随机向量的联合分布函数
- 格式:ppt
- 大小:302.00 KB
- 文档页数:13
《 概率论与数理统计》练习题一一、判断正误,在括号内打√或×1.n X X X ,,,21 是取自总体),(2σμN 的样本,则∑==ni iXnX 11服从)1,0(N 分布; 错2.设随机向量),(Y X 的联合分布函数为),(y x F ,其边缘分布函数)(x F X 是)0,(x F ;错 3.设{}∞+-∞=Ω<<x x |,{}20|<x x A ≤=,{}31|<x x B ≤=,则B A 表示{}10|<<x x ; 错4.若事件A 与B 互斥,则A 与B 一定相互独立; 错 5.对于任意两个事件B A 、,必有=B A B A ;错6.设A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为“甲种产品滞销或乙种产品畅销”; 对7.B A 、为两个事件,则A B A AB = ; 对 8.已知随机变量X 与Y 相互独立,4)(,8)(==Y D X D ,则4)(=-Y X D ; 错9.设总体)1,(~μN X , 1X ,2X ,3X 是来自于总体的样本,则321636161ˆX X X ++=μ是μ的无偏估计量; 错10.回归分析可以帮助我们判断一个随机变量和另一个普通变量之间是否存在某种相关关系。
对 二、填空题1.设C B A 、、是3个随机事件,则事件“A 和B 都发生而C 不发生”用C B A 、、表示2.设随机变量X 服从二项分布),(p n B ,则EXDX3.是 ⎪⎩⎪⎨⎧≤≤-=,,0,1)(其他b x a a b x f4.若事件C B A 、、相互独立,且25.0)(=A P ,5.0)(=B P ,4.0)(=C P ,则)(C B A P =73.0 ;5.设随机变量X 的概率分布为则a 6.设随机变量X 的概率分布为7.若随机变量X 与Y 相互独立,2)(,)(==Y E a X E ,则)(XY E8.设1θ 与2θ 是未知参数θθ满足)()(21θθ D D <,则称1θ 比2θ有效;9.设n X X X ,,,21 是从正态总体),(2σμN 抽得的简单随机样本,已知202σσ=,现检验假设0μμ=:H 00)(σμ-X n 服从)1,0(N ;10.在对总体参数的假设检验中,若给定显著性水平α(10<<α),则犯第一类错误的概三、计算题1.已知随机事件A 的概率5.0)(=A P ,事件B 的概率6.0)(=B P ,条件概率8.0)|(=A B P ,试求事件B A 的概率)(B A P 。
2014-2015随机过程参考题一.判断题1.若随机变量的特征函数存在,则可以用它来刻画随机变量的概率分布. ( ) 2.对于独立的随机变量1,,n X X ,都有[]11n nk k k k E X E X ==⎡⎤=⎢⎥⎣⎦∏∏. ( )3.若12(,,)n F x x x 是随机向量1=,,)n X X X (的联合分布函数,则它对每个变量都是单调不减的. ( ) 4.一个随机过程的有限维分布具有对称性和相容性. ( ) 5.非齐次泊松过程一定具有独立增量性和平稳增量性. ( ) 6.参数为λ的泊松过程第n 次与第1n -次事件发生的时间间隔n X 服从参数为n 和n λ的Γ分布. ( )7.复合P o i s s o n 过程一定是计数过程. ( ) 8.若随机变量X 服从周期为d 的格点分布,则对自然数n 总有{}0P X nd =>.( ) 9.设,i j 是离散时间马氏链的两个互通的状态,则它们的周期相等. ( ) 10.离散时间马尔科夫链的转移矩阵的行和列的和均为1 . ( ) 11.一个随机变量的分布函数和特征函数相互唯一确定. ( ) 12.对独立的随机变量1,,n X X ,都有[]11n nk k k k Var X Var X ==⎡⎤=⎢⎥⎣⎦∑∏. ( )13.一个随机过程的有限维分布族一定是具有对称性和相容性的分布族。
( )14.若一个随机过程的协方差函数,s t γ()只与时间差t s -有关,则它一定是宽平稳过程. ( ) 15.参数为λ的泊松过程中,第n 次事件发生的时刻n T 服从参数为λ的指数分布.( ) 16.非齐次泊松过程不具有独立增量性,但具有平稳增量性. ( ) 17.更新过程在有限时间内最多只能发生有限次更新. ( ) 18.更新过程的更新函数()M t 是t 的单调不增函数. ( ) 19.马尔科夫链具有无后效性. ( ) 20.Poisson 过程是更新过程. ( ) 具有对称性和相容性的分布族一定是某个随机过程的有限维分布族。
§3.2 边缘分布二维随机向量),(Y X 的联合分布(联合分布函数或联合分布列或联合概率密度)完整地刻画了随机变量X 和Y 作为一个整体的概率分布规律。
为应用方便,我们还需要从这个完整的信息中挖掘出某些方面的信息。
这个完整的信息中包含如下信息:(1)每个分量(或部分分量)的概率分布,即边缘分布。
(2)各分量之间的统计联系。
本章将要介绍的随机变量的独立性,及条件分布以及下一章介绍的相关系数就是用来反映和描述他们的统计联系.一.边缘分布 1.边缘分布函数设二维随机向量),(Y X 具有联合分布函数为),(y x F ,而X 和Y 都是随机变量,各自也有分布函数,将它们分别记为)(x F X 和)(y F Y ,依次称为为),(Y X 关于X 和关于X 的边缘分布函数. 由概率的性质可得),(),(lim },{}{+∞==∞<≤=≤∆+∞→x F y x F Y x X P x X P y可见由),(Y X 的联合分布函数),(y x F 可以X 的边缘分布函数: ),()(+∞=x F x F X (1) 类似地可得),(Y X 关于Y 的边缘分布函数为),()(y F y F Y +∞= (2) 例3.2.1 设二维随机向量),(Y X 的联合分布函数为⎩⎨⎧≥≥+--=λ-----其他,00,0,1),(y x e e e y x F xy y x y x这个分布称为二维指数分布,其中参数0≥λ,求边缘分布函数。
解:易得X ,Y 的边缘分布函数分别为⎩⎨⎧<≥-=+∞=-0,00,1),()(x x e x F x F x X⎩⎨⎧<≥-=+∞=-0,00,1),()(y y e y F y F y Y这两个边缘分布同为指数分布,且与参数λ无关。
这说明边缘分布确定不了联合分布。
也说明联合分布中不仅含有每个分量的信息,还含有各分量之间统计联系方面的信息。
2.边缘分布律如果),(Y X 为二维离散型随机向量,那么它的每个分量都是离散随机变量。
大学概率论第三章----随机向量第三章 随机向量第一节 二维随机向量及其分布1、二维随机向量及其分布函数定义1:设E 是一个随机试验,它的样本空间是{}e Ω=.设X(e)与Y(e)是定义在同一样本空间Ω上的两个随机变量,则称(X(e),Y(e))为Ω上的二维随机向量或二维随机变量。
简记为(X,Y).定义2:设(X,Y)是二维随机向量,对于任意实数x,y ,称二元函数 F(x,y)=P{X ≦x ,Y ≦y}为二维随机向量(X,Y)的分布函数或联合分布函数。
(X,Y)的分布函数满足如下基本性质: (1)F(x,y)是变量x,y 的不减函数. (2)0≦F(x,y)≦1,(,)0y F y -∞=对于任意的 ,(,)0x F x -∞=对于任意的(,)0(,)1F F -∞-∞=+∞+∞=,(3)(,), (,)(0,)(,)(,0)F x y x y F x y F x y F x y F x y =+=+关于是右连续的,即, 1122121222211211(4)(,)(,),, (,)(,)(,)(,)0x y x y x x y y F x y F x y F x y F x y <<--+≥对于任意和,有2、二维离散型随机变量定义3:若二维随机向量(X,Y)的所有可能取值是有限对或无限可列多对,则称(X,Y) 为二维离散型随机向量。
设(X,Y)的一切可能值为(,) , ,1,2,i j X Y i j =L ,且(X,Y)取各对可能值的概率为,(,), ,1,2,i j i j P X Y P i j ==L(1) 非负性:,0, ,1,2,i j P i j ≥=L ;,(2)1ij i jp =∑规范性:, (,){,}i i ijx x y yX Y F x y P X x Y Y p ≤≤=≤≤=∑∑离散型随机变量的联合分布函数为定义4:{,}(,1,2,...)(,)ij P X x Y Y p i j X Y X Y ≤≤==称为二维离散型随机变量的概率分布或分布律,或随机变量和的联合分布律。