闭区间上连续函数的性质(详细版)PPT精选文档
- 格式:ppt
- 大小:402.00 KB
- 文档页数:23
§4.2 闭区间上连续函数的性质一、性质的证明定理1.(有界性)若函数)(x f 在闭区间[a,b]连续,则函数)(x f 在闭区间[a,b]有界,即∃M >0,∈∀x [a,b],有|)(x f |≤M .证法:由已知条件得到函数)(x f 在[a,b]的每一点的某个邻域有界.要将函数)(x f 在每一点的邻域有界扩充到在闭区间[a,b]有界,可应用有限覆盖定理,从而得到M >0.证明:已知函数)(x f 在[a,b]连续,根据连续定义,∈∀a [a,b],取0ε=1,0δ∃>0,∈∀x (00,δδ+-a a )⋂[a,b],有 |)(x f )(a f -|<1.从而∈∀x (00,δδ+-a a )⋂[a,b]有 |)(x f |≤|)(x f )(a f -|+|)(|a f <|)(|a f +1即∈∀a [a,b],函数)(x f 在开区间(00,δδ+-a a )有界。
显然开区间集 { (00,δδ+-a a )|∈a [a,b] }覆盖闭区间[a,b].根据有限覆盖定理(4.1定理3),存在有限个开区间,设有n 个开区间{(k k a k a k a a δδ+-,)|∈k a [a,b] },k=1,2,3,…,n 也覆盖闭区间[a,b] ,且∈∀x (k k a k a k a a δδ+-,)|∈k a [a,b],有|)(x f |≤|)(|k a f +1,k=1,2,3,…,n取M =max{|)(||,......,)(||,)(|21n a f a f a f }+1. 于是∈∀x [a,b],∈∃i {1,2,…,n},且∈x (i i a i a i a a δδ+-,)⋂[a,b], 有|)(x f |≤|)(|i a f +1≤M定理2(最值性):若函数()f x 在闭区间[],a b 连续,则函数()f x 在区间能取到最小值m 与最大值M ,即:[]12,,x x a b ∃∈使:()1f x m =与()2f x M =[](),x a b m f x M ∀∈⇒≤≤证明:根据定理3,数集()[]{}|,f x x a b ∈有界。