闭区间上连续函数的性质
- 格式:ppt
- 大小:318.50 KB
- 文档页数:7
99§4.2 闭区间上连续函数的性质一、性质的证明定理 1.(有界性)若函数)(x f 在闭区间[a,b]连续,则函数)(x f 在闭区间[a,b]有界,即∃M >0,∈∀x [a,b],有|)(x f |≤M .证法:由已知条件得到函数)(x f 在[a,b]的每一点的某个邻域有界.要将函数)(x f 在每一点的邻域有界扩充到在闭区间[a,b]有界,可应用有限覆盖定理,从而得到M >0.证明:已知函数)(x f 在[a,b]连续,根据连续定义,∈∀a [a,b],取0ε=1,0δ∃>0,∈∀x (00,δδ+-a a )⋂[a,b],有|)(x f )(a f -|<1.从而∈∀x (00,δδ+-a a )⋂[a,b]有 |)(x f |≤|)(x f )(a f -|+|)(|a f <|)(|a f +1即∈∀a [a,b],函数)(x f 在开区间(00,δδ+-a a )有界。
显然开区间集 { (00,δδ+-a a )|∈a [a,b] }覆盖闭区间[a,b].根据有限覆盖定理(4.1定理3),存在有限个开区间,设有n 个开区间{(kka k a k a a δδ+-,)|∈k a [a,b] },k=1,2,3,…,n也覆盖闭区间[a,b] ,且∈∀x (k ka k a k a a δδ+-,)|∈k a [a,b],有|)(x f |≤|)(|k a f +1,k=1,2,3,…,n取M =max{|)(||,......,)(||,)(|21n a f a f a f }+1. 于是∈∀x [a,b],∈∃i {1,2,…,n},且∈x (iia i a i a a δδ+-,)⋂[a,b],有|)(x f |≤|)(|i a f +1≤M定理2(最值性):若函数()f x 在闭区间[],a b 连续,则函数()f x 在区间能取到最小值m 与最大值M ,即:[]12,,x x a b ∃∈使:()1f x m =与()2f x M =[](),x a b m f x M ∀∈⇒≤≤证明:根据定理3,数集()[]{}|,f x x a b ∈有界。
第七章 实数的完备性2 闭区间上连续函数性质的证明有界性定理:若函数f 在闭区间[a,b]上连续,则f 在[a,b]上有界. 证法一:(应用有限覆盖定理)由连续函数局部有界性知,对每一点x 0∈[a,b],都存在邻域U(x 0, δx )及正数M x , 使得|f(x)|≤M x , x ∈U(x 0, δx )∩[a,b],则开区间集H={U(x 0, δx )|x 0∈[a,b]} 是[a,b]的一个无限开覆盖. 由有限覆盖定理,存在H 的一个有限子集 H ’={U(x i , δi )|x i ∈[a,b], i=1,2,…k}覆盖住[a,b],且存在正数M 1,M 2,…M k , 使得对一切x ∈U(x i , δi )∩[a,b],有|f(x)|≤M i , i=1,2,…k. 令M=k i 1max ≤≤M i , 则对任何x ∈[a,b],x 必属于某U(x i , δi ),且|f(x)|≤M i ≤M. ∴f 在[a,b]上有界.证法二:(应用致密性定理)若f 在[a,b]上无上界,则对任何正整数n , 存在x n ∈[a,b],使得f(x n )>n. 依次取n=1,2,…,则得到数列{x n } ⊂[a,b]. 由致密性定理,{x n }含有收敛子列{x k n },记∞→k lim x kn =ξ. 由a ≤x kn ≤b 及数列极限的保不等式性,ξ∈[a,b]. ∵f 在ξ连续,∴∞→k lim f(x kn )=f(ξ)<+∞. 又f(x k n )>n k ≥k →+∞=>∞→k lim f(x kn )=+∞矛盾,∴f 在[a,b]上有上界. 同理可证f 在[a,b]上有下界,∴f 在[a,b]上有界.最大、最小值定理:若函数f 在闭区间[a,b]上连续,则f 在[a,b]上有最大值与最小值.证:(应用确界原理)根据连续函数在[a,b]上的有界性及确界原理知,f 的值域f([a,b])有上确界,记为M.若对一切x ∈[a,b]都有f(x)<M. 令g(x)=f(x )-M 1, x ∈[a,b], 则g 在[a,b]上连续且有上界. 设g 有上界G ,则 0<g(x)=f(x )-M 1<G, x ∈[a,b],得f(x)<M-G1与M 为f([a,b])的上确界矛盾. ∴必存在ξ∈[a,b],使f(ξ)=M ,即f 在[a,b]上有最大值.同理可证f 在[a,b]上有最小值.介值性定理:设函数f 在闭区间[a,b]上连续,且f(a)≠f(b). 若μ是介于f(a)与f(b)之间的任何实数,则存在x 0∈[a,b],使得f(x 0)=μ. 证法一:(应用确界原理)不妨设f(a)<μ<f(b),令g(x)=f(x)-μ, 则 g 在[a,b]上连续,且g(a)<0, g(b)>0.记E={x|g(x)>0, x ∈[a,b]},则E 非空有界,E ⊂[a,b]且b ∈E , 由确界原理,E 有下确界,记x 0=inf E.∵g(a)<0, g(b)>0,由连续函数的局部保号性,存在δ>0,使得 在[a,a+δ]内g(x)<0,在[b-δ,b]内g(x)>0, ∴x 0≠a, x 0≠b, 即x 0∈(a,b). 若g(x 0)≠0,不妨设g(x 0)>0,则又由局部保号性,存在U(x 0,η)⊂(a,b), 使其内有g(x)>0,特别有g(x 0-2η)>0=>x 0-2η∈E 与x 0=inf E 矛盾, ∴g(x 0)=0,即f(x 0)=μ.证法二:(应用区间套原理)同证法一令g(x)=f(x)-μ.将[a,b]二等分为[a,c]与[c,b]. 若g(c)=0,则c 为所求.若g(c)>0,则记[a 1,b 1]=[a,c],若g(c)<0,则记[a 1,b 1]=[c,b],则g(a 1)<0,g(b 1)>0且[a 1,b 1]⊂[a,b],b 1-a 1=21(b-a).从区间[a 1,b 1]出发,重复上述过程,得g(c 1)=0或g(a 2)<0,g(b 2)>0且[a 2,b 2]⊂[a 1,b 1],b 2-a 2=221(b-a). 不断重复以上过程,可得g(c n )=0或g(a n+1)<0,g(b n+1)>0且[a n+1,b n+1]⊂[a n ,b n ],b n -a n =n 21(b-a), n=1,2,…. 即{[a n ,b n ]}是闭区间套,由区间套定理知,存在x 0∈[a n ,b n ], n=1,2,… 若g(x 0)≠0,不妨设g(x 0)>0,由局部保号性,存在U(x 0, δ), 使其内有g(x)>0.又当n 充分大时,有[a n ,b n ]⊂U(x 0, δ),∴g(a n )>0矛盾. ∴g(x 0)=0,即f(x 0)=μ.一致连续性定理:若函数f 在[a,b]上连续,则f 在[a,b]上一致连续. 证法一:(应用有限覆盖定理)由f 在[a,b]上的连续性,任给ε>0, 对每一点x ∈[a,b],都存在δx >0,使得当x 0∈U(x,δx )时有|f(x 0)-f(x)|<2ε. 令H={U(x,2δx )|x ∈[a,b]},则H 是[a,b]的一个开覆盖. 由有限覆盖定理,存在H 的一个有限子集H ’={U(x i ,2δi )|i=1,2,…,k}, H ’覆盖了[a,b]. 记δ=⎭⎬⎫⎩⎨⎧≤≤2δmin i k i 1>0. 对任何x 1,x 2∈[a,b],|x 2-x 1|<δ. x 1必属于H ’的某个开区间U(x i ,2δi ),即|x 1-x i |<2δi ,则有 |x 2-x i |≤|x 2-x 1|+|x 1-x i |<δ+2δi ≤2δi +2δi =δi , 又|f(x 1)-f(x i )|<2ε, |f(x 2)-f(x i )|<2ε, 有|f(x 2)-f(x 1)|< ε.∴f 在[a,b]上一致连续.证法二:(应用致密性定理)若f 在[a,b]上不一致连续,则存在某ε0>0,对任何δ>0,都存在相应的两点x ’,x ”∈[a,b], 尽管|x ”-x ’|<δ, 但有|f(x ”)-f(x ’)|≥ε0.令δ=n 1(n 为正整数),与它相应的两点记为x ’n ,x ”n ∈[a,b], 尽管|x ’n -x ”n |<n1, 但有|f(x ’n )-f(x ”n )|≥ε0.当n=1,2,…时,可得数列{x ’n }与{x ”n }⊂[a,b].由致密性定理,存在{x ’n }的收敛子列{x ’k n },设x ’k n →x 0∈[a,b](k →∞), 由|x ’k n -x ”k n |<kn 1=>| x ”k n -x 0|≤| x ”k n - x ’k n |+| x ”k n -x 0|→0(k →∞),得 x ”kn →x 0(k →∞),又由f 的连续性及数列极限的保不等式性,得:0=|f(x 0)-f(x 0)|=∞→k lim |f(x ’k n )-f(x ”kn )|≥ε0,与ε0>0矛盾, ∴f 在[a,b]上一致连续.习题1、设f 为R 上连续的周期函数. 证明:f 在R 上有最大值与最小值. 证:设f 的周期为T ,∵f 在[0,T]上连续,∴有最大值f(M)和最小值f(m), M,m ∈[0,T]. 任给x ∈R ,则存在某整数k ,使x ∈[kT,(k+1)T], ∴x-kT ∈[0,T],从而有f(m)≤f(x)=f(x-kT)≤f(M),∴f(M)=R x max ∈{f(x)}, f(m)=Rx min ∈{f(x)},即 f 在R 上有最大值f(M)与最小值f(m).2、设I 为有限区间. 证明:若f 在I 上一致连续,则f 在I 上有界,举例说明此结论当I 为无限区间时不一定成立.证:设区间I 的左右端点为a,b. ∵f 在I 上一致连续,∴对ε=1, 存在δ>0,不妨取δ<2a -b , 当|x ’-x ”|<δ(x ’,x ”∈I)时,有|f(x ’)-f(x ”)|<1. 令a 1=a+2δ, b 1=b-2δ, 则a<a 1<b 1<b.∵f 在[a 1,b 1]上连续,∴f 在[a 1,b 1]上有界,设|f(x)|≤M 1, x ∈[a 1,b 1]. 当x ∈[a,a 1)∩I 时,∵0<a 1-x<2δ<δ,∴|f(x)-f(a 1)|<1, 有|f(x)|<|f(a 1)|+1. 同理当x ∈(b 1,b]∩I 时,有|f(x)|<|f(b 1)|+1.令M=max{M 1,|f(a 1)|+1,|f(b 1)|+1},则对一切x ∈I ,必有|f(x)|≤M. ∴f 在有限区间I 上有界.例证:y=x 2, x ∈R 一致连续,但∞→x lim x 2=+∞无界.3、证明:f(x)=x sinx 在(0,+∞)上一致连续. 证:∵∞→x lim xsinx =0,由柯西收敛准则知,对∀ε>0,存在M 1>0,使 当x ’,x ”>M 1时,有|f(x ’)-f(x ”)|<ε. 又∵0x lim →xsinx =1,同理可知, 存在M 2>0,使当0<x ’,x ”<M 2时,有|f(x ’)-f(x ”)|<ε.将(0,+∞)分成三个相交的区间(0,M 2],[2M 2,M 1+2M 2]和[M 1,+∞). ∵f 在[2M 2,M 1+2M 2]连续,∴f 在[2M 2,M 1+2M 2]一致连续. 从而必存在δ>0(δ<2M 2),当x ’,x ”∈[2M 2,M 1+2M 2]且|x ’-x ”|<δ时,有 |f(x ’)-f(x ”)|<ε. 于是对一切x ’,x ”∈(0,+∞),当|x ’-x ”|<δ时, x ’,x ”必属于上述区间之一,且都有|f(x ’)-f(x ”)|<ε,∴f 在(0,+∞)上一致连续.4、试用有限覆盖定理证明根的存在性定理.证:设f在[a,b]上连续,且f(a),f(b)异号,不妨设f(a)<0, f(b)>0.若在(a,b)内没有f(x)=0的根,即对每一个x∈(a,b),都有f(x)≠0,从而对一切x∈[a,b],有f(x)≠0. 由f的连续性,对每一个x∈[a,b],存在δx >0,使得f在U(x,δx)∩[a,b]上同号,而H={(x,δx)|x∈[a,b]}是[a,b]的一个开覆盖,由覆盖定理知在H中必存在有限个开邻域H’={(x j,δj)|x j∈[a,b], j=1,2,…,n}覆盖[a,b],设a∈(x k,δn)(k为1,2,…,n中某一个值),则f(x)<0, x∈(x k,δk n)∩[a,b].k又∵H’覆盖了[a,b],∴恒有f(x)<0, x∈[a,b],即f(b)<0矛盾.∴在(a,b)内f(x)=0至少有一个根. 根的存在性定理得证.5、证明:在(a,b)上连续函数f为一致连续的充要条件是f(a+0)、f(b-0)存在且有限.证:[必要性]设f在[a,b]一致连续,则对任给的ε>0,存在δ>0,使当x’,x”∈(a,b)且|x’-x”|<δ时,有|f(x’)-f(x”)|<ε,则有当x’,x”∈(a,a+δ)时,有|x’-x”|<δ,从而有|f(x’)-f(x”)|<ε,由函数极限的柯西准则知f(a+0)存在且为有限值,同理可证f(b-0)存在且为有限值.[充分性]设f在(a,b),且f(a+0)、f(b-0)存在且有限,补充定义f(a)=f(a+0), f(b)=f(b-0),使f在[a,b]上连续,从而一致连续,∴f在[a,b]一致连续.。