合情推理—归纳推理(2019年10月)
- 格式:ppt
- 大小:355.50 KB
- 文档页数:11
20XX年第八届全国高中青年数学! 教师优秀课展示与培训活动II _________ _________________________《合情推理一归纳推理》教学设计(人教A版高中课标教材数学选修1 —2第二章2.1第一课时)20XX年10月归纳推理》教学设计一、教学内容分析本节课内容是《普通高中课程标准实验教科书数学》人教A版选修1—2第二章《推理与证明》2.1 《合情推理与演绎推理》的第一课时《归纳推理》,归纳推理为合情推理的一个类型. 本课作为本章节的起始课要了解推理的含义,通过实例进一步了解归纳推理的含义,通过对归纳推理过程的感知,了解推理过程,进而能利用归纳进行简单的推理.归纳推理是合情推理的一个重要类型,数学发现的过程往往包含有归纳推理的成分,在人类文明、创造活动中,归纳推理也扮演了重要的角色. 归纳推理是作为一种思维活动存在的,教学的内容不是学习某一具体知识,而是感悟一系列的思维过程,逐步形成一种“思维习惯” ,作为起始课形成习惯是困难的,但体验“过程”是相对容易的,“体验之旅”将成为本节课的主线. 归纳推理的过程我们概括为“观察—分析—归纳—猜想” ,对于“证明”我们暂不做要求,因此重点感悟归纳推理的过程,证明做适当引导.归纳推理是由部分到整体、由特殊到一般的推理,这本身就体现了特殊与一般的数学思想,由于猜想结果超出了前提界定的范围,前提与结论之间的联系不是必然的,这又体现了必然与或然的数学思想. 本课中的实例在数学史中都是赫赫有名的,“四色猜想”、费马数、哥德巴赫猜想、问题4 中的毕达哥拉斯平方数等,这些实例展现了一代代数学家对于数学的好奇心和想象力体现了他们不畏困难,坚持不懈的探索精神,抓住这些内容可以培养学生“勇于探究”的精神,这精神正是新一轮课程改革强调的学生核心素养中“科学精神”的重要体现。
新一轮的课程改革即将到来,作为普通教师也有必要在教学中未雨绸缪,避免大寒索裘. 数学思想和数学文化将作为本课的一条暗线穿插于教学内容之中.本节课的教学重点:了解归纳推理的含义,通过实例,掌握“观察—分析—归纳—猜想”的推理过程.二、教学目标设置(1)通过实例了解归纳推理的含义. 在分析哥德巴赫猜想的过程中,了解归纳推理的步骤“观察—分析—归纳—猜想” .2)会用归纳推理的步骤解决一些实际问题,体会由部分到整体,由特殊到一般的数学思想. 通过对猜想结论的分析,体会或然与必然的数学思想. 结合实例感知归纳推理的价值和意义.3)从例题和练习中体会归纳推理的乐趣,感悟数学发展史中数学家不畏艰辛的探究精神和勇于突破的创新精神,了解数学文化,培养学习数学的兴趣三、学生学情分析1)本课的学习者来自我们天津市第三十二中学,我们学生的水平位于全天津市高中生的中游,基础知识不够牢固,理解能力一般,但参与学习的热情尚可. 有一定的自主学习能力但持久力不足,在课堂中对于教师的依赖较为严重,需要教师的引导和帮助才能实现教学目标2)本课学习的归纳推理不是新知识,在以往学习数学的过程中我们经常使用这一方法,本课更像是对已有方法的总结和延伸. 但归纳推理对于学生又像“熟悉的陌生人”,生硬的引入和讲解往往使学生不明就里,在教学中应充分调动学生的积极性,利用学生预习中举出的实例逐一分析引起共鸣,唤醒学生对已有方法的记忆.3)归纳推理是一个既容易又困难的过程,说它容易因为学生利用归纳推理能很容易的解决一些简单问题,说它困难因为学生解决的问题实际上我们已经给予了充分的铺垫,学生往往没有经历“观察—分析”而直接发现了,学生只是挖出了我们“埋好的金子” . 然而在数学史中每一个利用归纳推理的猜想都经历了不平凡的过程,因为数学家在寻找金子. 实际教学中我们应注重发现问题和提出问题的过程,而不仅仅是分析问题和解决问题. 学生感受到归纳推理“很困难” 或许才是好的教学效果,因为未知领域的归纳推理本就是困难的4)学生探究问题的差异化在本节课会体现的很明显,数学基础知识好的学生解决问题的速度会更快,基础知识较薄弱的学生可能无法获得猜想的经验教学中将以2 人或3 人为小组进行小范围合作学习,这有助于通过交流启发学生的思想,探究过程中个别小组的指导也必不可少本节课的教学难点:通过归纳猜想的实例,体会由特殊到一般的数学思想,传承数学家勇于探究的精神,感悟数学文化.四、教学策略分析1)本节课采用我们天津市第三十二中学倡导的“一导二学五步教学模式”,辅以启发、引导、探究相结合的教学方法,利用“问题串”加以呈现导二学指以导学案为载体突出学生的自学与互学,自学包含课前预习思考、课上学习反思、课后复习巩固,互学指同伴互助所谓五步:“启”指问题导入、引出新知,开启教学的序幕;“建”指利用例题教学建立新知;“练”指通过练习巩固新知,发现应用中的新问题继续探究;“结” 不是课堂小结,而是对于新知的丰富和完善;“达”指利用课堂小结或课堂讨论总结知识,达成教学目标. 每个步骤均以1—2 个问题呈现,贯穿课堂始终.(2)本节课的实例大部分来自学生课前预习作业中的例子,教师进行挖掘整理贯穿于整个的教学过程之中,突出学生的主体地位. 由于本节课为研究数学方法的课,既要有归纳猜想含义和过程的“面子” ,还要有数学探究精神和数学文化的“里子”,教师的“导”必不可少,教师要将本课导出广度,导向深度(3)本节课需要用幻灯片和视频辅助教学过程,学生自主探究的问题利用围棋棋子这样的小道具,我们力图于用简单技术手段合理的展现学习内容,启迪学生的思维.五、教学过程一)问题导入、启发新知问题1:通过查阅资料或结合生活实际,你能根据推理的含义举出一个推理的例子吗?师生活动:学生展示自己的例子,教师予以评价.【设计意图】从学生的实例入手,有利于调动学生的积极性,教师的评价中注意引导学生理解推理的要点:由“已知判断”确定“新的判断”问题2:刚才几位同学的例子中推理的已知判断有什么特征?新判断有什么特征?师生活动:学生回答相应的问题,教师引出归纳推理的含义.【设计意图】分析几个实例前提和结论的特征得到归纳推理的含义“这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的 的推理,或者由个别事实概括出一般结论的推理称为归纳推理”.突出要点:由部 分到整体、由特殊到一般.(二)探究例题,构建新知问题3:你能结合实例说出归纳推理的一般步骤吗?师生活动:由学生介绍哥德巴赫猜想,教师引导学生分析哥德巴赫猜想的步 骤,教师举出实例,通过分析得出“观察一分析一归纳一猜想”的过程【设计意图】由学生探索发现,教师予以适当引导得出归纳推理的过程(三)自主练习,应用新知问题4:古希腊数学家毕达哥拉斯喜欢用小石子放到地上摆出图形研究规律,请你先摆一个棋子,加入一些棋子变为2行2列的正方形,再加入一些棋子变为 3行3列的正方形,继续这个过程,你能用归纳推理的思想提出新的结论吗?师生活动:教师播放幻灯片,展示该问题,学生两人一组进行合作练习.教师巡视过程中,根据学生的情况,有意识的引导学生按归纳推理的过程进行推理. 教师组织学生展示成果,评价学生的猜想【设计意图】在较为有趣的学习情境中,利用合作练习熟悉归纳推理的过程, 查找不足,初步应用新知.5:根据归纳推理的过程,你能完成下面两个练习吗? 纳出这个数列的通项公式.观察下面数的特点,用适当的数填空,并写出该数列的一个通项公式.1, 2, 4, 8, ( ),32,…师生活动:教师播放幻灯片,展示该问题,回顾递推公式与通项公式的定义, 每名学生进行自主练习.教师巡视过程中,根据学生的情况,有意识的引导学生按 归纳推理的过程进行推理.【设计意图】利用熟悉的知识内容自主练习归纳推理的过程, 进一步巩固新知.注重渗透从特殊到一般的数学思想.两道练习题能进一步解决本课的教学重问题1、 已知数列}的第1项3, =1,且an+ = a n1 +a n (n =1,2,3,…),试归2、(四)深入研究,发展新知问题6:归纳推理的猜想结论肯定正确吗?师生活动:由学生给出费马数猜想,教师进行深入的点评 .引导学生对于归 纳推理的猜想结论进行深入的思考.共同学习本章引言,预览全章内容.共同观看 陈景润的视频.【设计意图】通过本问题引导学生关注猜想结论,体会必然与或然思想,引出证明,通过学习本章引言,为全章学习进行铺垫 .陈景润的视频既是对证明的 铺垫又是一次良好的爱国主义教育.学生能感悟数学家探索的过程的艰辛,和数 学家孜孜以求、坚持不懈的科研精神.我们进行体检时抽取5毫升的血液进行检验,根据数据推理身体是否 健康()由铜、铁、铝、金、银等金属能导电,推出一切金属都能导电 ()古代劳动人民通过观察动物鳞片,发明了房上的瓦() 式.22 +1 2 2 +2 2 2 +3 3、- < 3, - < ,- <久卫,…观察不等式你能得到什么结论? 3 3 +1 3 3 +2 3 3+3师生活动:学生根据本节课所学的知识完成自测题.教师点评学生的答案的 过程中引导学生总结本课所学的知识内容【设计意图】通过达标自测题学生检验本节课所学知识,同时对本节课内容 进行知识性小结.问题8:通过几个有名的归纳推理实例,你能从数学家身上感悟到什么精神? 师生活动:教师讲述哥德巴赫猜想和费马数猜想的背景, 学生了解的归纳推理的艰难.师生一起研究四色定理,共同感悟数学家持之以恒的探究精神【设计意图】这是本节课的思想性小结,通过本问题意在进一步解决教学难 点,感悟数学发展史中数学家不畏艰辛的探究精神和勇于突破的创新精神,了 解数学文化,培养学习数学的兴趣.六)作业布置 (五)目标达成,小结新知问题7:你能根据本节课知识完成达标自测题吗?1、判断下列推理是否为归纳推理(1)⑵ (3) 2、在数列S 中, 31 =1,"扣2+丄)(n >2),试猜想这个数列的通项公 321课本35页习题A组1、2, B组1.2 、根据导学案预习下一节内容,回答问题“你能根据类比推理的含义举出一个实例吗?”合情推理—归纳推理》教学点评本节课为人教A版选修1—2第二章《推理与证明》2.1《合情推理与演绎推理》的第一课时《合情推理—归纳推理》国家教育部制定的《普通高中数学课程标准(实验)》中对高中阶段的数学史教育给予了足够的重视,本节课教师在教学中融入了数学史的知识,帮助学生更好的掌握知识的来龙去脉,领悟数学思想、方法的产生和发展过程,从而对数学产生兴趣.在学习过程中学生能了解中国和世界的数学成就,学习数学家的坚毅品质及为数学和科学献身的精神,进一步体会数学的科学价值、应用价值、人文价值,提高自身的科学素养和创新意识,引导学生树立社会主义核心价值观.在本节课的教学过程中体现了如下亮点:1 、教学设计合理,教学过程流畅本节课利用“启、建、练、结、达”的步骤完成了归纳推理含义和过程的教学,设计清晰、合理,用螺旋的方式达成教学目标.在课堂尾声又结合数学史知识深化了学生对于归纳推理的理解,感悟到数学家的精神.整个教学过程连贯、流畅,自然的解决了教学重点和难点.2、突出核心素养,切合时代主题逻辑推理是高中数学核心素养之一,也是培养科学素养的重要途径.本节课的归纳推理是一种重要的逻辑推理形式,教师合理的引导学生利用归纳的方式学习了归纳推理的含义和过程,通过丰富的实例和练习学生能够掌握归纳推理基本形式和规则.著名猜想的得出过程,数学家的事迹则能培养学生的科学素养.教学过程中教师提出的“数学梦”、学生提到的“工匠精神”、陈景润事迹体现的爱国情怀等都很好的切合了时代的主题,体现了社会主义核心价值观.3、鲜明展现学生的主体地位本节课的每一个环节都以学生搜集和发现的实例为研究背景,都以学生自学与互学的手段为学习方式,都在学生“观察、思考、发现” 的过程中解决问题,充分体现了学生的主体地位.4、恰当发挥教师的主导作用教师的适当引导助学生用实例归纳出归纳推理的含义,助学生用哥德巴赫猜想得到归纳推理的一般过程,助学生用费马数加深对归纳推理的认识,助学生在四色猜想的归纳过程中感悟推理的艰辛,在导的过程中教学目标逐步实现,学生认知向广度和深度发展.5、蕴藏数学思想和数学文化师生从生活实例出发,逐渐用数学的眼光和数学的观点学习归纳推理,学生在一个个数学史有名的猜想中能看到数学家的聪明才智和创新精神,发展求知、求实、勇于探索的情感和态度.整堂课饱含了数学思想和文化,既有数学味道,又有数学精神.6、和谐轻松的课堂氛围教师热情的语言、扎实的教学功力,学生积极的参与、认真的学习态度,媒体适宜的运用、丰富的教学内容,共同构成了和谐的课堂氛围,为实现教学目标创造了良好的条件.。
合情推理与演绎推理【考点梳理】1.合情推理2.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断. 【考点突破】考点一、归纳推理【例1】(1)从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为( )A .2 018B .2 019C .2 020D .2 021(2)观察下列等式:1+2+3+…+n =12n (n +1);1+3+6+…+12n (n +1)=16n (n +1)(n +2);1+4+10+…+16n (n +1)(n +2)=124n (n +1)(n +2)(n +3);……可以推测,1+5+15+…+124n (n +1)(n +2)(n +3)=_______________________. (3)分形几何学是数学家伯努瓦·曼德尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图(1)所示的分形规律可得如图(2)所示的一个树形图.若记图(2)中第n 行黑圈的个数为a n ,则a 2 018=________.[答案] (1) D (2) 1120n (n +1)(n +2)(n +3)(n +4) (3) 32 017-12[解析] (1)根据题干图所示的规则排列,设最上层的一个数为a ,则第二层的三个数为a +7,a +8,a +9,第三层的五个数为a +14,a +15,a +16,a +17,a +18,这九个数之和为a +3a +24+5a +80=9a +104.由9a +104=2 021,得a =213,是自然数,故选D.(2)根据式子中的规律可知,等式右侧为15×4×3×2×1·n (n +1)(n +2)(n +3)(n +4)=1120n (n +1)(n +2)(n +3)(n +4).(3)根据题图(1)所示的分形规律,可知1个白圈分形为2个白圈1个黑圈,1个黑圈分形为1个白圈2个黑圈,把题图(2)中的树形图的第1行记为(1,0),第2行记为(2,1),第3行记为(5,4),第4行的白圈数为2×5+4=14,黑圈数为5+2×4=13,所以第4行的“坐标”为(14,13),同理可得第5行的“坐标”为(41,40),第6行的“坐标”为(122,121),….各行黑圈数乘2,分别是0,2,8,26,80,…,即1-1,3-1,9-1,27-1,81-1,…,所以可以归纳出第n 行的黑圈数a n =3n -1-12(n ∈N *),所以a 2 018=32 017-12. 【类题通法】破解归纳推理的思维步骤【对点训练】1.数列12,13,23,14,24,34,…,1m +1,2m +1,…,mm +1,…的第20项是( )A .58 B .34 C .57 D .67[答案] C [解析] 数列m m +1在数列中是第1+2+3+…+m =m m +2项,当m =5时,即56是数列中第15项,则第20项是57,故选C.2.观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝ ⎛⎭⎪⎫sin 8π9-2=43×4×5; …… 照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝⎛⎭⎪⎫sin 2n π2n +1-2=________.[答案] 43n (n +1)[解析] 通过观察已给出等式的特点,可知等式右边的43是个固定数,43后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,43后面第二个数是第一个数的下一个自然数,所以,所求结果为43×n ×(n +1),即43n (n +1).3.下面图形由小正方形组成,请观察图(1)至图(4)的规律,并依此规律,写出第n 个图形中小正方形的个数是__________.[答案]n n +2(n ∈N *)[解析] 由题图知第n 个图形的小正方形个数为1+2+3+…+n .所以总个数为n n +2(n ∈N *).考点二、类比推理【例2】(1)设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论我们可以得到的一个真命题为:设等比数列{b n }的前n 项积为T n ,则____________________成等比数列.(2) 祖暅是我国南北朝时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆y 2a 2+x 2b2=1(a >b >0)所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(称为椭球体)如图所示,课本中介绍了应用祖暅原理求球体体积公式的方法,请类比此法,求出椭球体体积,其体积等于________.[答案] (1) T 4,T 8T 4,T 12T 8,T 16T 12 (2) 43πb 2a [解析] (1)利用类比推理把等差数列中的差换成商即可.(2)椭圆的长半轴长为a ,短半轴长为b ,现构造两个底面半径为b ,高为a 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球体的体积V =2(V 圆柱-V 圆锥)=2⎝ ⎛⎭⎪⎫π×b 2×a -13π×b 2×a =43πb 2a .【类题通法】1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想,其中找到合适的类比对象是解题的关键.2.类比推理常见的情形有:平面与空间类比;低维与高维类比;等差数列与等比数列类比;运算类比(和与积、乘与乘方,差与除,除与开方).数的运算与向量运算类比;圆锥曲线间的类比等. 【对点训练】1.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线,则有如下命题:若P (x 0,y 0)在双曲线x 2a 2-y 2b2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________.[答案]x 0x a 2-y 0y b 2=1 [解析] 类比椭圆的切点弦方程可得双曲线x 2a 2-y 2b 2=1的切点弦方程为x 0x a 2-y 0yb2=1.2.若等差数列{a n }的前n 项之和为S n ,则一定有S 2n -1=(2n -1)a n 成立.若等比数列{b n }的前n 项之积为T n ,类比等差数列的性质,则有( )A .T 2n -1=(2n -1)+b nB .T 2n -1=(2n -1)b nC.T2n-1=(2n-1)b n D.T2n-1=b2n-1n[答案] D[解析] 在等差数列{a n}中,a1+a2n-1=2a n,a2+a2n-2=2a n,…,故有S2n-1=(2n-1)a n,在等比数列{b n}中,b1b2n-1=b2n,b2·b2n-2=b2n,…,故有T2n-1=b1b2…b2n-1=b2n-1n.考点三、演绎推理【例3】来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起.他们除懂本国语言外,每人还会说其他三国语言中的一种.有一种语言是三个人会说的,但没有一种语言四人都懂,现知道:①甲是日本人,丁不会说日语,但他俩能自由交谈;②四人中没有一个人既能用日语交谈,又能用法语交谈;③乙、丙、丁交谈时,不能只用一种语言;④乙不会说英语,当甲与丙交谈时,他能做翻译.针对他们懂的语言,正确的推理是( )A.甲日德、乙法德、丙英法、丁英德B.甲日英、乙日德、丙德法、丁日英C.甲日德、乙法德、丙英德、丁英德D.甲日法、乙英德、丙法德、丁法英[答案] A[解析] 分析题目和选项,由①知,丁不会说日语,排除B选项;由②知,没有人既会日语又会法语,排除D选项;由③知乙、丙、丁不会同一种语言,排除C选项,故选A.【类题通法】演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.【对点训练】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.[答案] 1和3[解析] 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.。
专题3 合情推理和演绎推理【重点考向】一、合情推理1.含义:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.合情推理的过程:从具体问题出发观察、分析比较、联想归纳、类比提出猜想3.分类(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.②特征:归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理.②特征:类比推理是由特殊到特殊的推理.注意:归纳推理的结论超出了前提所界定的范围,其结论不一定正确.类比推理是从人们已经掌握了的事物的特征,推测正在被研究中的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.二、演绎推理(1)概念:从一般性的原理出发,推出某个特殊情况下的结论的推理称为演绎推理(由一般到特殊的推理).(2)三段论:“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;即M是P②小前提——所研究的特殊情况;即S是M③结论——根据一般原理,对特殊情况作出的判断;S是P.【考点精讲】考点一归纳推理【例1】(1)有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第6个图案中有灰色的正六边形的个数是A.26 B.31C.32 D.36【答案】B(2).根据给出的数塔猜测()…A. B. C. D.【答案】A【解析】由;;;,,归纳可得,等式右边各数位上的数字均为1,位数跟等式左边的加数相同,,故选A.【举一反三】1.将正整数排成下表:则在表中,数字2017出现在()A.第44行第80列 B.第45行第81列C.第44行第81列 D.第45行第80列【答案】B【解析】由图可知第行有个数字,前行的数字个数为个,,且,在第45 行,又,且45行有个数字,在第,数字2017出现在第45行第81列,故选B .2.如图,第个图形是由正边形“扩展”而来,(),则在第个图形中共有()个顶点.A. B. C. D.【答案】B【解析】由已知中的图形可以得到:当时,顶点共有个;当时,顶点共有个;当时,顶点共有个;当时,顶点共有个;由此可以推断,第个图形共有顶点个,故选B.3.如图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色( )A.白色 B.黑色C.白色可能性大 D.黑色可能性大【答案】A【解析】由图,知三白二黑周期性排列,36=5×7+1,故第36颗珠子的颜色为白色.考点二类比推理【例2】(1)通过类比推理,根据三角形的性质推测空间四面体的性质填写下表:【答案】见解析【解析】三角形和四面体分别是平面图形和空间图形,三角形的边对应四面体的面,即平面的线类比空间的面;三角形的中位线对应四面体的中截面,三角形的内角对应四面体的二面角,三角形的内切圆对应四面体的内切球.具体见下表:半并且平行于第角形(2)在一项田径比赛中,甲、乙、丙三人的夺冠呼声最高.观众A 、B 、C 做了一项预测: A 说:“我认为冠军不会是甲,也不会是乙”. B 说:“我觉得冠军不会是甲,冠军会是丙”. C 说:“我认为冠军不会是丙,而是甲”.比赛结果出来后,发现A 、B、C 三人中有一人的两个判断都对,一人的两个判断都错,还有一人的两个判断一对一错,根据以上情况可判断冠军是( )A .甲B .乙C .丙D .丁 【答案】A【解析】先假设A 选项正确,也即是甲为冠军,那么观众A 判断一对一错,观众B 判断都错,观众C 判断都对,符合题意.对于B,C,D 三个选项,假设后通过验证可知不符合题意.故本题选A. 【举一反三】 1.三角形的面积为为三角形的边长,r 为三角形内切圆的半径,利用类比推理,可得出四面体的体积为 ( ) A . B.C .,(h 为四面体的高)D . (分别为四面体的四个面的面积,为四面体内接球的半径)【答案】D【解析】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ,根据三角形的面积的求解方法:分割法,将O 与四顶点连起来,可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和, ∴V(S 1+S 2+S 3+S 4)r ,故选:D .2..已知为等比数列,,则.若为等差数列,,则的类似结论为( )A. B.C. D.【答案】D【解析】由等差数列性质,有==…=2.易知选项D正确.4.在平面几何中,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的.”拓展到空间中,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的()A. B. C. D.【答案】A5.已知为等差数列,,.若为等比数列,,则类似的结论是()A. B.C. D.【答案】D【解析】在等差数列中,令,则,∴,∴.在等比数列中,令,则,∴,∴.故选D.考点三演绎推理【例3-1】用三段论的形式写出下列演绎推理.(1)菱形的对角线相互垂直,正方形是菱形,所以正方形的对角线相互垂直.(2)若两角是对顶角,则这两个角相等,所以若两角不相等,则此两角不是对顶角.【解析】(1)每个菱形的对角线都相互垂直………………………………大前提正方形是菱形…………………………………………………………………小前提正方形的对角线相互垂直……………………………………………………结论(2)若两个角是对顶角,则这两个角相等……………………………………大前提∠1和∠2不相等…………………………………………………………小前提∠1和∠2不是对顶角……………………………………………………结论【举一反三】1.将下列演绎推理写成三段论的形式.(1)一切奇数都不能被2整除,75不能被2整除,所以75是奇数.(2)三角形的内角和为180°,Rt△ABC的内角和为180°.(3)菱形对角线互相平分.故答案为:乙.1.有一个游戏将标有数字1、2、3、4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人张,并请这4人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中;丁说:甲拿到标有3的卡片。
2019年高考数学(文)高频考点名师揭秘与仿真测试84 推理与证明合情推理与演绎推理【考点讲解】一、具本目标:了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运“三段论”进行一些简单的演绎推理.二、知识概述:一)合情推理主要包括归纳推理和类比推理。
1.归纳推理:(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).(2)特征:由部分到整体,由个别到一般的推理.2.类比推理:(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.(2)特征:由特殊到特殊的推理.3.归纳推理与类比推理有何区别与联系区别:归纳推理是由特殊到一般的推理;而类比推理是由个别到个别的推理或是由特殊到特殊的推理.联系:在前提为真时,归纳推理与类比推理的结论都可真可假.4.合情推理(1)定义:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.通俗地说,合情推理就是合乎情理的推理.(2)推理的过程从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想【温馨提示】(1)已知等式或不等式进行归纳推理的方法①要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律;②要特别注意所给几个等式(或不等式)中结构形成的特征;③提炼出等式(或不等式)的综合特点;④运用归纳推理得出一般结论.(2)数列中的归纳推理:在数列问题中,常常用到归纳推理猜测数列的通项公式或前n项和.①通过已知条件求出数列的前几项或前n项和;②根据数列中的前几项或前n项和与对应序号之间的关系求解;③运用归纳推理写出数列的通项公式或前n项和公式.【规律与方法】1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想二)演绎推理三段论的基本模式演绎推理的概念理,小前提指出了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系.有时可省略小前提,有时甚至也可把大前提与小前提都省略,在寻找大前提时,可找一个使结论成立的充分条件作为大前提.【规律与方法】1.应用三段论解决问题时,应当首先明确什么是大前提和小前提,但为了叙述的简洁,如果前提是显然的,则可以省略.2.合情推理是由部分到整体,由个别到一般的推理或是由特殊到特殊的推理;演绎推理是由一般到特殊的推理.3.合情推理与演绎推理是相辅相成的,数学结论、证明思路等的发现主要靠合情推理;数学结论、猜想的正确性必须通过演绎推理来证明.【真题分析】1.【2017新课标Ⅱ】甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我 还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的结果则知道 自己的结果,丁看到甲的结果则知道自己的结果,故选D . 【答案】D2.【2018浙江】已知1a ,2a ,3a ,4a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >【解析】解法一 因为ln 1x x -≤(0x >),所以1234123ln()a a a a a a a +++=++1231a a a ++-≤,所以41a -≤,又11a >,所以等比数列的公比0q <. 若1q -≤,则212341(1)(10a a a a a q q+++=++)≤,而12311a a a a ++>≥,所以123ln()0a a a ++>,与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .解法二 因为1xe x +≥,1234123ln()a a a a a a a +++=++,所以123412312341a a a a ea a a a a a a +++=++++++≥,则41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤,而12311a a a a ++>≥,所以123ln()0a a a ++> 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .【答案】B3.【2016·北京卷】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )A .乙盒中黑球不多于丙盒中黑球B .乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多【解析】解法1:假设袋中只有一红一黑两个球,第一次取出后,若将红球放入了甲盒,则乙盒中有一个黑球,丙盒中无球,A 错误;若将黑球放入了甲盒,则乙盒中无球,丙盒中有一个红球,D 错误;同样,假设袋中有两个红球和两个黑球,第一次取出两个红球,则乙盒中有一个红球,第二次必然拿出两个黑球,则丙盒中有一个黑球,此时乙盒中红球多于丙盒中的红球,C 错误.故选B.解法2:设袋中共有2n 个球,最终放入甲盒中k 个红球,放入乙盒中s 个红球.依题意知,甲盒中有(n -k )个黑球,乙盒中共有k 个球,其中红球有s 个,黑球有(k -s )个,丙盒中共有(n -k )个球,其中红球有(n -k -s )个,黑球有(n -k )-(n -k -s )=s 个.所以乙盒中红球与丙盒中黑球一样多.故选B. 【答案】B4.【2017浙江】如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角 为α,β,γ,则( )R QPABC DA .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【解析】设O 为三角形ABC 中心,底面如图2,过O 作OE RP ⊥,OF PQ ⊥,OG RQ ⊥,由题意可知tan DO OE α=,tan OD OF β=,tan ODOGγ=,GF EO DC BAPQR图1 图2由图2所示,以P 为原点建立直角坐标系,不妨设2AB =,则(1,0)A -,(1,0)B,C,(0,3O ,∵AP PB =,2BQ CRQC RA==,∴1(3Q,2(3R -,则直线RP的方程为y =,直线PQ的方程为y =,直线RQ的方程为y x =+,根据点到直线的距离公式,知21OE =,OF =,13OG =,∴OF OG OE <<,tan tan tan αγβ<<, 因为α,β,γ为锐角,所以αγβ<<.选B 【答案】B5.【2016·新课标全国卷Ⅱ】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相 同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.【解析】丙的卡片上的数字之和不是5,则丙有两种情况:①丙的卡片上的数字为1和2,此时乙的卡片上的数字为2和3,甲的卡片上的数字为1和3,满足题意;②丙的卡片上的数字为1和3,此时乙的卡片上的数字为2和3,甲的卡片上的数字为1和2,这时甲与乙的卡片上有相同的数字2,与已知矛盾,故情况②不符合,所以甲的卡片上的数字为1和3. 【答案】1和36.【2016山东】观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯;2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯;2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯;2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯;…… 照此规律,2222π2π3π2π(sin)(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++_______. 【解析】根据已知,归纳可得结果为43n (n+1).7.(2015陕西)观察下列等式:1-1122= 1-1111123434+-=+1-1111111123456456+-+-=++……据此规律,第n 个等式可为______________________.【解析】观察等式知:第n 个等式的左边有2n 个数相加减,奇数项为正,偶数项为负,且分子为1,分母是1到2n 的连续正整数,等式的右边是111122n n n++⋅⋅⋅+++. 【答案】111111111234212122n n n n n-+-+⋅⋅⋅+-=++⋅⋅⋅+-++ 8.【2015山东】观察下列各式:0014C =;011334C C +=; 01225554C C C ++= 0123377774C C C C +++=……照此规律,当*N n ∈时,012121212121n n n n n C C C C -----+++⋅⋅⋅+= .【解析】 具体证明过程可以是:0121012121212121212121211(2222)2n n n n n n n n n n C C C C C C C C ----------++++=++++021122223121212121212121211[()()()()]2n n n n nn n n n n n n n C C C C C C C C ------------=++++++++ 01212121121212121212111()2422n n n n n n n n n n n C C CC C C ----------=+++++++=⋅=. 【答案】14n -9.【2014安徽】如图,在等腰直角三角形ABC 中,斜边BC =A 作BC 的垂线,垂足为1A ; 过点1A 作AC 的垂线,垂足为2A ;过点2A 作1A C 的垂线,垂足为3A ;…,依此类推,设1BA a =,12AA a =,123A A a =, (567)A a =,则7a =.13【解析】解法一 直接递推归纳;等腰直角三角形ABC中,斜边BC =1122,AB AC a AA a ====,1231A A a==,⋅⋅⋅,65671124A A a a ==⨯=. 解法二求通项:等腰直角三角形ABC 中,斜边BC =所以1122,AB AC a AA a ====⋅⋅⋅,11sin2()422n n n n n n A A a a a π-+==⋅==⨯,故672()2a =⨯=14【答案】1410.【2014陕西】观察分析下表中的数据:猜想一般凸多面体中,E V F ,,所满足的等式是_________ 【解析】三棱柱中5 +6-9 =2;五棱锥中6+6 -10 =2;立方体中6+8 -12 =2,由此归纳可得2F V E +-=.【答案】2F V E +-=【模拟考场】1. 学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”三种.若学生甲的语文、 数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”,如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两个学生,那么这组学生最多有( )A .2人B .3人C .4人D .5人【解析】学生甲比学生乙成绩好,即学生甲两门成绩中一门高过学生乙,另一门不低于学生乙,一组学生 中没有哪位学生比另一位学生成绩好,并且没有相同的成绩,则存在的情况是,最多有3人,其中一个语 文最好,数学最差;另一个语文最差,数学最好;第三个人成绩均为中等.故选B . 【答案】B2.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论: ①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两条直线互相平行; ③垂直于同一条直线的两个平面互相平行;④垂直于同一平面的两个平面互相平行. 则其中正确的结论是( ) A .①② B .②③ C .③④D .①④【解析】是类比推理的应用.根据立体几何中线面之间的位置关系及有关定理知,②③是正确的结论. 【答案】B3.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体A -BCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体A -BCD 的体积为V ,则R 等于( ) A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4【解析】本题是平面几何与立体几何之间的类比 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和. 则四面体的体积为V =13(S 1+S 2+S 3+S 4)R ,∴R =3VS 1+S 2+S 3+S 4.【答案】 C4.指数函数y =a x (a >1)是R 上的增函数,y =2|x |是指数函数,所以y =2|x |是R 上的增函数.以上推理( )A .大前提错误B .小前提错误C .推理形式错误D .正确【解析】本题是演绎推理中三段论的具体应用.此推理形式正确,但是,函数y =2|x |不是指数函数,所以小前提错误,故选B. 【答案】 B5.正整数按下表的规律排列,则上起第2 017行,左起第2 018列的数应为( )A .2 016×2 017B .2 017×2 018C .2 018×2 019D .2 019×2 020【解析】本题是归纳推理的具本应用.由给出的排列规律可知,第一列的每个数为所在行数的平方,而第一行的数则满足列数减1的平方再加1,根据题意,左起第2 018列的第一个数为2 0172+1,由连线规律可知,上起第2 017行,左起第2 018列的数应为2 0172+2 017=2 017×2 018. 【答案】B6.如图,将边长分别为1,2,3的正八边形叠放在一起,同一边上相邻珠子之间的距离为1,若以此方式再放置边长为4,5,6,…,10的正八边形,则这10个正八边形镶嵌的珠子总数是_______________ _________________________________________________________.【解析】边长为1,2,3,…,10的正八边形叠放在一起,则各个正八边形上的珠子数分别为8,2×8,3×8,…,10×8,其中,有3个珠子被重复计算了10次,有2个珠子被重复计算了9次,有2个珠子被重复计算了8次,有2个珠子被重复计算了7次,有2个珠子被重复计算了6次,…,有2个珠子被重复计算了1次,故不同的珠子总数为(8+2×8+3×8+…+10×8)-(3×9+2×8+2×7+2×6+…+2×1)=440-(27+2×8×92)=341,故所求总数为341. 【答案】3417.如图,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,DE ∥BA ,求证:ED =AF ,写出三段论形式的演绎推理.证明 因为同位角相等,两直线平行, 大前提 ∠BFD 与∠A 是同位角,且∠BFD =∠A , 小前提 所以FD ∥AE .结论因为两组对边分别平行的四边形是平行四边形, 大前提 DE ∥BA ,且FD ∥AE ,小前提 所以四边形AFDE 为平行四边形. 结论 因为平行四边形的对边相等,大前提 ED 和AF 为平行四边形AFDE 的对边, 小前提 所以ED =AF .结论8.已知函数f (x )=a x +x -2x +1(a >1),证明:函数f (x )在(-1,+∞)上为增函数.证明 方法一 (定义法) :任取x 1,x 2∈(-1,+∞),且x 1<x 2, f (x 2)-f (x 1)=2x a +x 2-2x 2+1-1x a -x 1-2x 1+1=2x a -1xa +x 2-2x 2+1-x 1-2x 1+1=1xa (21x x a--1)+(x 1+1)(x 2-2)-(x 1-2)(x 2+1)(x 2+1)(x 1+1)=1x a (21x xa --1)+3(x 2-x 1)(x 2+1)(x 1+1).因为x 2-x 1>0,且a >1,所以21x x a->1,而-1<x 1<x 2,所以x 1+1>0,x 2+1>0,所以f (x 2)-f (x 1)>0,所以f (x )在(-1,+∞)上为增函数. 方法二 (导数法):f (x )=a x +x +1-3x +1=a x +1-3x +1.所以f ′(x )=a x ln a +3(x +1)2.因为x >-1,所以(x +1)2>0,所以3(x +1)2>0.又因为a >1,所以ln a >0,a x>0, 所以a x ln a >0,所以f ′(x )>0.所以f (x )=a x +x -2x +1在(-1,+∞)上是增函数.9.设m 为实数,利用三段论证明方程x 2-2mx +m -1=0有两个相异实根.证明 因为如果一元二次方程ax 2+bx +c =0(a ≠0)的判别式Δ=b 2-4ac >0,那么方程有两个相异实根.大前提方程x 2-2mx +m -1=0的判别式Δ=4m 2-4(m -1)=4m 2-4m +4=(2m -1)2+3>0,小前提所以方程x2-2mx+m-1=0有两个相异实根.结论。
♦♦♦学生用书(后跟详细参考答案和教师用书)♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第十三章 推理与证明、算法、复数第71讲 合情推理与演绎推理★★★核心知识回顾★★★知识点一、合情推理 (1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出 的推理,称为归纳推理(简称归纳). ②特点:由 到整体、由 到一般的推理. (2)类比推理①定义:由两类对象具有某些 和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比). ②特点:由 到 的推理. (3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、 ,然后提出猜想的推理,我们把它们统称为合情推理. 知识点二、演绎推理 (1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由 到 的推理. (2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的 ; ②小前提——所研究的 ;③结论——根据一般原理,对 做出的判断.★★★高考典例剖析★★★考点一、归纳推理命题点1 与数字有关的等式的推理 例1:观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3;⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=__________. 答案 43×n ×(n +1)解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.命题点2 与不等式有关的推理例2:已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 22≥a 1a 2; a 1+a 2+a 33≥3a 1a 2a 3; a 1+a 2+a 3+a 44≥4a 1a 2a 3a 4;…照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a nn ≥______.答案na 1a 2…a n解析 根据题意得a 1+a 2+…+a n n ≥na 1a 2…a n (n ∈N *,n ≥2).命题点3 与数列有关的推理例3: (2017·湖北七市教科研协作体联考)观察下列等式: 1+2+3+…+n =12n (n +1);1+3+6+…+12n (n +1)=16n (n +1)(n +2);1+4+10+…+16n (n +1)(n +2)=124n (n +1)(n +2)(n +3);…可以推测,1+5+15+…+124n (n +1)(n +2)(n +3)=____________________. 答案1120n (n +1)(n +2)(n +3)(n +4)(n ∈N *)解析根据式子中的规律可知,等式右侧为15×4×3×2×1n(n+1)(n+2)(n+3)(n+4)=1120n(n+1)(n+2)(n+3)(n+4) (n∈N*).命题点4与图形变化有关的推理例4:(2017·大连调研)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为()A.21 B.34 C.52 D.55答案 D解析由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55,故选D.1.将自然数0,1,2,…按照如下形式进行摆列:根据以上规律判定,从2 016到2 018的箭头方向是()2.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为()A .6B .7C .8D .9 考点二、类比推理例5:等差数列{a n }的公差为d ,前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d2.类似地,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{nT n }的公比为( ) A.q2 B .q 2 C.q D.nq答案 C解析 由题设,得T n =b 1·b 2·b 3·…·b n =b 1·b 1q ·b 1q 2·…·b 1q n -1=b n 1q1+2+…+(n -1)=(1)21n nn b q-.∴nT n =121n b q-,∴等比数列{nT n }的公比为q ,故选C.3.在平面上,设h a ,h b ,h c 是△ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间,则三棱锥中的类似结论为______________________.4. (2018·晋江模拟)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如下图1所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士·帕斯卡的著作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle)如图1,17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如下图2.在杨辉三角中相邻两行满足关系式:C r n +C r +1n =C r +1n +1,其中n 是行数,r ∈N .请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是____________.1 1 12 1 13 3 1 14 6 4 1 15 10 10 5 1…C 0n C 1n … C r n … C n -1n C n n图1 12 12 13 16 13 14 112 112 14 15 120 130 120 15 16 130 160 160 130 16…1C 1n +1C 0n1C 1n +1C 1n…1C 1n +1C r n…1C 1n +1C n -1n1C 1n +1C n n图2考点三、演绎推理例6: (2018·保定模拟)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)5. (2017·全国Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩6.已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数.7.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:①b 2 018是数列{a n }的第________项; ②b 2k -1=________.(用k 表示)8.设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(ⅰ)T ={f (x )|x ∈S };(ⅱ)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2).那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是________. ①A =N *,B =N ;②A={x|-1≤x≤3},B={x|x=-8或0<x≤10};③A={x|0<x<1},B=R;④A=Z,B=Q.★★★知能达标演练★★★一、选择题1.已知在数列{a n}中,a1=1,当n≥2时,a n=a n-1+2n-1,依次计算a2,a3,a4后,猜想a n的表达式是()A.a n=3n-1 B.a n=4n-3C.a n=n2D.a n=3n-12.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确3.(2018·衡水模拟)下列四个推导过程符合演绎推理三段论形式且推理正确的是() A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数4.(2018·武汉模拟)观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是()A.n+(n+1)+(n+2)+…+(3n-2)=n2B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2C.n+(n+1)+(n+2)+…+(3n-1)=n2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)25.(2016·北京)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒,每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A .乙盒中黑球不多于丙盒中黑球 B .乙盒中红球与丙盒中黑球一样多 C .乙盒中红球不多于丙盒中红球 D .乙盒中黑球与丙盒中红球一样多6.(2017·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定出来x =2,类似地不难得到1+11+11+…等于( )A.-5-12B.5-12C.1+52D.1-527.(2017·宜昌一中月考)老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下: 甲说:“我们四人都没考好”; 乙说:“我们四人中有人考的好”; 丙说:“乙和丁至少有一人没考好”; 丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中说对的两人是( ) A .甲、丙 B .乙、丁 C .丙、丁D .乙、丙8.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a·b =b·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a·c +b·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a·b )·c =a·(b·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a·p =x·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a·b |=|a|·|b |”; ⑥“ac bc =a b ”类比得到“a·c b·c =ab”.以上式子中,类比得到的结论正确的个数是( ) A .1 B .2 C .3 D .4 二、填空题9.在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则存在的等式为________________. 10.(2017·济南调研)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③垂直于同一个平面的两个平面互相平行; ④垂直于同一条直线的两个平面互相平行. 则正确的结论是________.(填序号)11.(2018·中山模拟)在△ABC 中,不等式1A +1B +1C ≥9π成立;在凸四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立;在凸五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立…依此类推,在凸n 边形A 1A 2…A n 中,不等式1A 1+1A 2+…+1A n ≥____________________成立.12.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n …可以推测N (n ,k )的表达式,由此计算N (10,24)=__________.13.若{a n }是等差数列,m ,n ,p 是互不相等的正整数,则有:(m -n )a p +(n -p )a m +(p -m )a n =0,类比上述性质,相应地,对等比数列{b n },m ,n ,p 是互不相等的正整数,有__________________.14.(2017·青岛模拟)若数列{a n }的通项公式为a n =1(n +1)2(n ∈N *),记f (n )=(1-a 1)(1-a 2)…(1-a n ),试通过计算f (1),f (2),f (3)的值,推测出f (n )=______. 15.观察下列不等式: 1+122<32, 1+122+132<53,1+122+132+142<74, …照此规律,第五个不等式为____________________.16.(2017·佛山一模)所有真约数(除本身之外的正约数)的和等于它本身的正整数叫做完全数(也称为完备数、完美数),如6=1+2+3;28=1+2+4+7+14;496=1+2+4+8+16+31+62+124+248,此外,它们都可以表示为2的一些连续正整数次幂之和,如6=21+22,28=22+23+24,…,按此规律,8 128可表示为____________.17.(2017·湖北八校联考)祖暅是我国南北朝时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆y 2a 2+x 2b 2=1(a >b >0)所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(称为椭球体)(如图),课本中介绍了应用祖暅原理求球体体积公式的方法,请类比此法,求出椭球体体积,其体积等于________.三、解答题18.(2018·济南模拟)设f (x )=13x+3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.19.(2018·温州模拟)在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体A —BCD 中,类比上述结论,你能得到怎样的猜想,并说明理由. 20.(2017·厦门模拟)设f (x )=3ax 2+2bx +c ,若a +b +c =0,f (0)>0,f (1)>0,证明: (1)a >0且-2<ba<-1;(2)方程f (x )=0在(0,1)内有两个实根.21.(2017·青岛模拟)对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )的对称中心;(2)计算f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫32 017+f ⎝⎛⎭⎫42 017+…+f ⎝⎛⎭⎫2 0162 017.♦♦♦详细参考答案♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第十三章推理与证明、算法、复数第71讲合情推理与演绎推理★★★核心知识回顾★★★知识点一、合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:由特殊到特殊的推理.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.知识点二、演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.★★★高考典例剖析★★★考点一、归纳推理♦♦♦跟踪训练♦♦♦1.答案 A解析从所给的图形中观察得到规律:每隔四个单位,箭头的走向是一样的,比如说,0→1,箭头垂直指下,4→5箭头也是垂直指下,8→9也是如此,而2 016=4×504,所以2 016→2017也是箭头垂直指下,之后2 017→2 018的箭头是水平向右,故选A.2.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为( )A .6B .7C .8D .9答案 C解析 由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n (n ≥2,n ∈N *)层的点数为6(n -1).设一个点阵有n (n ≥2,n ∈N *)层,则共有的点数为1+6+6×2+…+6(n -1)=1+6·n (n -1)2=3n 2-3n +1,由题意,得3n 2-3n +1=169,即(n +7)·(n -8)=0,所以n =8,故共有8层. 考点二、类比推理♦♦♦跟踪训练♦♦♦3.答案 P a h a +P b h b +P c h c +P d h d=1 解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P d h d=1.4. 答案 1C 1n +1C r n =1C 1n +2C r n +1+1C 1n +2C r +1n +1 解析 类比观察得,将莱布尼茨三角形的每一行都能提出倍数1C 1n +1,而相邻两项之和是上一行的两者相拱之数,所以类比式子C r n +C r +1n =C r +1n +1, 有1C 1n +1C r n =1C 1n +2C r n +1+1C 1n +2C r +1n +1. 考点三、演绎推理♦♦♦跟踪训练♦♦♦5.答案 D解析 由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩. 故选D.6.证明 设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0,[f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1).∴y =f (x )为R 上的单调增函数.7.答案 ①5 045 ②5k (5k -1)2解析 ①a n =1+2+…+n =n (n +1)2, b 1=4×52=a 4, b 2=5×62=a 5, b 3=9×(2×5)2=a 9, b 4=(2×5)×112=a 10, b 5=14×(3×5)2=a 14, b 6=(3×5)×162=a 15, … b 2 018=⎝⎛⎭⎫2 0182×5⎝⎛⎭⎫2 0182×5+12=a 5 045.②由①知b 2k -1=⎝⎛⎭⎫2k -1+12×5-1⎝⎛⎭⎫2k -1+12×52=5k (5k -1)2. 8.答案 ④ 解析 对于①,取f (x )=x -1,x ∈N *,所以A =N *,B =N 是“保序同构”的,故排除①;对于②,取f (x )=⎩⎪⎨⎪⎧ -8,x =-1,x +1,-1<x ≤0,x 2+1,0<x ≤3,所以A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}是“保序同构”的,故排除②;对于③,取f (x )=tan ⎝⎛⎭⎫πx -π2(0<x <1), 所以A ={x |0<x <1},B =R 是“保序同构”的,故排除③.④不符合,故填④.★★★知能达标演练★★★一、选择题1.答案 C解析 a 2=a 1+3=4,a 3=a 2+5=9,a 4=a 3+7=16,a 1=12,a 2=22,a 3=32,a 4=42,猜想a n =n 2.2.答案 C解析 f (x )=sin(x 2+1)不是正弦函数,所以小前提错误.3.答案 B解析 A 中小前提不是大前提的特殊情况,不符合三段论的推理形式,故A 错误;C ,D 都不是由一般性命题到特殊性命题的推理,所以C ,D 都不正确,只有B 正确,故选B.4.答案 B解析 由题中式子可以归纳:等式左边为连续自然数的和,有2n -1项,且第一项为n ,则最后一项为3n -2,等式右边均为2n -1的平方.5.答案 B解析 取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1;②黑+黑,则丙盒中黑球数加1;③红+黑(红球放入甲盒中),则乙盒中黑球数加1;④黑+红(黑球放入甲盒中),则丙盒中红球数加1.因为红球和黑球个数一样多,所以①和②的情况一样多.③和④的情况完全随机.③和④对B 选项中的乙盒中的红球数与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B 选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样.综上,选B.6.答案 C解析 设1+11+11+…=x ,则1+1x =x ,即x 2-x -1=0,解得x =1+52⎝ ⎛⎭⎪⎫x =1-52舍. 故1+11+11+…=1+52,故选C. 7.答案 D解析 甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确,故答案为D.8.答案 B解析 ①②正确;③④⑤⑥错误.二、填空题9.答案 b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)解析 利用类比推理,借助等比数列的性质,b 29=b 1+n ·b 17-n ,可知存在的等式为b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *). 10.答案 ①④解析 显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交.11.答案 n 2(n -2)π(n ∈N *,n ≥3) 解析 ∵1A +1B +1C ≥9π=32π, 1A +1B +1C +1D ≥162π=422π, 1A +1B +1C +1D +1E ≥253π=523π,…, ∴1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ∈N *,n ≥3). 12.答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k 2n , ∴N (10,24)=24-22×100+4-242×10 =1 100-100=1 000.13.答案 b m -n p ·b n -p m ·b p -m n =1解析 类比已知条件中等差数列的等式(m -n )a p +(n -p )a m +(p -m )a n =0,结合等比数列通项公式可得出等比数列的结论为:b m -n p ·b n -p m ·b p -m n =1.14.答案 n +22n +2解析 f (1)=1-a 1=1-14=34, f (2)=(1-a 1)(1-a 2)=34⎝⎛⎭⎫1-19=23=46, f (3)=(1-a 1)(1-a 2)(1-a 3)=23⎝⎛⎭⎫1-116=58, 推测f (n )=n +22n +2. 15.答案 1+122+132+142+152+162<116解析 观察每行不等式的特点,每行不等式左端最后一个分数的分母的开方与右端值的分母相等,且每行右端分数的分子构成等差数列.故第五个不等式为1+122+132+142+152+162<116. 16.答案 26+27+…+212解析 由题意,如果2n -1是质数,则2n -1(2n -1)是完全数,n ≥2,n ∈N *,∴令n =7,可得一个四位完全数为64×(128-1)=8 128,∴8 128=26+27+ (212)17.答案 43πb 2a 解析 椭圆的长半轴长为a ,短半轴长为b ,现构造两个底面半径为b ,高为a 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积.V =2(V 圆柱-V 圆锥)=2⎝⎛⎭⎫π×b 2×a -13π×b 2a =43πb 2a . 三、解答题18.解 f (0)+f (1)=130+3+131+3 =11+3+13+3=3-12+3-36=33, 同理可得:f (-1)+f (2)=33,f (-2)+f (3)=33, 并注意到在这三个特殊式子中,自变量之和均等于1.归纳猜想得:当x 1+x 2=1时,均有f (x 1)+f (x 2)=33. 证明:设x 1+x 2=1, f (x 1)+f (x 2)=1233x x +=19.解AD2=BD·DC,AB2=BD·BC,AC2=BC·DC,∴1AD2=1BD·DC=BC2 BD·BC·DC·BC=BC2AB2·AC2.又BC2=AB2+AC2,∴1AD2=AB2+AC2AB2·AC2=1AB2+1AC2.猜想,四面体A—BCD中,AB,AC,AD两两垂直,AE⊥平面BCD,则1AE2=1AB2+1AC2+1AD2.证明:如图,连接BE并延长交CD于F,连接AF.∵AB⊥AC,AB⊥AD,AC∩AD=A,AC⊂平面ACD,AD⊂平面ACD,∴AB⊥平面ACD.∵AF⊂平面ACD,∴AB⊥AF.在Rt△ABF中,AE⊥BF,∴1AE2=1AB2+1AF2.在Rt△ACD中,AF⊥CD,∴1AF2=1AC2+1AD2,∴1AE2=1AB2+1AC2+1AD2.20.证明(1)因为f(0)>0,f(1)>0,===所以c >0,3a +2b +c >0.由a +b +c =0,消去b 得a >c >0;再由条件a +b +c =0,消去c 得a +b <0且2a +b >0,所以-2<b a<-1. (2)因为抛物线f (x )=3ax 2+2bx +c 的顶点坐标为⎝⎛⎭⎫-b 3a ,3ac -b 23a , 又因为-2<b a <-1,所以13<-b 3a <23. 因为f (0)>0,f (1)>0,而f ⎝⎛⎭⎫-b 3a =3ac -b 23a =-a 2+c 2-ac 3a =-⎝⎛⎭⎫a -c 22+3c 243a <0,所以方程f (x )=0在区间⎝⎛⎭⎫0,-b 3a 与⎝⎛⎭⎫-b 3a ,1内分别有一个实根,故方程f (x )=0在(0,1)内有两个实根.21.解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12. f ⎝⎛⎭⎫12=13×⎝⎛⎭⎫123-12×⎝⎛⎭⎫122+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝⎛⎭⎫12,1. (2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝⎛⎭⎫12,1, 所以f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2, 即f (x )+f (1-x )=2.故f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫2 0162 017=2, f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫2 0152 017=2, f ⎝⎛⎭⎫32 017+f ⎝⎛⎭⎫2 0142 017=2, …,f ⎝⎛⎫2 0162 017+f ⎝⎛⎫12 017=2. 所以f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫32 017+f ⎝⎛⎭⎫42 017+…+f ⎝⎛⎭⎫2 0162 017=12×2×2 016=2 016.♦♦♦教师用书♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第十三章 推理与证明、算法、复数 第71讲 合情推理与演绎推理★★★核心知识回顾★★★知识点一、合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:由特殊到特殊的推理.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.知识点二、演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.★★★高考典例剖析★★★考点一、归纳推理命题点1 与数字有关的等式的推理例1:观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3;⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=__________. 答案 43×n ×(n +1)解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.命题点2 与不等式有关的推理例2:已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 22≥a 1a 2; a 1+a 2+a 33≥3a 1a 2a 3; a 1+a 2+a 3+a 44≥4a 1a 2a 3a 4;…照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a nn ≥______.答案na 1a 2…a n解析 根据题意得a 1+a 2+…+a n n ≥na 1a 2…a n (n ∈N *,n ≥2).命题点3 与数列有关的推理例3: (2017·湖北七市教科研协作体联考)观察下列等式: 1+2+3+…+n =12n (n +1);1+3+6+…+12n (n +1)=16n (n +1)(n +2);1+4+10+…+16n (n +1)(n +2)=124n (n +1)(n +2)(n +3);…可以推测,1+5+15+…+124n (n +1)(n +2)(n +3)=____________________. 答案1120n (n +1)(n +2)(n +3)(n +4)(n ∈N *)解析根据式子中的规律可知,等式右侧为15×4×3×2×1n(n+1)(n+2)(n+3)(n+4)=1120n(n+1)(n+2)(n+3)(n+4) (n∈N*).命题点4与图形变化有关的推理例4:(2017·大连调研)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为()A.21 B.34 C.52 D.55答案 D解析由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55,故选D.1.将自然数0,1,2,…按照如下形式进行摆列:根据以上规律判定,从2 016到2 018的箭头方向是()答案 A解析从所给的图形中观察得到规律:每隔四个单位,箭头的走向是一样的,比如说,0→1,箭头垂直指下,4→5箭头也是垂直指下,8→9也是如此,而2 016=4×504,所以2 016→2 017也是箭头垂直指下,之后2 017→2 018的箭头是水平向右,故选A.2.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为( )A .6B .7C .8D .9 答案 C解析 由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n (n ≥2,n ∈N *)层的点数为6(n -1).设一个点阵有n (n ≥2,n ∈N *)层,则共有的点数为1+6+6×2+…+6(n -1)=1+6·n (n -1)2=3n 2-3n +1,由题意,得3n 2-3n +1=169,即(n +7)·(n -8)=0,所以n =8,故共有8层. 考点二、类比推理例5:等差数列{a n }的公差为d ,前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d 2.类似地,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{nT n }的公比为( ) A.q2 B .q 2 C.q D.nq答案 C解析 由题设,得T n =b 1·b 2·b 3·…·b n =b 1·b 1q ·b 1q 2·…·b 1q n -1=b n 1q1+2+…+(n -1)=(1)21n nn b q-.∴nT n =121n b q-,∴等比数列{nT n }的公比为q ,故选C.3.在平面上,设h a ,h b ,h c 是△ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间,则三棱锥中的类似结论为______________________. 答案P a h a +P b h b +P c h c +P dh d=1 解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d =1.4. (2018·晋江模拟)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如下图1所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士·帕斯卡的著作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle)如图1,17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如下图2.在杨辉三角中相邻两行满足关系式:C r n +C r +1n =C r +1n +1,其中n 是行数,r ∈N .请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是____________.1 1 12 1 13 3 1 14 6 4 1 15 10 10 5 1…C 0n C 1n … C r n … C n -1n C nn图1 12 12 13 16 13 14 112 112 14 15 120 130 120 15 16 130 160 160 130 16…1C 1n +1C 0n1C 1n +1C 1n…1C 1n +1C r n…1C 1n +1C n -1n1C 1n +1C n n图2答案1C 1n +1C r n =1C 1n +2C r n +1+1C 1n +2C r +1n +1解析 类比观察得,将莱布尼茨三角形的每一行都能提出倍数1C 1n +1,而相邻两项之和是上一行的两者相拱之数,所以类比式子C r n +C r +1n =C r +1n +1,有1C 1n +1C r n =1C 1n +2C r n +1+1C 1n +2C r +1n +1. 考点三、演绎推理例6: (2018·保定模拟)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)5. (2017·全国Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 答案 D解析 由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩. 故选D.6.已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数. 证明 设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1). ∴y =f (x )为R 上的单调增函数.7.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:①b 2 018是数列{a n }的第________项; ②b 2k -1=________.(用k 表示) 答案 ①5 045 ②5k (5k -1)2解析 ①a n =1+2+…+n =n (n +1)2, b 1=4×52=a 4,b 2=5×62=a 5,b 3=9×(2×5)2=a 9,b 4=(2×5)×112=a 10,b 5=14×(3×5)2=a 14,b 6=(3×5)×162=a 15,…b 2 018=⎝⎛⎭⎫2 0182×5⎝⎛⎭⎫2 0182×5+12=a 5 045.②由①知b 2k -1=⎝⎛⎭⎫2k -1+12×5-1⎝⎛⎭⎫2k -1+12×52=5k (5k -1)2.8.设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(ⅰ)T ={f (x )|x ∈S };(ⅱ)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2).那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是________. ①A =N *,B =N ;②A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}; ③A ={x |0<x <1},B =R ; ④A =Z ,B =Q . 答案 ④解析 对于①,取f (x )=x -1,x ∈N *,所以A =N *,B =N 是“保序同构”的,故排除①; 对于②,取f (x )=⎩⎪⎨⎪⎧-8,x =-1,x +1,-1<x ≤0,x 2+1,0<x ≤3,所以A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}是“保序同构”的,故排除②; 对于③,取f (x )=tan ⎝⎛⎭⎫πx -π2(0<x <1), 所以A ={x |0<x <1},B =R 是“保序同构”的,故排除③. ④不符合,故填④.★★★知能达标演练★★★一、选择题1.已知在数列{a n}中,a1=1,当n≥2时,a n=a n-1+2n-1,依次计算a2,a3,a4后,猜想a n的表达式是()A.a n=3n-1 B.a n=4n-3C.a n=n2D.a n=3n-1答案 C解析a2=a1+3=4,a3=a2+5=9,a4=a3+7=16,a1=12,a2=22,a3=32,a4=42,猜想a n=n2.2.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确答案 C解析f(x)=sin(x2+1)不是正弦函数,所以小前提错误.3.(2018·衡水模拟)下列四个推导过程符合演绎推理三段论形式且推理正确的是() A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数答案 B解析A中小前提不是大前提的特殊情况,不符合三段论的推理形式,故A错误;C,D都不是由一般性命题到特殊性命题的推理,所以C,D都不正确,只有B正确,故选B. 4.(2018·武汉模拟)观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是()A.n+(n+1)+(n+2)+…+(3n-2)=n2。
2019-2020年人教B 版选修2-2高中数学2.1.1《合情推理》(归纳推理)word 教案【教学目标】理解合情推理的概念,掌握归纳推理与类比推理的方法;通过本节的学习,掌握归纳法和类比法的步骤,体会逻辑推理的严谨性;体会数学在现实生活中的应用.【教学重点】归纳推理的概念 【教学难点】利用归纳推理进行简单的推理一、课前预习:(阅读教材53—54页,完成知识点填空)1.根据______或______已知事实( )得出_____________,这种思维方式称为 。
推理都是由________和________两部分组成,推理可分为_________与______________2.__________________________________的推理叫做合情推理。
3.______________和____________是数学中常见的合情推理.4.根据一类事物的 具有某种性质,推出这类事物的____________都具有这种性质的推理,叫做归纳推理(简称_______).5.归纳推理的一般步骤:1. ; 2. .二、课上学习:例1.蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。
蛇,鳄鱼,海龟,蜥蜴都是爬行动物,结论______________.例2.参照教材54—55页两个例题,完成下列问题(1)=+321 ;=++33321 ;=+++3334321 ;=++++333354321猜想:=++++333...321n(2)=+==+n n n n n a a a a a a 猜测它的通项公式:并且中,数列,1111 (3)已知:2223sin 30sin 90sin 1502++=,2223sin 5sin 65sin 1252++=。
观察上述两等式的规律,请你写出一般性的命题 .三、课后练习:教材55页探索与研究:归纳凸多面体的面数、顶点数、棱数之间的关系.。