抛物线的位置关系典洌D ⑴(2014•高考辽宁卷)已知点A(~2, 3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点记C的焦点为F,则直线BF的斜率为(D )B-1D.扌A边(2)(2016-九江统考)过抛物线y2=8x的焦点F的直线交抛物线于4 B两点,交抛物线的准线于G若IAF\ = 69BC=2FB9则2的值为(° )D. 3[解析]⑴抛物线y2=2px的准线为直线*=—纟,而点A(-2, 3)在准线上,所以-^=-2, 即p=4,从而C: j2=Sx,点为F(2,0)・设切线方程为y—3=k(x+2),代入y2=8x9得歛―『+2氐+3=0伉HO)①,由于/ = 1—4X点(2疋+3)=0,所以k=—2或反=£.因为切点在第一象限,所以氐=空•将氐=空代入①中,得y=8, 再代入J2=8X中得x=8,所以点B的坐标为(8, 8),所以直线BF的斜率为£=扌.(2)设A(x p ji)(yi>0), B(X29力),C( —2, y3)9则帀+2=6, 解得兀i=4, y\=4远,直线AB的方程为j=2\/2(x-2),令{2 QJ =8^ 厂/ 、解y = 2\l2 (x—2), 得B(l, —2\[Z)9所以IBFI =1+2= 3, IBCI = 9,所以久=3.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式14〃=旳1+込1+0若不过焦点,则必须用一般弦长公式.⑶涉及抛物线的弦长、中点、距离等相关问题时, 般利用根与系数的关系采用“设而不求” “整体代入”等解法.[注意]涉及弦的中点.斜率时,一般用“点差法”求解•跟踪训练 3.(2016*唐山一模)已知抛物线j2=2px(p>0),过点C(-2, 0)的直线I交抛物线于4、B两点,坐标原点为O,OA • OB= 12.(1)求抛物线的方程;⑵当以L4BI为直径的圆与y轴相切时,求直线2的方程.•b==^—H Z X H 昱 0龙 I zz■导 Hzxli ■W /^H M +I i(2)⑴中(*)可化为 /-4my+ 8= 0,yi+y2=伽,丁1^2=8,设AB的中点为M,则\AB\ = 2r/V f—x1H-x2=An(y1+j2)— 4= 4w2—4,①又IABI= ^/1+加»]—旳|= —( 16*n2—32),②由①②得(1+/W2)(16W2-32)=(4W2-4)2,解得加2=3, m =所以直线I的方程为兀+心+2= 0或兀一心+2=0.名师讲坛密素养提升} __________________________ ______________________________________________方法思想——函数思想求圆锥曲线中的最值典例 抛鳄线y=—J 上的点到直线4x+3y —8=0距离的-X 2),则点P 到直线4x+3j-8= 0的距离d 2+|,在抛物线J = -x 2中,x£R,所以当 尸彳时,〃取得最小值?即抛物线 y=—J 上的点到直线拓展升华触类旁通 最小值是亠[解析]设P(x,14兀一3x 2—81 1(=5 3V 1(H)4x+3y—8=0距离的最小值是*讀感悟提高解与抛物线有关的最值问题可通过两点间距离公式或者点到直线的距离公式建立目标函数,再用求函数最值的方法求解•解题的关键是根据所给抛物线方程设出动点坐标.跟踪训练若点p 在抛物线y=x±,点0在圆(x-3)2+旷=1上,则IPQI的最小值为 __________ .解析:由题意得抛物线与圆不相交,且圆的圆心为A(3, 0), 则\PQ\^\PA\~\AQ\=\PA\~l t当且仅当P, Q, A三点共线时取等号,所以当曲1取得最小值时,IPQI*小.设P(x0, Jo),贝U yXo — 6兀o+ 9+ 兀0=IP4I取得最小值半,丿:=兀0,\PA\ — 7 (兀o —3) =2 11 5+牛当且仅当兀。
(全国通用)2018高考数学一轮复习第8章平面解析几何第7节抛物线课时分层训练文新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用)2018高考数学一轮复习第8章平面解析几何第7节抛物线课时分层训练文新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用)2018高考数学一轮复习第8章平面解析几何第7节抛物线课时分层训练文新人教A版的全部内容。
课时分层训练(五十一)抛物线A组基础达标(建议用时:30分钟)一、选择题1.(2016·四川高考)抛物线y2=4x的焦点坐标是()A.(0,2) B.(0,1)C.(2,0)D.(1,0)D[由y2=4x知p=2,故抛物线的焦点坐标为(1,0).]2.(2017·云南昆明一中模拟)已知点F是抛物线C:y2=4x的焦点,点A在抛物线C上,若|AF|=4,则线段AF的中点到抛物线C的准线的距离为( )A.4 B.3C.2 D.1B[由题意易知F(1,0),F到准线的距离为2,A到准线的距离为|AF|=4,则线段AF 的中点到抛物线C的准线的距离为错误!=3.]3.抛物线y2=4x的焦点到双曲线x2-错误!=1的渐近线的距离是( )A。
错误! B.错误!C.1 D.3B[由双曲线x2-错误!=1知其渐近线方程为y=±错误!x,即错误!x±y=0,又y2=4x的焦点F(1,0),∴焦点F到直线的距离d=错误!=错误!.]4.已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是( )A.y2=±2错误!x B.y2=±2xC.y2=±4x D.y2=±4错误!xD[因为双曲线的焦点为(-2,0),(2,0).设抛物线方程为y2=±2px(p〉0),则错误!=错误!,p=2错误!.所以抛物线方程为y2=±4错误!x.]5.O为坐标原点,F为抛物线C:y2=42x的焦点,P为C上一点,若|PF|=4错误!,则△POF的面积为( )【导学号:31222325】A.2 B.2错误!C.2 3 D.4C[如图,设点P的坐标为(x0,y0),由|PF|=x0+错误!=4错误!,得x0=3错误!,代入抛物线方程得,y错误!=4错误!×3错误!=24,所以|y0|=26,所以S△POF=错误!|OF||y0|=错误!×错误!×2错误!=2错误!.]二、填空题6.(2017·山西四校三联)过抛物线y2=4x的焦点F作倾斜角为45°的直线交抛物线于A,B 两点,则弦长|AB|为__________. 【导学号:31222326】8 [设A(x1,y1),B(x2,y2).易得抛物线的焦点是F(1,0),所以直线AB的方程是y=x -1。
第七节抛物线1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.理解数形结合的思想.3.了解抛物线的实际背景及抛物线的简单应用.知识点一抛物线的定义平面内与一个定点F和一条定直线l(F∉l)距离______的点的轨迹叫做抛物线.答案相等1.判断正误(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.( )(2)抛物线y2=4x的焦点到准线的距离是4.( )(3)若一抛物线过点P(-2,3),其标准方程可写为y2=2px(p>0).( )答案:(1)³(2)³(3)³2.(2016²浙江卷)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是________.解析:由于抛物线y2=4x的焦点为F(1,0),准线为x=-1,设点M的坐标为(x,y),则x+1=10,所以x=9.故M到y轴的距离是9.答案:9知识点二抛物线的标准方程与几何性质x ≤0,y ∈R (p 2,0) (0,-p 2) x =p 2y =-p 2-x 0+p 2y 0+p23.已知抛物线y =34x 2,则它的焦点坐标是( )A.⎝ ⎛⎭⎪⎫0,316 B.⎝⎛⎭⎪⎫316,0C.⎝ ⎛⎭⎪⎫13,0D.⎝ ⎛⎭⎪⎫0,13 解析:抛物线的标准方程为x 2=43y .∴2p =43,∴p =23.∴抛物线y =34x 2的焦点坐标是⎝ ⎛⎭⎪⎫0,13.答案:D4.(选修1-1P63练习第1(1)题改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为______________.解析:很明显点P 在第三象限,所以抛物线的焦点可能在x 轴负半轴上或y 轴负半轴上. 当焦点在x 轴负半轴上时,设方程为y 2=-2px (p >0),把点P (-2,-4)的坐标代入得(-4)2=-2p ³(-2),解得p =4,此时抛物线的标准方程为y 2=-8x ;当焦点在y 轴负半轴上时,设方程为x 2=-2py (p >0),把点P (-2,-4)的坐标代入得(-2)2=-2p ³(-4),解得p =12,此时抛物线的标准方程为x 2=-y .综上可知,抛物线的标准方程为y 2=-8x 或x 2=-y . 答案:y 2=-8x 或x 2=-y5.(2016²新课标全国卷Ⅱ)设F 为抛物线C :y 2=4x 的焦点,曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A.12 B .1 C.32D .2解析:易知抛物线的焦点为F (1,0),设P (x P ,y P ),由PF ⊥x 轴可得x P =1,代入抛物线方程得y P =2(-2舍去),把P (1,2)代入曲线y =k x(k >0)得k =2.答案:D热点一 抛物线的定义及应用【例1】 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|PA |+|PF |的最小值,并求出取最小值时点P 的坐标.【解】 将x =3代入抛物线方程y 2=2x ,得y =± 6.∵6>2,∴A 在抛物线内部,如图.设抛物线上点P 到准线l :x =-12的距离为d ,由定义知|PA |+|PF |=|PA |+d ,当PA ⊥l时,|PA |+d 最小,最小值为72,即|PA |+|PF |的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2,∴点P 的坐标为(2,2).将本例中点A 的坐标改为(3,4),求|PA |+|PF |的最小值. 解:当P 、A 、F 共线时,|PA |+|PF |最小,|PA |+|PF | ≥|AF |=⎝ ⎛⎭⎪⎫3-122+42=254+16=892.(2017²邢台摸底)已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是________.解析:依题意,由点M 向抛物线x 2=4y 的准线l :y =-1引垂线,垂足为M 1,则有|MA |+|MF |=|MA |+|MM 1|,结合图形可知|MA |+|MM 1|的最小值等于圆心C (-1,5)到y =-1的距离再减去圆C 的半径,即等于6-1=5,因此|MA |+|MF |的最小值是5.答案:5热点二 抛物线的标准方程及几何性质【例2】 (1)(2017²泉州模拟)如图,过抛物线y 2=2px (p >0)的焦点F 的直线依次交抛物线及准线于点A ,B ,C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程为( )A .y 2=32xB .y 2=3xC .y 2=92x D .y 2=9x(2)若双曲线C :2x 2-y 2=m (m >0)与抛物线y 2=16x 的准线交于A ,B 两点,且|AB |=43,则m 的值是__________.【解析】 (1)如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得:|BC |=2a , 由定义得:|BD |=a ,故∠BCD =30°, 在直角三角形ACE 中,因为|AF |=3,|AC |=3+3a ,又2|AE |=|AC |,所以3+3a =6,从而得a =1,因为BD ∥FG ,所以1p =23,求得p =32,因此抛物线方程为y 2=3x .(2)y 2=16x 的准线l :x =-4,因为C 与抛物线y 2=16x 的准线l :x =-4交于A ,B 两点,|AB |=43,所以A (-4,23),B (-4,-23),将A 点坐标代入双曲线方程得2(-4)2-(±23)2=m ,所以m =20.【答案】 (1)B (2)20(1)以双曲线x23-y 2=1的左焦点为焦点,顶点在原点的抛物线方程是( )A .y 2=4x B .y 2=-4x C .y 2=-42xD .y 2=-8x(2)(2016²新课标全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8解析:(1)由题意知抛物线的焦点为(-2,0),又顶点在原点,所以抛物线的方程为y 2=-8x .(2)由题意,不妨设抛物线方程为y 2=2px (p >0),由|AB |=42,|DE |=25,可取A (4p,22),D (-p2,5).设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p24+5,得p =4,所以选B.答案:(1)D (2)B热点三 直线与抛物线的位置关系 考向1 焦点弦问题【例3】 已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.【解】 (1)由题意得直线AB 的方程为y =22²⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,消去y 有4x2-5px +p 2=0,所以x 1+x 2=5p 4.由抛物线定义得|AB |=x 1+x 2+p =5p4+p =9,所以p =4,从而该抛物线的方程为y 2=8x .(2)由(1)得4x 2-5px +p 2=0,即x 2-5x +4=0,则x 1=1,x 2=4,于是y 1=-22,y 2=42,从而A (1,-22),B (4,42).设C (x 3,y 3),则OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22).又y 23=8x 3,所以[22(2λ-1)]2=8(4λ+1),整理得(2λ-1)2=4λ+1,解得λ=0或λ=2.考向2 直线与抛物线的位置关系问题【例4】 已知抛物线C :x 2=2py (p >0)的焦点为F (0,1),过点F 作直线l 交抛物线C 于A ,B 两点.椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率e =32. (1)分别求抛物线C 和椭圆E 的方程;(2)经过A ,B 两点分别作抛物线C 的切线l 1,l 2,切线l 1与l 2相交于点M .证明AB ⊥MF . 【解】 (1)由抛物线C :x 2=2py (p >0)的焦点为F (0,1)可得抛物线C 的方程为x 2=4y .设椭圆E 的方程为x 2a 2+y2b 2=1(a >b >0),半焦距为c ,由已知可得⎩⎪⎨⎪⎧b =1,c a =32,a 2=b 2+c 2.解得a =2,b =1.所以椭圆E 的方程为x 24+y 2=1.(2)证明:显然直线l 的斜率存在,否则直线l 与抛物线C 只有一个交点,不符合题意,故可设直线l 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),由⎩⎪⎨⎪⎧y =kx +1,x 2=4y消去y 并整理得x 2-4kx -4=0,∴x 1x 2=-4.∵抛物线C 的方程为y =14x 2,∴y ′=12x .∴直线l 1,l 2的方程分别是y -y 1=12x 1(x -x 1),y -y 2=12x 2(x -x 2),即y =12x 1x -14x 21,y =12x 2x -14x 22.联立直线l 1,l 2的方程,解得两条切线l 1,l 2的交点M 的坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1x 24,即M ⎝ ⎛⎭⎪⎫x 1+x 22,-1.∴FM →²AB →=⎝ ⎛⎭⎪⎫x 1+x 22,-2²(x 2-x 1,y 2-y 1)=12(x 22-x 21)-2⎝ ⎛⎭⎪⎫14x 22-14x 21=0.∴AB ⊥MF .(2017²陕西宝鸡质检)已知抛物线G 的顶点在原点,焦点在y 轴正半轴上,抛物线上的点P (m,4)到其焦点F 的距离等于5.(1)求抛物线G 的方程;(2)在正方形ABCD 的三个顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)(x 1<0≤x 2<x 3)在抛物线G 上,可设直线BC 的斜率为k ,求正方形ABCD 面积的最小值.解:(1)由题知,点P (m,4)到抛物线的准线距离为5,所以准线方程为y +1=0,p2=1,抛物线G 的方程为x 2=4y .(2)设直线BC 的斜率为k ,显然k >0,则直线BC 的方程为y =k (x -x 2)+x 224(k >0),由⎩⎪⎨⎪⎧y =k x -x 2 +x 224,x 2=4y ,消y ,得x 2-4kx -x 22+4kx 2=0,易知x 2,x 3为该方程的两个根,故有x 2+x 3=4k ,得x 3=4k -x 2,从而得|BC |=1+k 2(x 3-x 2)=21+k 2(2k -x 2),类似地,直线AB 的方程为y =-1k (x -x 2)+x 224,从而得|AB |=21+k 2k 2(2+kx 2),由|AB |=|BC |,得k 2²(2k -x 2)=(2+kx 2),解得x 2=2 k 3-1 k 2+k ,|AB |=|BC |=41+k 2k 2+1k k +1(k >0).因为41+k 2k 2+1k k +1≥41+k22²2k k k +1=42,所以S ABCD =|AB |2≥32,即S ABCD 的最小值为32,当且仅当k =1时取得最小值.1.认真区分四种形式的标准方程(1)区分y =ax 2与y 2=2px (p >0),前者不是抛物线的标准方程.(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2=mx 或x 2=my (m ≠0).2.抛物线的离心率e =1,体现了抛物线上的点到焦点的距离等于到准线的距离.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简化.抛物线上的点到焦点的距离根据定义转化为到准线的距离,即|PF |=|x |+p2或|PF |=|y |+p2.巧用定义妙解最值【例】 抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||PA |的最小值为________. 【分析】 设点P 的坐标(x P ,y P ),利用抛物线的定义,求出|PF |,再利用两点间的距离公式求出|PA |2,把(|PF ||PA |)2用x P 的代数式来表示,再利用基本不等式,即可求出|PF ||PA |的最小值.【解析】 设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|PA |2=(x P +m )2+y 2P =(x P +m )2+4mx P ,所以(|PF ||PA |)2= x P +m2x P +m 2+4mx P=11+4mx P x P +m 2≥11+4mx P 2x P ²m 2=12(当且仅当x P =m 时取等号),所以|PF ||PA |≥22,所以|PF ||PA |的最小值为22.【答案】22解题策略:破解抛物线上的动点与焦点、动点与定点的距离比的最值问题需过好三关:一是“定义关”,把抛物线上的动点到焦点的距离转化为抛物线上的动点到准线的距离;二是“公式关”,即应用两点间的距离公式,求动点与定点的距离;三是“最值关”,需熟练掌握配方法、导数法、换元法、基本不等式等求最值.已知点P 是抛物线y 2=2x 上的动点,B (-1,1),点P 到直线l :x =-12的距离为d ,求d+|PB |的最小值.解:由题意得抛物线y 2=2x 的焦点F (12,0),直线l 是抛物线的准线,如下图,连接BF ,PF ,所以d =|PF |,则d +|PB |=|PF |+|PB |≥|BF |=-1-12 2+ 1-0 2=132,当且仅当B ,P ,F 三点共线时取等号,所以d+|PB|的最小值为13 2.。