D1.9连续函数的运算与初等函数的连续性 闭区间上连续函数的性质
- 格式:pdf
- 大小:144.24 KB
- 文档页数:3
课时授课计划课次序号:07 一、课题:§1.9连续函数的运算与初等函数的连续性§1.10 闭区间上连续函数的性质二、课型:新授课三、目的要求:1.了解连续函数的和、差、积、商的连续性;2.了解反函数和复合函数的连续性;3.了解初等函数的连续性和闭区间上连续函数的性质.四、教学重点:利用复合函数及初等函数的连续性求函数极限,利用零点定理证明方程解的存在性.教学难点:闭区间上连续函数的性质.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–9 3(4),4(3)(4),5;习题1–9 1八、授课记录:九、授课效果分析:复习1.连续的定义:00lim ()()x x f x f x →=,三个条件缺一不可;2.间断点的分类:第一类(可去型、跳跃型),第二类(无穷型、振荡型). 下面介绍连续函数的运算法则和闭区间上连续函数的几个性质.第九节 连续函数的运算与初等函数的连续性一、连续函数的四则运算由连续函数的定义及极限的运算法则和性质,立即可得到连续函数的下列运算法则. 定理1 若函数f (x ),g (x )均在点x 0处连续,则()()()()()()f x f xg x f x g x g x ±⋅、、 (g (x 0)≠0),均在点x 0处连续.如多项式函数0()nk n k k P x a x ==∑在(-∞,+∞)内连续,正切函数sin tan cos xx x=在其定义区间内连续.二、反函数的连续性定理2 若函数()y f x =在区间x I 内单调增加(减少)且连续,则其反函数1()x f y -=在相应区间{(),}y x I y y f x x I ==∈内单调增加(减少)且连续.从几何上看,该定理是显然的,因为函数()y f x =与其反函数1()x f y -=)在xoy 坐标面上为同一条曲线.如sin y x =在[,]22ππ-上单调增加且连续,其反函数arcsin x y =在[1,1]-单调增加且连续.三、复合函数的连续性由连续函数的定义及复合函数的极限定理可以得到下面有关复合函数的连续性定理. 定理3 设函数[()]y f x ϕ=是由函数(),()y f u u x ϕ==复合而成的复合函数,0()f g U x D ⊆.如果()u x ϕ=在点0x 连续,又()y f u =在相应点00()u x ϕ=处连续,则[()]y f x ϕ=在点0x 处连续.推论 若在某极限过程有lim ()x ϕ=A ,且y =f (u )在u =A 处连续, 则lim [()]f x ϕ=f (A ), 即 lim [()][lim ()]f x f x ϕϕ= 例1 求1limsin(1)xx x→∞+.解 11lim sin(1)sin lim(1)sin e xx x x xx →∞→∞⎛⎫+=+= ⎪⎝⎭.例2 试证0ln(1)lim1x x x→+=.证 因为ln y u =(u >0)连续, 故100ln(1)lim lim ln(1)x x x x x x →→+=+100ln(1)lim ln lim(1)ln e =1x x x x x x →→⎡⎤+==+=⎢⎥⎣⎦. 由定理3及其推论,我们可以讨论幂指函数[]()()g x f x 的极限问题. 幂指函数的定义域要求()0f x >.当(),()f x g x 均为连续函数,且()0f x >时, []()()g x f x 也是连续函数.在求[]()lim ()g x x x f x →时,有以下几种结果:(1) 如果0lim ()x x f x →=A >0, 0lim ()x x g x →=B ,则[]()lim ()g x x x f x →=A B .(2) 如果0lim ()x x f x →=1, 0lim ()x x g x →=∞,则[]()lim ()g x x x f x →=[]0lim ()1()ex x f x g x →-.(3) 如果0lim ()x x f x →=A ≠1(A >0), 0lim ()x x g x →=±∞,则[]()lim ()g x x x f x →可根据具体情况直接求得.例如,0lim ()x x f x →=A >1,0lim ()x x g x →=+∞,则[]()lim ()g x x x f x →=+∞. 又如,0lim ()x x f x →=A (0<A <1), 0lim ()x x g x →=+∞,则[]()lim ()g x x x f x →=0.上面结果仅对x →x 0时写出,实际上这些结果对x →∞等极限过程仍然成立.例3 求10sin 2lim xx x x +→⎛⎫ ⎪⎝⎭.解 因为100sin 2lim 2,lim(1)1xx x x x x +→→⎛⎫=+= ⎪⎝⎭, 所以 110sin 2lim 22xx x x +→⎛⎫== ⎪⎝⎭.例4求21lim21xxxx→∞+⎛⎫⎪+⎝⎭.解 由于11lim212x x x →∞+=+,2lim x x →∞=+∞,因此 21lim 021x x x x →+∞+⎛⎫= ⎪+⎝⎭. 例5 求1lim 1xx x x →∞-⎛⎫⎪+⎝⎭. 解 由于1lim 11x x x →∞-=+,lim x x →∞=∞,则12lim 1lim 2111lim e e e 1x x xx x x x x x x x →∞→∞-⎛⎫-- ⎪-+⎝⎭+→∞-⎛⎫=== ⎪+⎝⎭. 例5也可按下列方法求解:12111e lim lim e 1e 11xx x x x x x x x --→∞→∞⎛⎫- ⎪-⎛⎫⎝⎭=== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭. 四、初等函数的连续性我们遇到的函数大部分为初等函数,它们是由基本初等函数经过有限次四则运算及有限次复合运算而成的.由函数极限的讨论以及函数的连续性的定义可知:基本初等函数在其定义域内是连续的.由连续函数的定义及运算法则,我们可得出:初等函数在其定义区间内是连续的.由上可知,对初等函数在其定义区间内的点求极限时,只需求相应函数值即可.例6 求21ln(43)lim arctan x x x x→+-.解 初等函数2ln(43)()arctan x x f x x+-=在x =1的某邻域内有定义,所以21ln(43)1ln(43)4lim arctan arctan1x x x x →+-+-==π. 例7 求22041lim 235x x x x →--+.解 220414011lim 23520305x x x x →-⨯-==--+⨯-⨯+5. 第十节 闭区间上连续函数的性质在闭区间上连续的函数有一些重要性质.它们可作为分析和论证某些问题时的理论根据.这些性质的几何意义十分明显,我们均不给予证明.一、最值定理1.最值的定义定义1 设函数()y f x =在区间I 上有定义,如果存在点x 0∈I ,使x I ∀∈,有0()()f x f x ≥(或0()()f x f x ≤),则称0()f x 为函数()y f x =在区间I 上的最大(小)值,记为0()max ()x If x f x ∈=(或0()min ()x If x f x ∈=). 2. 最值定理一般说来,在一个区间上连续的函数,在该区间上不一定存在最大值或最小值. 但是如果函数在一个闭区间上连续,那么它必定在该闭区间上取得最大值和最小值.定理1 若函数()y f x =∈C [a ,b ],则它一定在闭区间[a ,b ]上取得最大值和最小值.设f (x )∈C [a ,b ],(1) f (x )为[a ,b ]上的单调函数由图1-40可看出,此时函数f (x )恰好在区间[a ,b ]的端点a 和b 取得最大值和最小值:图1-40y =f (x )↑,x ∈[a ,b ],则[],max x a b ∈f (x )=f (b ), [],min x a b ∈f (x )=f (a );y =f (x )↓,x ∈[a ,b ],则[],max x a b ∈f (x )=f (a ), [],min x a b ∈f (x )=f (b ).(2) f (x )为[a ,b ]上的一般连续函数在这种情形下,总可以将[a ,b ]分成有限个小区间,使函数f (x )在每个小区间上保持单调增加或单调减少.于是,这有限个小区间的端点处的函数值中的最大者和最小者即分别为函数f (x )在[a ,b ]上的最大值和最小值,如图1-41所示.最大值为f (b ),而最小值为f (a 4).图1-413. 有界性定理定理1表明:若()y f x =在闭区间[a ,b ]上连续,则存在x 1,x 2∈[a ,b ],使得 12[,][,]()min (),()min ()x a b x a b f x f x f x f x ∈∈==.于是,对任意x ∈[a ,b ],有f (x 2)≤ f (x )≤ f (x 1),若取M =max{12(),()f x f x },则有()f x ≤M ,从而有下述结论.定理2 若函数()y f x =∈C [a ,b ],则f (x )在[a ,b ]上有界.二、介值定理1. 零点定理(根的存在定理)图1-42定理3 若函数()y f x =∈C ([a ,b ]),且f (a )·f (b )<0,则至少存在一点(,)a b ξ∈,使()0f ξ=.零点定理的几何意义十分明显:若函数()y f x =在闭区间[a ,b ]上连续,且f (a )与 f (b )异号,则函数()y f x =对应的曲线至少穿过x 轴一次(见图1-42).例1 证明方程x 5-3x =1在x =1与x =2之间至少有一根.证 令f (x )=x 5-3x -1,[]1,2x ∈,则f (x )∈C ([1,2]),且f (1)=-3,f (2)=25,故由零点定理,至少存在一点x 0∈(1,2),使得f (x 0)=0,即方程x 5-3x =1在x =1与x =2之间至少有一根.例2 证明方程x =a sin x +b (a >0,b >0)至少有一个不超过a +b 的正根.证 设f (x )=x -a sin x -b ,[]0,x a b ∈+ ,则f (x )∈C ([0,a +b ]),而f (0)=0-a sin 0-b =-b <0,f (a +b )=a +b -a sin (a +b )-b =a [1-sin (a +b )]≥0.1) 如果f (a +b )=0,则x 0=a +b 就是原方程的根.2) 如果f (a +b )>0,则由零点定理,至少存在一点0x '∈(0,a +b ),使得f (0x ')=0. 综上所述,方程x =a sin x +b 在(0,a +b ]上至少有一根,即至少有一个不超过a +b 的正根.例3 设f (x )∈C ([a ,b ]),f (a )=f (b )=0,且存在正常数δ和δ1,使f (x )在(a ,a +δ)及(b -δ1,b )内是严格单调增加的,证明至少存在一点x 0∈(a ,b ),使得f (x 0)=0.证 由于f (x )∈C ([a ,b ]),f (a )=0,且f (x )在(a ,a +δ)上严格单调增加,故至少存在一点a 0∈(a ,a +δ),使得f (a 0)>f (a )=0.同理,至少存在一点b 0∈(b -δ1,b ),使得f (b 0)<f (b )=0. 由f (x )∈C ([a 0,b 0]),f (a 0)f (b 0)<0可知,至少存在一点x 0∈(a 0,b 0)⊂(a ,b ),使得f (x 0)=0.图1-432. 介值定理由零点定理并运用坐标平移的方法,可以得到介值定理. 定理4 设f (x )∈C ([a ,b ]),f (a )=A ,f (b )=B ,且A ≠B,则对于A ,B 之间的任意一个数C ,至少存在一点x 0∈(a ,b ),使得f (x 0)=C .该定理说明,当x 在[a ,b ]上变动时,[a ,b ]上的连续函数所取得的函数值必完全充满某个区间[A ,B](图1-43).由介值定理我们还可得出:推论 设()y f x =∈C [a ,b ],[,]max ()x a b M f x ∈=,[,]min ()x a b m f x ∈=,则f (x )必取得介于M 与m 之间的任何值.例4 设f (x )∈C ([a ,b ]),a <x 1<x 2<…<x n <b ,证明:至少存在一点x 0∈[x 1,x n ],使得 f (x 0)=12()()()n f x f x f x n+++.证 因为f (x )∈C ([x 1,x n ]),所以f (x )在[x 1,x n ]上有最大值和最小值存在.设M =1[,]max n x x x ∈f (x ),m =1[,]min n x x x ∈f (x ),则 m ≤f (x i )≤M , i =1,2,…,n .从而 m ≤12()()()n f x f x f x n+++≤M .由介值定理的推论,至少存在一点x 0∈[x 1,x n ],使f (x 0)=12()()()n f x f x f x n+++.应该注意,以上四个定理的共同条件“f (x )在闭区间[a ,b ]上连续”不能减弱.将区间[a ,b ]换成(a ,b ),或去掉“连续”的条件,定理的结论都不一定成立.比如,y =1x在(0,1)连续,但1x 在(0,1)内不能取到最大值,也无上界.又比如,f (x )= ,0,1,0x x x ≠⎧⎨=⎩ 在[-1,1]上有定义,仅在x =0处不连续,(1)(1)0 f f -⋅<,但不存在x 0∈(-1,1),使f (x 0)=0.课堂总结1.连续函数的运算法则:四则运算,反函数、复合函数、初等函数的连续性;2.闭区间上连续函数的性质:最值定理、有界性定理、零点定理、介值定理.友情提示:方案范本是经验性极强的领域,本范文无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用。
第九节 连续函数的运算与初等函数的连续性 及 第十节 闭区间上连续函数的性质 ㈠.本课的基本要求了解初等函数的连续性和闭区间上连续函数的性质(介值定理和最大最小值定理),掌握连续函数的运算。
㈡.本课的重点、难点连续函数的运算为重点,闭区间上连续函数的性质为难点㈢.教学内容一.连续函数的运算1.连续函数的和、差、积、商的连续性函数的连续性是通过极限来定义的,因此由极限运算法则和连续的定义可得到下列连续函数的运算法则:定理1(四则运算)设)()(),()(),()()(),(0x g x f x g x f x g x f x x g x f ⋅±处连续,则均在(在商的情形下要求0)(0≠x g )都在0x 处连续。
说明:连续函数的和、差、积、商(若分母不为0)都是连续函数。
∵x x x x cot tan ),(cos sin 、内连续,均在和∴+∞-∞在其定义域内也是连续的。
2.反函数与复合函数的连续性定理 2 如果函数)(x f y =在区间x I 上单调增加(或单调减少)且连续,那么它的反函数)(1y f x -=也在对应的区间}),(|{x y I x x f y y I ∈==上单调增加(或单调减少)。
(证略) 例 由于x y sin =在闭区间⎥⎦⎤⎢⎣⎡-2,2ππ上单调增加且连续,所以它的反函数x y arcsin =在闭区间]1,1[-上也是单调增加且连续的。
类似可得:x y arccos =在闭区间]1,1[-上单调减少且连续;x y arctan =在区间),(+∞-∞内单调增加且连续;x arc y cot =在区间),(+∞-∞内单调减少且连续。
总之反三角函数在它们的定义域内都是连续的。
定理3(复合函数极限定理) 设函数)(x u ϕ=当0x x →时极限存在且等于a ,而函数)(u f y =在点a u =连续,那么复合函数)]([x f y ϕ=当0x x →时极限存在,且等于)(a f ,即)()]([lim 0a f x f x x =→ϕ。
1.9连续函数的运算与初等函数的连续性.闭区间上连续函数的性质一、连续函数的和、积及商的连续性定理1设函数f (x )和g (x )在点x 0连续, 则函数f (x )±g (x ), f (x )⋅g (x ),)()(x g x f (当0)(0≠x g 时) 在点x 0也连续.f (x )±g (x )连续性的证明:因为f (x )和g (x )在点x 0连续, 所以它们在点x 0有定义, 从而f (x )±g (x )在点x 0也有定义, 再由连续性和极限运算法则, 有)()()(lim )(lim )]()([lim 00000x g x f x g x f x g x f x x x x x x ±=±=±→→→. 根据连续性的定义, f (x )±g (x )在点x 0连续.例1. sin x 和cos x 都在区间(-∞, +∞)内连续,故由定理3知tan x 和cot x 在它们的定义域内是连续的.三角函数sin x , cos x , sec x , csc x , tan x , cot x 在其有定义的区间内都是连续的.二、反函数与复合函数的连续性定理2 如果函数f (x )在区间I x 上单调增加(或单调减少)且连续, 那么它的反函数x =f -1(y )也在对应的区间I y ={y |y =f (x ),x ∈I x }上单调增加(或单调减少)且连续. 证明(略).例2. 由于y =sin x 在区间]2,2[ππ-上单调增加且连续, 所以它的反函数y =arcsin x 在区间[-1, 1]上也是单调增加且连续的.同样,y =arccos x 在区间[-1, 1]上也是单调减少且连续; y =arctan x 在区间(-∞, +∞)内单调增加且连续;y =arccot x 在区间(-∞, +∞)内单调减少且连续.总之, 反三角函数arcsin x 、arccos x 、arctan x 、arccot x 在它们的定义域内都是连续的.定理3 设函数y =f [g (x )]由函数y =f (u )与函数u =g (x )复合而成g f D x U ⊂)(0 若0)lim 0u x g x x =(→ 而函数y =f (u )在0u 连续 则 )()(lim )][lim 000u f u f x g f u u x x ==(→→简要证明 要证>0 ∃>0 当0<|x -x 0|< 时 有|f [g (x )]-f (u 0)|< 因为f (u )在0u 连续所以∀ >0 ∃>0 当|u -u 0|< 时 有|f (u )-f (u 0)|<又g (x )→u 0(x →x 0), 所以对上述>0 ∃>0 当0<|x -x 0|< 时 有|g (x )-u 0|<从而|f [g (x )]-f (u 0)|<(2)定理的结论也可写成)](lim [)]([lim 00x g f x g f x x x x →→= 求复合函数f [g (x )]的极限时, 函数符号f 与极限号可以交换次序.)(lim )]([lim 00u f x u f u u x x →→=表明,在定理3的条件下, 如果作代换u =g (x ),那么求)]([lim 0x g f x x →就转化为求)(lim 0u f u u →, 这里)(lim 00x g u x x →=. 把定理5 中的x →x 0换成x →∞, 可得类似的定理.例3. 求93lim 23--→x x x . 解: 93lim23--→x x x 93lim 23--=→x x x 61=. 提示:932--=x x y 是由u y =与932--=x x u 复合而成的. 93lim 23--→x x x 61=, 函数u y =在点61=u 连续. =g (x 0)定理4 设函数y =f [g (x )]由函数y =f (u )与函数u =g (x )复合而成 U (x 0)D f o g 若函数u =g (x )在点x 0连续, 函数y =f (u )在点u 0=g (x 0)连续, 则复合函数y =f [ϕ(x )]在点x 0也连续.证明: 因为ϕ(x )在点x 0连续, 所以0lim x x →ϕ(x )=ϕ(x 0)=u 0. 又y =f (u )在点u =u 0连续,所以 0lim x x →f [ϕ(x )]=f (u 0)=f [ϕ(x 0)]. 这就证明了复合函数f [ϕ(x )]在点x 0连续.例4. 讨论函数xy 1sin =的连续性. 解: 函数x y 1sin =是由y =sin u 及xu 1=复合而成的. sin u 当-∞<u <+∞时是连续的,x1当-∞<x <0和0<x <+∞时是连续的, 根据定理4, 函数x1sin 在无限区间(-∞, 0)和(0, +∞)内是连续的. 三、初等函数的连续性在基本初等函数中, 我们已经证明了三角函数及反三角函数的它们的定义域内是连续的.我们指出, 指数函数a x (a >0, a ≠1)对于一切实数x 都有定义,且在区间(-∞, +∞)内是单调的和连续的, 它的值域为(0, +∞).由定理4, 对数函数log a x (a >0, a ≠1)作为指数函数a x 的反函数在区间(0, +∞)内单调且连续.幂函数y =x μ 的定义域随μ的值而异, 但无论μ为何值, 在区间(0, +∞)内幂函数总是有定义的.可以证明, 在区间(0, +∞)内幂函数是连续的. 事实上, 设x >0, 则 y =x μ=x a a log μ, 因此, 幂函数x μ可看作是由y =a u , u =μlog a x 复合而成的, 由此, 根据定理6, 它在(0, +∞)内是连续的.如果对于μ取各种不同值加以分别讨论, 可以证明幂函数在它的定义域内是连续的.结论: 基本初等函数在它们的定义域内都是连续的.最后, 根据初等函数的定义, 由基本初等函数的连续性以及本节有关定理可得下列重要结论所谓定义区间, 就是包含在定义域内的区间.初等函数的连续性在求函数极限中的应用:如果f (x )是初等函数, 且x 0是f (x )的定义区间内的点,则0lim x x →f (x )=f (x 0). 例5. 求201lim x x -→. 解: 初等函数f (x )=21x -在点00=x 是有定义的,所以111lim 20==-→x x . 例6. 求x x sin ln lim 2π→.解: 初等函数f (x )=ln sin x 在点20π=x 是有定义的, 所以02sin ln sin ln lim 2==→ππx x . 例7. 求xx x 11lim 20-+→. 解: x x x 11lim 20-+→)11()11)(11(lim 2220++++-+=→x x x x x 02011lim20==++=→x x x . 例8. 求xx a x )1(log lim 0+→. 解: x x a x )1(log lim 0+→x a x x 10)1(log lim +=→a e a ln 1log ==. 例9. 求xa x x 1lim 0-→. 解: 令a x -1=t , 则x =log a (1+t ), x →0时t →0, 于是x a x x 1lim 0-→=a t t a t ln )1(log lim 0=+→. §1. 10 闭区间上连续函数的性质一、最大值与最小值最大值与最小值: 对于在区间I 上有定义的函数f (x ), 如果有x 0∈I , 使得对于任一x ∈I 都有f (x )f (x 0 ) (f (x )f (x 0 )),则称f (x 0 )是函数f (x )在区间I 上的最大值(最小值).例如, 函数f (x )=1+sin x 在区间[0, 2π]上有最大值2和最小值0. 又如, 函数f (x )=sgn x 在区间(-, +)内有最大值 1和最小值-1. 在开区间(0, +)内, sgn x 的最大值和最小值都是1. 但函数f (x )=x 在开区间(a , b )内既无最大值又无最小值.定理1(最大值和最小值定理)在闭区间上连续的函数在该区间上一定能取得它的最大值和最小值.定理1说明, 如果函数f (x )在闭区间[a , b ]上连续, 那么至少有一点ξ1∈[a , b ], 使f (ξ1)是f (x )在[a , b ]上的最大值, 又至少有一点ξ 2∈[a , b ], 使f (ξ 2)是f (x )在[a , b ]上的最小值.注意: 如果函数在开区间内连续, 或函数在闭区间上有间断点, 那么函数在该区间上就不一定有最大值或最小值.例: 在开区间(a , b ) 考察函数y =x .又如, 如图所示的函数在闭区间[0, 2]上无最大值和最小值.⎪⎩⎪⎨⎧≤<+-=<≤+-==21 31 110 1)(x x x x x x f y . 定理2(有界性定理)在闭区间上连续的函数一定在该区间上有界.证明:二、介值定理零点: 如果x 0 使f (x 0 )=0, 则x 0 称为函数f (x )的零点.定理3(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,那么在开区间(a,b)内至少有一点ξ 使f(ξ)=0.定理4(介值定理)设函数f(x)在闭区间[a,b]上连续,且在这区间的端点取不同的函数值f(a)=A及f(b)=B,那么,对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ,使得f(ξ)=C.定理4'(介值定理)设函数f(x)在闭区间[a,b]上连续,且f(a)≠f(b),那么,对于f(a)与f(b)之间的任意一个数C,在开区间(a,b)内至少有一点ξ,使得f(ξ)=C.证:设ϕ(x)=f(x)-C,则ϕ(x)在闭区间[a,b]上连续,且ϕ(a)=A-C与ϕ(b)=B-C异号.根据零点定理,在开区间(a,b)内至少有一点ξ使得ϕ(ξ)=0 (a<ξ<b).但ϕ(ξ)=f(ξ)-C,因此由上式即得f(ξ)=C (a<ξ<b).定理4 的几何意义:连续曲线弧y=f(x)与水平直线y=C至少交于一点.推论在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值.例1.证明方程x 3-4x 2+1=0在区间(0, 1)内至少有一个根.证:函数f(x)= x 3-4x 2+1在闭区间[0, 1]上连续,又f(0)=1>0,f(1)=-2<0.根据零点定理,在(0, 1)内至少有一点ξ,使得f(ξ)=0,即ξ 3-4ξ 2+1=0 (0<ξ<1).这等式说明方程x 3-4x 2+1=0在区间(0, 1)内至少有一个根是ξ.友情提示:方案范本是经验性极强的领域,本范文无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用。