简单几何体
- 格式:doc
- 大小:56.00 KB
- 文档页数:2
简单几何体
基本思想:利用空间图形,培养空间想象能力,分析图形及其结构特征
1,简单旋转体:圆柱、圆锥、圆台、球
分析截面:横截面(中截面)、竖截面(轴截面)
2,简单多面体:棱柱(直、正)、棱锥(正)--高与斜高、棱台(正)---高与斜高
分析截面:横截面、竖截面
3,组合体
4,折叠与展开
位于同一面上的诸元素间的位置关系不变,而涉及两个面之间的图形之间则发生量的变化。
立体图形的展开或平面图形的折叠是培养空间立体感的好方法
1,已知某圆柱的底面半径为1cm,高为2cm,求该圆柱的侧面积,表面积和体积。
2,已知用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm,求圆台的母线长。
3,圆台的两底面的半径分别为2和5
,母线长为
4,已知半径为5的球的两个平行截面的周长分别为6π和8π,求这两个截面圆心之间的距离。
5,已知某正三棱柱的底面边长为1,高为2,求该正三棱柱的侧面积,表面积和体积。
6,已知正四棱锥V A B C D
-,底面面积为16
,侧棱长为,计算它的高和斜高。
7,设正三棱台的上、下底面的边长分别为2cm和5cm,侧棱长为5cm,求这个棱台的高。
8,在以O为顶点的三棱锥中,过O的三条棱两两的交角都是30︒,在一条棱上取A、B两
点,OA=4cm,OB=3cm,以A、B为端点用一条绳子紧绕三棱锥的侧面一周(绳和侧面摩擦),求此绳在A、B之间的最短绳长。
简单几何体的表面积与体积1.柱、锥、台和球的侧面积和体积面积 体积圆柱 S 侧=2πrh V =Sh =πr 2h圆锥S 侧=πrlV =13Sh =13πr 2h =13πr 2l 2-r 2 圆台 S 侧=π(r 1+r 2)l V =13(S 上+S 下+S 上S 下)h=13π(r 21+r 22+r 1r 2)h 直棱柱 S 侧=Ch V =Sh 正棱锥 S 侧=12Ch ′ V =13Sh正棱台 S 侧=12(C +C ′)h ′V =13(S 上+S 下+S 上S 下)h球S 球面=4πR 2V =43πR 32.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和. [难点正本 疑点清源] 1.几何体的侧面积和全面积几何体的侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.要特别留意根据几何体侧面展开图的平面图形的特点来求解相关问题.如直棱柱(圆柱)侧面展开图是一矩形,则可用矩形面积公式求解.再如圆锥侧面展开图为扇形,此扇形的特点是半径为圆锥的母线长,圆弧长等于底面的周长,利用这一点可以求出展开图扇形的圆心角的大小. 2.等积法等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高,这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.1.圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是________.2.设某几何体的三视图如下(尺寸的长度单位为m).则该几何体的体积为________m 3.3.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.4.一个球与一个正方体的各个面均相切,正方体的边长为a ,则球的表面积为________.5.如图所示,在棱长为4的正方体ABCD —A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P —BB 1C 1C 的体积为________.题型一 简单几何体的表面积例1 一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80思维启迪:先通过三视图确定空间几何体的结构特征,然后再求表面积.探究提高(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.一个几何体的三视图(单位:cm)如图所示,则该几何体的表面积是________cm2.题型二简单几何体的体积例2如图所示,已知E、F分别是棱长为a的正方体ABCD—A1B1C1D1的棱A1A、CC1的中点,求四棱锥C1—B1EDF的体积.思维启迪:思路一:先求出四棱锥C1—B1EDF的高及其底面积,再利用棱锥的体积公式求出其体积;思路二:先将四棱锥C1—B1EDF化为两个三棱锥B1—C1EF与D—C1EF,再求四棱锥C1—B1EDF的体积.解 方法一 连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,EF ,过O 1作O 1H ⊥B 1D 于H .∵EF ∥A 1C 1,且A 1C 1平面B 1EDF ,∴A 1C 1∥平面B 1EDF .∴C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离. ∵平面B 1D 1D ⊥平面B 1EDF , 平面B 1D 1D ∩平面B 1EDF =B 1D ,∴O 1H ⊥平面B 1EDF ,即O 1H 为棱锥的高. ∵△B 1O 1H ∽△B 1DD 1, ∴O 1H =B 1O 1·DD 1B 1D =66a .∴VC 1—B 1EDF =13S 四边形B 1EDF ·O 1H=13·12·EF ·B 1D ·O 1H =13·12·2a ·3a ·66a =16a 3. 方法二 连接EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,VC 1—B 1EDF =VB 1—C 1EF +VD —C 1EF =13·S △C 1EF ·(h 1+h 2)=16a 3. 探究提高 在求解一些不规则的几何体的体积以及两个几何体的体积之比时,常常需要用到分割法.在求一个几何体被分成两部分的体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.26 B.36 C.23 D.22题型三几何体的展开与折叠问题例3(1)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A、B、C、D、O为顶点的四面体的体积为________.(2)有一根长为3π cm,底面直径为2 cm的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为________ cm.思维启迪:(1)考虑折叠后所得几何体的形状及数量关系;(2)可利用圆柱的侧面展开图.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.如图,已知一个多面体的平面展开图由一边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是_______..方法与技巧1.对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.要注意将空间问题转化为平面问题.3.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.4.一些几何体表面上的最短距离问题,常常利用几何体的展开图解决.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .182.已知高为3的直棱柱ABC —A ′B ′C ′的底面是边长为1的正三角形(如右图所示),则三棱锥B ′—ABC 的体积为( )A.14B.12C.36D.343.正六棱柱的高为6,底面边长为4,则它的全面积为( ) A .48(3+3) B .48(3+23) C .24(6+2) D .1444.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+65B.30+6 5C.56+125D.60+12 5二、填空题(每小题5分,共15分)5.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为________.6.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.7.已知三棱锥A—BCD的所有棱长都为2,则该三棱锥的外接球的表面积为________.三、解答题(共22分)8.(10分)如图所示,在边长为5+2的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.9.(12分)有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A.32π B .π+3C.32π+ 3 D.52π+ 3 2.在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为( ) A.25V B.13V C.23V D.310V 3.已知球的直径SC =4,A 、B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为( )A .33B .2 3 C. 3 D .1 二、填空题(每小题5分,共15分)4.如图,已知正三棱柱ABC —A 1B 1C 1的底面边长为2 cm ,高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线 的长为______ cm.5.已知一个几何体是由上、下两部分构成的组合体,其三视图如图所示,若图中圆的半径为1,等腰三角形的腰长为5,则该几何体的体积是________.6.如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是________.三、解答题7.(13分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D—ABC,如图2所示.图1 图2(1)求证:BC⊥平面ACD;(2)求几何体D—ABC的体积.。
几何体的三种分类方法几何体是指具有一定形状和空间特征的物体,它们可以根据不同的特征和属性进行分类。
在几何学中,常用的三种分类方法是按形状、按结构和按特征。
下面将分别对这三种分类方法进行详细介绍。
一、按形状分类按形状分类是最常用的几何体分类方法之一,它根据几何体的外形特征将其划分为不同的类别。
常见的按形状分类的几何体有球体、圆柱体、正方体、长方体、圆锥体等。
1. 球体:球体是由所有与一个固定点距离相等的点组成的几何体,它具有无限个面、边和顶点,并且所有的面都是等圆面。
球体在日常生活中广泛应用,如篮球、足球等都属于球体。
2. 圆柱体:圆柱体是由一个圆形的底面和一个平行于底面的圆形顶面连同这两个圆面之间的所有点组成的几何体。
圆柱体具有两个平行的底面、一个侧面和两个顶点。
常见的圆柱体有水杯、筒灯等。
3. 正方体:正方体是由六个相等的正方形面组成的几何体,它具有六个正方形面、八个顶点和十二条边。
正方体在建筑、家具等领域中被广泛应用,如盒子、骰子等。
4. 长方体:长方体是由六个矩形面组成的几何体,它具有六个矩形面、八个顶点和十二条边。
长方体在日常生活中随处可见,如电视机、书桌等。
5. 圆锥体:圆锥体是由一个圆形的底面和一个顶点连同这两个面之间的所有点组成的几何体。
圆锥体具有一个圆形底面、一个尖顶和一个侧面。
常见的圆锥体有冰淇淋蛋筒、路灯等。
二、按结构分类按结构分类是根据几何体的内部结构将其分类。
常见的按结构分类的几何体有简单几何体和复杂几何体。
1. 简单几何体:简单几何体是指由基本几何图形组成的几何体,它们可以用简单的公式计算其面积和体积。
如球体、正方体、圆柱体等都属于简单几何体。
2. 复杂几何体:复杂几何体是指由多个基本几何图形组合而成的几何体,它们的面积和体积计算比较复杂。
如椎体、棱柱体、棱锥体等都属于复杂几何体。
三、按特征分类按特征分类是根据几何体的特征和属性将其分类。
常见的按特征分类的几何体有对称几何体和非对称几何体。