博弈论第六章不完全信息静态博弈题库
- 格式:docx
- 大小:17.15 KB
- 文档页数:3
非完全信息静态博弈习题1、考虑下面的Cournot 双头垄断模型。
市场的反需求函数为Q a Q p -=)(,其中21q q Q +=为市场总产量,两个企业的总成本都为()i i i cq q c =,但需求却不确定:分别以θ的概率为高(H a a =),以θ-1的概率为低(L a a =),此外,信息也是非对称的:企业1知道需求是高还是低,但企业2不知道,所有这些都是共同知识,两企业同时进行决策。
要求:假定H a 、L a 、θ和c 的取值范围使得所有均衡产出都是正数,试问此博弈的贝叶斯纳什均衡是什么?解:在市场需求为高时,企业1的最优战略为:()HH H q c q q a Max 121⨯--- 由一阶条件可以推出221c q a q H H --= (1) 在市场需求为低时,企业1的最优战略为:()L L L q c q q a Max 121⨯--- 由一阶条件可以推出221c q a q L L --=(2) 企业2的最优战略为 ()()(){}2212211q c q q a q c q q a Max L L H H ----+---θθ由一阶条件可得:()()()211*2cq a q a q L L H H ---+=-θθ (3)方程(1)、(2)和(3)联立可得:()()()()621311*1c q a q a q L L H H H ------=θθ ()622*1c a a q HL L --+=θθ ()31*2c a a q HL -+-=θθ由此可知,企业1的战略()*1*1,L H q q 和企业2的战略*2q 构成贝叶斯纳什均衡。
2、在下面的静态贝叶斯博弈中,求出所有的纯战略贝叶斯纳什均衡:(1)自然决定收益情况由博弈1给出还是由博弈2给出,选择每一博弈的概率相等;(2)参与者1了解到自然是选择了博弈1还是博弈2,但参与者2不知道;(3)参与者1以相同概率选择T 或B ,同时参与者2选择L 或R;(4)根据自然选择的博弈,两参与者都得到了相应的收益。
经济博弈论复习题(课程代码262268)一、名词解释混合战略纳什均衡;子博弈精炼纳什均衡;完全信息动态博弈;不完全信息动态博弈;完全信息静态博弈;帕累托上策均衡;囚徒困境;纳什均衡;子博弈;完美信息动态博弈;颤抖手均衡;柠檬原理;完美贝叶斯均衡二、计算分析题1、在市场进入模型中,市场需求函数为p=13-Q,进入者和在位者生产的边际成本都为1,固定成本为0,潜在进入者的进入成本为4。
博弈时序为:在位者首先决定产量水平;潜在进入者在观察到在位者的产量水平之后决定是否进入;如果不进入,则博弈结束,如果进入,则进入者选择产量水平。
求解以上博弈精炼纳什均衡。
2、考虑如下扰动的性别战略博弈,其中t i服从[0,1]的均匀分布,,t1和t2是独立的,t i是参与人i的私人信息。
求出以上博弈所有纯战略贝叶斯均衡。
S1S2足球芭蕾足球3+,1 ,,芭蕾0,0 1,3+3、求下列信号传递模型的贝叶斯Nash均衡(讨论分离均衡和混同均衡)4、考察如下完全信息静态博弈,求其全部纳什均衡:L M R U 0, 4 4, 0 5, 3M 4, 4 0, 4 5, 3D 3, 5 3, 5 6, 6表1 双人静态博弈5、古诺博弈:市场反需求函数为()P Q a Q =-,其中12Q = q q +为市场总产量,i q 为企业()i i 1,2=的产量。
两个企业的总成本都为()i i i c q cq =。
请您思考以下问题: 1) 在完全信息静态条件下,这一博弈的纳什均衡是什么?2)假设这一阶段博弈重复无限次。
试问:在什么样的贴现条件下,企业选择冷酷战略可保证产量组合()()()772424,a c a c --是子博弈精炼纳什均衡的?6、考虑一个工作申请的博弈。
两个学生同时向两家企业申请工作,每家企业只有一个工作岗位。
工作申请规则如下:每个学生只能向其中一家企业申请工作;如果一家企业只有一个学生申请,该学生获得工作;如果一家企业有两个学生申请,则每个学生获得工作的概率为1/2。
博弈论考试题及答案一、选择题(每题2分,共20分)1. 博弈论中的“囚徒困境”是指什么?A. 两个囚犯相互合作B. 两个囚犯相互背叛C. 两个囚犯中一个合作一个背叛D. 两个囚犯相互猜疑答案:B2. 以下哪个不是博弈论中的基本概念?A. 策略B. 收益C. 公平D. 纳什均衡答案:C3. 在零和博弈中,一个玩家的损失等于另一个玩家的收益,这意味着:A. 总收益为零B. 总收益为正C. 总收益为负D. 总收益不确定答案:A4. 博弈论中的“混合策略”是指:A. 玩家随机选择策略B. 玩家固定选择一种策略C. 玩家根据对手的策略选择策略D. 玩家不使用策略答案:A5. 以下哪个是博弈论中的“完全信息”博弈?A. 拍卖博弈B. 石头剪刀布C. 桥牌D. 信息不对称博弈答案:C6. 博弈论中的“重复博弈”指的是:A. 博弈只进行一次B. 博弈进行多次C. 博弈进行无限次D. 博弈进行有限次但次数未知答案:B7. 以下哪个是博弈论中的“动态博弈”?A. 零和博弈B. 非零和博弈C. 同时博弈D. 顺序博弈答案:D8. 在博弈论中,如果一个策略组合是纳什均衡,那么:A. 每个玩家都有动机单方面改变策略B. 每个玩家都满足于当前策略C. 至少有一个玩家不满意当前策略D. 所有玩家都不满意当前策略答案:B9. 博弈论中的“合作博弈”是指:A. 玩家之间可以形成联盟B. 玩家之间不能形成联盟C. 玩家之间只能通过竞争来获得收益D. 玩家之间只能通过合作来获得收益答案:A10. 以下哪个是博弈论中的“公共知识”?A. 每个玩家的收益函数B. 每个玩家的策略选择C. 每个玩家的偏好D. 每个玩家的个人信息答案:A二、简答题(每题10分,共30分)1. 简述博弈论中的“纳什均衡”概念。
答案:纳什均衡是指在一个博弈中,每个玩家都选择了自己的最优策略,并且没有玩家能够通过单方面改变策略来提高自己的收益。
在纳什均衡状态下,每个玩家的策略是对其他玩家策略的最优反应。
博弈论第六章不完全信息静态博弈题库【原创实用版】目录一、引言:介绍博弈论及其在经济学中的应用二、不完全信息静态博弈的定义和特点三、博弈论第六章不完全信息静态博弈的主要内容四、如何解决不完全信息静态博弈问题五、结论:总结博弈论在经济学中的重要性正文一、引言博弈论作为经济学的一个重要分支,主要研究多个理性决策者在特定规则下的决策行为及其结果。
在经济学中,博弈论的应用已经渗透到许多领域,如市场竞争、价格博弈、合作与信任等。
通过研究博弈论,我们可以更好地理解经济现象及其背后的决策过程。
二、不完全信息静态博弈的定义和特点不完全信息静态博弈是指在博弈过程中,参与者拥有不完全的信息。
在这种情况下,参与者需要根据已知的部分信息和其他人的可能策略来选择最佳行动。
不完全信息静态博弈的特点包括:1.参与者拥有不完全的信息,无法了解其他参与者的准确策略和支付函数。
2.参与者的决策是静态的,即他们在一个特定的时间点上做出决策,不考虑未来可能的变化。
三、博弈论第六章不完全信息静态博弈的主要内容博弈论第六章主要讨论了不完全信息静态博弈的解决方法,包括:1.贝叶斯纳什讨价还价解:通过贝叶斯定理,参与者可以根据已知的部分信息和其他人的可能策略来推测其他人的支付函数,从而找到一个纳什讨价还价解。
2.声誉模型:在不完全信息静态博弈中,参与者可以通过建立声誉来影响其他参与者的决策。
声誉好的参与者更容易达成合作,从而获得更好的支付。
3.信号博弈:信号博弈是一种通过发送信号来传递信息的博弈。
参与者可以通过观察其他参与者的信号来推测其策略和支付函数,从而找到一个合适的行动。
四、如何解决不完全信息静态博弈问题在不完全信息静态博弈中,参与者需要根据已知的部分信息和其他人的可能策略来选择最佳行动。
以下是一些解决不完全信息静态博弈问题的方法:1.充分沟通:参与者之间可以通过充分沟通来传递信息,从而减少不确定性,提高决策效率。
2.建立信任:在博弈过程中,参与者可以通过建立信任关系来降低其他参与者的背叛风险,从而更容易达成合作。
博弈论第六章不完全信息静态博弈题库
【原创版】
目录
一、引言
二、不完全信息静态博弈的概述
1.不完全信息的定义
2.静态博弈的定义
三、不完全信息静态博弈的解题方法
1.严格优势策略
2.纳什讨价还价解
3.轴向讨价还价解
四、应用案例分析
五、总结
正文
一、引言
在博弈论中,不完全信息静态博弈是一个重要的研究领域。
由于参与者在博弈过程中所拥有的信息不完全,这使得博弈过程变得更加复杂和有趣。
本文将介绍不完全信息静态博弈的概述,以及探讨如何解决这类问题。
二、不完全信息静态博弈的概述
1.不完全信息的定义
不完全信息指的是参与者在博弈过程中,无法完全了解其他参与者的策略或支付函数。
这种情况下,参与者需要根据自己所掌握的信息,来猜测其他参与者可能采取的策略。
2.静态博弈的定义
静态博弈是指参与者在一定时间内,一次性地选择策略并完成博弈的过程。
静态博弈中,参与者不需要考虑时间顺序,只需关注当前状态下的最优策略。
三、不完全信息静态博弈的解题方法
1.严格优势策略
在完全信息静态博弈中,如果一个策略对某个参与者来说是严格优势的,那么他会选择这个策略。
在不完全信息静态博弈中,同样可以利用严格优势策略来求解。
即通过分析其他参与者可能采取的策略,找到一个对某个参与者来说严格优势的策略。
2.纳什讨价还价解
纳什讨价还价解是解决不完全信息静态博弈问题的一种方法。
通过设计一种讨价还价机制,使得参与者可以在不完全信息的情况下,达成一种合作解。
纳什讨价还价解的关键是让参与者在博弈过程中,有动力去揭示自己的真实支付函数。
3.轴向讨价还价解
轴向讨价还价解是另一种解决不完全信息静态博弈问题的方法。
它通过让参与者在博弈过程中,根据其他参与者的策略选择,来调整自己的策略,从而实现一种合作解。
轴向讨价还价解的优势在于,它可以在不完全信息的情况下,使得参与者的收益达到最大。
四、应用案例分析
以寡头垄断市场为例,市场中有两个寡头企业,它们需要决定是否进行价格战。
在这个过程中,每个企业都需要考虑对方的策略选择。
由于信息不完全,企业无法准确了解对方的策略选择。
此时,可以运用不完全信息静态博弈的解题方法,如纳什讨价还价解或轴向讨价还价解,来分析企业最优策略选择,从而预测市场的发展趋势。
五、总结
不完全信息静态博弈是博弈论中的一个重要研究领域。
通过运用严格优势策略、纳什讨价还价解和轴向讨价还价解等方法,可以在不完全信息的情况下,解决静态博弈问题。