不完全信息静态博弈(一)
- 格式:ppt
- 大小:350.50 KB
- 文档页数:14
博弈论与经济分析(不完全信息静态)第四章 不完全信息静态博弈不完全信息意味着至少有一个参与者不能确定另一个参与者的收益函数,或者说类型。
我们用一个例子来引入要讨论的问题: 例:信息不对称条件下的古诺模型 市场:P(Q)=a-Q ,Q=q1+q2 企业1:C1(q1)=cq1企业2:以θ的概率为高成本,即222()H C q c q =;以1θ-的概率为低成本,即222()L C q c q =。
当然,H L c c >。
信息不对称:企业2知道自己的成本,也知道企业1的成本;企业1知道自己的成本,但是只知道企业2成本状况的概率分布。
以上都是公共信息,即企业1知道企业2享有信息优势,企业2知道企业1知道,企业1也知道企业2知道企业1知道……如此等等。
解题:企业1会预测企业2在不同情况下的最优选择:当企业2为高成本时2122max[()]H q a q q c q *---当企业2为低成本时2122max[()]L q a q q c q *---既然企业只知道企业2成本情况的概率分布,则企业1只能根据上述预测最大化自己的期望收益:1121121max [(())](1)[(())]H L q a q q c c q a q q c c q θθ**---+----以上三个优化问题的一阶条件为:12()2H H a q c q c **--=12()2LL a q c q c **--=221[()](1)[()]2H L a q c c a q c c q θθ***--+---=联立求解:221()()36H H H L a c c q c c c θ*-+-=+-22()()36L L H L a c c q c c c θ*-+=-- 12(1)3H L a c c c q θθ*-++-=比较该结果与“完全信息条件”条件下结果的不同。
作业:说明企业2在两种成本下是否因为“信息优势”得到了好处?是应该巩固该优势还是向企业1公开信息?一、 静态贝叶斯博弈的标准表述完全信息静态:G={S1,…Sn;u1,…,un}在静态博弈条件下,策略S 就是一个行动A (当然,动态博弈则不同),于是我们可以写作G={A1,…An;u1,…,un}。
1.两个人(甲、乙)通过一快递公司运送同样一件易碎品,结果途中都损坏,要求快递公司赔偿,快递公司只能对商品做一个粗略的估价(商品价格不超过500),于是让甲、乙分别在500元内写下货物价格,如果两个人写的价格一样,快递公司则按所写数额赔偿;如果两个人价格不一致,则按照低价进行赔偿,并且对报价低的人奖励50,对报价高的人罚款50。
甲、乙双方进行博弈,最后快递公司将获利。
不完全信息静态博弈2.7个人分一笔奖金,分配方式为:第一个人提出方案,如果同意这种方案的人数达到3人,提议通过,否则此人无权分享奖金,由剩余的人进行同样的过程。
并且提议顺序是既定的。
完全信息动态博弈3.定义物品的基本价值(公允价值),当物品的实际交易价格大于次基本价值,卖方获利,买房亏损,且两者数值相等,反之,买房获利,卖方亏损。
零和博弈4.两个人比武,双方都不知道对方实力。
比赛项目是徒手击碎转头,甲先一掌击碎3块,乙同样击碎3块。
于是,甲又拿来5块,一掌击碎,乙心中没底,放弃。
不完全信息动态博弈5.一名篮球前锋和队友在蓝下面对着对方的一个后卫时,形成了二打一的局面,该前锋可以选择直接投篮,也可以选择传球给队友,但根据经验,传球过人的成功率更大,最终前锋选择传球。
完全信息静态博弈6.甲到菜场去买菜,摊主众多,一摊主为了能与甲建立持久的销售关系,保持其信誉,不会对甲进行出售次品或者高价出售的行为,最后甲与摊主进行持久交易。
重复博弈7.一个收藏家,去农村淘宝,在一个农户家发现主人用珍贵的碟子做猫食碗,于是假装要买猫,主人不卖,收藏家表示愿意以高于猫本身价格两倍的钱购买这只猫,主人同意。
成交后,收藏家不在意地说:“这个碟子您已经没猫用不着了,就一起送我吧。
”,主人却说:“我用这个碟子已经卖出去10只猫了。
”不完全信息静态博弈8.两个人玩抛硬币的游戏,正面甲给以十元,背面乙给甲十元,为了公平起见,丙做裁判,每一局甲和乙都需要分别给丙一元,作为报酬,这项活动对甲、乙双方来说为负和博弈9. 各个国家通过比较优势进行贸易分工,充分利用资源,提高整体福利正和博弈10.跳蚤市场中卖方:甲;买方:乙。
3 不完全信息静态博弈3.1 简介博弈论在1970年代之后逐渐进入主流经济学体系,主要是由于它在不完全信息条件下的经济分析中表现出特别的优势。
不完全信息指经济活动中一部分经济主体的某些特征对于其他主体来说是不清楚的。
如在拍卖商品或工程招投标中。
信息不完全又称为信息不对称,即其他局中人没有特定局中人清楚特定局中人自身的特征。
不完全信息静态博弈就是假定某些局中人具有其他局中人不清楚的某些特征的静态博弈。
但对于局中人本身来说,他自身的这些不为人所知的特征对于他自己来说是清楚的,因而称这些特征为局中人自己拥有的“私人信息”(private information)。
在博弈论中,习惯地将局中人的“私人信息”集中表现为局中人的支付函数特征,也就是说,局中人的私人特征将完全通过其支付函数特征表征出来,而不完全信息就表现为一些局中人不清楚另一局中人的支付函数,当然,每个局中人是完全清楚自己的支付函数的。
3.2 理论: 静态贝叶斯博弈和贝叶斯纳什均衡在假定局中人拥有私人信息的情况下,其他局中人对特定局中人的支付函数类型并不清楚,局中人不知道他在与谁博弈,在1967年前,博弈论专家认为此时博弈的结构特征是不确定的,无法进行分析。
Harsanyi (1967、1968)提出了一种处理不完全信息博弈的方法,即引入一个虚拟的局中人——“自然N ”。
N 首先行动,决定每个局中人的特征。
每个局中人知道自己的特征,但不知道其他局中人特征。
这种方法将不完全信息静态博弈变成一个两阶段动态博弈,第一个阶段是自然N 的行动选择,第二阶段是除N 外的局中人的静态博弈。
这种转换被称为“Harsanyi 转换”,它将不完全信息博弈转换为完全但不完美信息博弈。
局中人拥有的私人信息为他的“类型”,由其支付函数决定,故常将支付函数等同于类型。
用i θ表示局中人i 的一个特定类型,i H 表示局中人i 所有可能类型的集合,即i i H ∈θ,称i H 为局中人i 的类型空间,n i ,,1 =。
不完全信息静态博弈在现实生活中有许多例子。
以下是其中几个:
房地产市场:在房地产市场中,买家和卖家可能对房屋的实际价值有不同的了解。
由于信息不完全,买家和卖家可能会在价格上产生分歧,导致交易的困难。
就业市场:在就业市场中,雇主和应聘者之间可能存在信息不完全的情况。
雇主可能不了解应聘者的全部技能和经验,而应聘者可能不了解雇主的具体需求和工作要求。
这可能导致雇主开出过高的薪资或对应聘者产生误判,影响双方的利益。
保险市场:在保险市场中,保险公司和投保人之间可能存在信息不完全的情况。
投保人可能不了解保险产品的全部条款和细节,而保险公司可能不了解投保人的真实风险状况。
这可能导致保险产品的定价不合理或投保人得不到足够的保障,影响双方的利益。
商业谈判:在商业谈判中,双方可能对对方的底牌和利益诉求不完全了解。
这可能导致谈判陷入僵局或达成不公平的协议,影响双方的利益。
静态博弈名词解释所谓静态博弈,是指博弈各方同时选择并实施自己最优策略,使得他们的收益和支付的均衡概率都相等。
在这个定义中,对于每一个参与者而言,都只能看到自己的战略选择及其收益,看不到其他参与者的选择和战略,即:在这里,对于参与者双方而言,都是单阶段博弈;与动态博弈相比较,这个定义只考虑了收益,没有考虑风险,因此是一种简化了的静态博弈模型。
动态博弈一般情况下考虑了风险,但如果是在某些情况下仅仅考虑风险,则称为静态博弈,静态博弈就是一种特殊形式的动态博弈。
这是一种基于完全信息和不完全信息的定义,完全信息是指参与者能够准确地知道其他参与者的选择和策略。
它也就是说,参与者完全可以确定其他参与者的选择,即:在完全信息的条件下,在给定策略空间的情况下,参与者无论选择什么策略,其结果总是自己最优策略,并且这个自己最优策略是唯一的,而且该最优策略正是双方共同选择的结果。
在这里,“自己”应理解为参与者本身,因此这是一个特殊的完全信息博弈。
在实际中,只要允许存在未知参数的不确定性,就可以建立这样的博弈模型,其策略的期望值(或支付)的分布是未知的,而且这种未知参数的存在是普遍的。
20世纪70年代以来,研究者们开始关注非合作博弈问题,特别是大量非合作博弈的例子被证明可以用来分析竞争市场。
许多经济学家认为博弈论在现实中将更多地发挥作用,因为,这里几乎涉及一切事物:政府的行为、产品的设计、组织的决策、社会制度的安排等等。
同时,研究者们又提出了新的博弈模型,这些模型描述了完全信息的、非合作博弈的情况。
对于一般的非合作博弈,博弈的参与者有可能利用博弈规则做出损人利己的行为,称之为策略性行为。
在具有策略性行为的博弈中,有一种较有意义的模型叫战略互动模型。
所谓战略互动,是指在相互依赖的系统中,参与者采取行动相互影响的过程。
定义中,策略性行为是博弈参与者之间的互动关系,即博弈参与者之间的相互作用。
动态博弈包含着策略性行为。
战略互动模型,把博弈参与者间的行为关系作为战略互动模型的核心内容,显示了博弈参与者间的相互依赖关系。
不完全信息静态博弈:贝叶斯纳什均衡海萨尼1、前两篇⽂章讲的博弈都包含⼀个基本假设,即所有参与⼈都知道博弈的结构、规则、⽀付函数,因⽽称为完全信息博弈。
然⽽现实中,参与者并不了解其他参与者的⼀些信息,即不完全信息博弈(games of incomplete information)。
2、当对⼿有多种情况时,⽐如市场博弈的例⼦,在位者成本函数可能有需求⾼、需求中、需求低三种情况,那么可以采取“海萨尼转换”,即引⼊⼀个虚拟的参与⼈“⾃然”,⾃然⾸先⾏动,选择参与⼈的类型,被选择的参与⼈知道⾃⼰的真实类型,其他参与⼈并不清楚这个参与⼈的真实类型,但知道各种可能类型的概率分布。
如下图所⽰:3、这种情况下,可以通过海萨尼转换(Harsanyi transformation)把不完全信息博弈转换成完全但不完美信息博弈(complete but inprefer information)。
“不完美信息”指“⾃然”作出了选择,但其他参与⼈并不知道它的具体选择是什么,仅知道各种选择的概率分布。
4、在静态不完全信息博弈中,参与⼈同时⾏动,每个参与⼈的最优战略依赖于⾃⼰的类型,他不可能准确的知道其他参与⼈实际上会做出什么选择,但他能正确的预测其他参与⼈的选择是如何依赖于各⾃的类型的。
决策的⽬标就是在给定⾃⼰的类型和别⼈的类型依从战略的情况下,最⼤化⾃⼰的期望效⽤。
海萨尼定义了“贝叶斯纳什均衡”,给定⾃⼰的类型和别⼈类型的概率分布,每个参与⼈的期望效⽤达到了最⼤化,没有⼈有积极性选择其他战略。
5、举个例⼦,某⼀市场原来被A企业所垄断,现在B企业考虑是否进⼊。
B企业知道,A企业是否允许它进⼊,取决于A企业阻挠B企业进⼊所花费的成本。
如果阻挠的成本⾼,A企业的最优战略是默许B进⼊。
如果阻挠的成本低,A企业的最优战略是阻挠。
⽀付矩阵如下表所⽰:B企业并不知道A企业的阻挠成本是⾼还是低。
这⾥,某⼀参与⼈本⼈知道、其他参与⼈不知道的信息称为私⼈信息。
不完全信息静态博弈例子博弈论是研究决策者在相互影响下进行决策的数学模型。
在博弈论中,不完全信息静态博弈是一种常见的博弈形式。
在这种博弈中,每个决策者只能获得有限的信息,无法完全了解其他决策者的策略和利益。
本文将通过一个例子来说明不完全信息静态博弈的特点和解决方法。
假设有两个商人A和B,他们同时决定是否进入一个新的市场。
进入市场的成本是固定的,但市场的利润是不确定的。
商人A可以选择进入市场或不进入市场,商人B也可以做出相同的选择。
然而,商人们只能获得有限的信息,无法准确了解对方的决策和市场利润。
商人A和B的利益是相互关联的。
如果两个商人都选择进入市场,他们将面临更大的竞争和风险,但如果市场利润高,他们也有机会获得更大的回报。
如果一个商人选择进入市场而另一个商人选择不进入市场,前者将面临更大的风险,但如果市场利润高,他将独享这一利润。
在这个例子中,商人A和B都面临着不完全信息的情况。
他们无法准确了解对方的决策和市场利润,只能根据自己的信息做出决策。
这种情况下,他们需要通过分析对方的可能策略和利益来做出最优的决策。
为了解决这个问题,我们可以使用博弈论中的概念和方法。
首先,我们可以建立一个博弈矩阵来描述商人A和B的策略和利益。
矩阵的行表示商人A的策略,列表示商人B的策略,每个单元格表示两个商人在不同策略下的利益。
然后,我们可以使用博弈论中的解概念来找到最优策略。
例如,纳什均衡是指在博弈中,每个决策者都选择了最优策略,而且没有动机改变自己的策略。
通过分析博弈矩阵,我们可以找到纳什均衡点,即商人A和B都选择了最优策略。
在这个例子中,纳什均衡点可能是商人A和B都选择进入市场,或者都选择不进入市场。
这取决于市场利润的不确定性和商人们的风险偏好。
如果市场利润高,商人们可能更倾向于进入市场以获取更大的回报;如果市场利润低,商人们可能更倾向于不进入市场以避免风险。
然而,由于不完全信息的限制,商人A和B可能无法准确预测市场利润。
博弈的四种基本类型和四种关系1.完全信息静态博弈:参与者的信息完全公开,所有参与者同时做出决策。
例如,囚徒困境。
2.完全信息动态博弈:信息完全公开,但参与者的决策有先后顺序。
例如,斯坦科尔伯格寡头竞争。
3.不完全信息静态博弈:参与者的信息不完全公开,所有参与者同时做出决策。
例如,性别战博弈。
4.不完全信息动态博弈:信息不完全公开,参与者的决策有先后顺序。
例如,信号传递博弈。
每种类型的定义和特点:完全信息静态博弈:在这种类型的博弈中,所有参与者的信息和收益函数都是公开的,所有参与者同时做出决策。
例如,囚徒困境是一个典型的完全信息静态博弈,其中两个罪犯在审讯时选择坦白或不坦白。
完全信息动态博弈:在这种类型的博弈中,所有参与者的信息和收益函数都是公开的,但参与者的决策有先后顺序。
例如,斯坦科尔伯格寡头竞争模型中,企业先后决定产量,后行动的企业可以根据先行动企业的决策来调整自己的策略。
不完全信息静态博弈:在这种类型的博弈中,参与者的信息不完全公开,所有参与者同时做出决策。
例如,性别战博弈中,两个参与者不知道对方的策略,只能根据自己的猜测做出决策。
不完全信息动态博弈:在这种类型的博弈中,参与者的信息不完全公开,决策有先后顺序。
例如,信号传递博弈中,先行动的企业可以通过发送信号来影响后行动企业的决策。
博弈的四种关系一、零和博弈定义:在零和博弈中,参与各方的利益总和是固定的,一方的收益必然意味着另一方的损失,所以双方的收益和损失之和为零。
举例:在扑克游戏中,赢家赢得的钱与输家输掉的钱数量相等,这就是典型的零和博弈。
你赢了一定数量的筹码,就意味着其他玩家输了同样数量的筹码,整个游戏过程中筹码的总量并没有增加或减少。
二、正和博弈定义:正和博弈也称为合作博弈,是指参与各方的利益总和大于零,即通过合作可以实现共赢的局面。
举例:企业之间的合作研发项目,各方共同投入资源,研发成功后,每个参与企业都能获得比单独行动时更多的收益。