调节阀阀口设计与仿真分析
- 格式:pdf
- 大小:187.94 KB
- 文档页数:3
工程设计中调节阀压力恢复系数FL的应用分析1、引言在工程设计中,经常需要对调节阀进行选型与计算,以达到稳定控制的目的。
但调节阀选型与计算时对F L的考虑较困难。
本文除对F L的一般规律作分析,同时通过实例,对可能出现阻塞流工况,如何深入考虑F L作出分析。
2、阻塞流的产生在流量系数Cv的计算公式中,阀前压力P1,阀后压力P2的取压位置及流体通过调节阀的压力降变化情况如图1所示。
图1 阀内的压力恢复特性阀上压降为ΔP=P1-P2。
按能量守恒定律,在流体缩脉处的流速最大而压力最低,即压力降最大,称为ΔP vc。
缩流处后流体流速又减小,直至P2处大部分静压得到恢复,此时压力降为ΔP。
当介质是液体,在压差足够大时,部份液体在该操作温度下汽化,即发生了闪蒸。
液体中夹带了蒸汽,产生了二相流,液体不再是不可压缩的,这时即使再增加压差,流量也不再增加,这种极限流量现象称为液体阻塞流。
3、F L的具体分析3.1 F L的定义F L=S qt(ΔP/ΔP vc)=S qt(P1-P2)/(P1-P vc)(1)3.2 F L的意义F L是一个实验数据,表明了调节阀在液体通过后动能转变为静压能的恢复能力(见图1),也表明了液体产生阻塞流的临界条件,故F L又称为临界流量系数。
提出F L的目的,在于判断液体通过调节阀时是否产生隆塞流,并用于计算调节阀的最大允许压差。
3.3 阻塞流的判断理论上用与的大小关系来判断是否产生阻塞流,但在工程计算时用压差大小来判断。
图2表明了通过阀门的流量与压差的关系。
图2 流量与压差的关系最大允许压差定义为ΔPc:ΔPc = F L2*ΔPvc=F L2*(P1-F F P v)(2)P v:操作温度下的液体饱和蒸汽压F F:液体临界压力比系数3.4 决定阻塞流的因素从公式2来看,一旦操作工况决定,最大允许压差ΔPc与F L有关系。
阻塞流的产生与通过调节阀流量的大小,调节阀口径没有关系。
4、F L值的一般规律4.1F L值的大小与调节阀的结构形式、流向、开度有关。
⼗五种常⽤阀门结构⼯作原理(带⽰意图)阀门有哪些种类?其结构及⼯作原理在这⾥给⼤家分类总结:1.截断阀类主要⽤于截断或接通介质流。
包括闸阀、截⽌阀、隔膜阀、球阀、旋塞阀、蝶阀、柱塞阀、仪表针型阀等。
2.调节阀类主要⽤于调节介质的流量、压⼒等。
包括调节阀、节流阀、减压阀等。
3.⽌回阀类⽤于阻⽌介质倒流。
包括各种结构的⽌回阀。
4.分流阀类⽤于分离、分配或混合介质。
包括各种结构的分配阀和疏⽔阀等。
5.安全阀类⽤于介质超压时的安全保护。
包括各种类型的安全阀。
⼀、闸阀靠阀板的上下移动,控制阀门开度。
阀板象是⼀道闸门。
闸阀关闭时,密封⾯可以只依靠介质压⼒来密封,即只依靠介质压⼒将闸板的密封⾯压向另⼀侧的阀座来保证密封⾯的密封,这就是⾃密封。
⼤部分闸阀是采⽤强制密封的,即阀门关闭时,要依靠外⼒强⾏将闸板压向阀座,以保证密封⾯的密封性。
闸阀的种类,按密封⾯配置可分为楔式闸板式闸阀和平⾏闸板式闸阀, 楔式闸板式闸阀⼜可分为: 单闸板式、双闸板式和弹性闸板式;平⾏闸板式闸阀可分为单闸板式和双闸板式。
按阀杆的螺纹位置划分,可分为明杆闸阀和暗杆闸阀两种。
国内⽣产闸阀的⼚家⽐较多,连接尺⼨也⼤多不统⼀。
性能特点:优点:1、流动阻⼒⼩。
阀体内部介质通道是直通的,介质成直线流动,流动阻⼒⼩。
2、启闭时较省⼒。
是与截⽌阀相⽐⽽⾔,因为⽆论是开或闭,闸板运动⽅向均与介质流动⽅向相垂直。
3、⾼度⼤,启闭时间长。
闸板的启闭⾏程较⼤,降是通过螺杆进⾏的。
4、⽔锤现象不易产⽣。
原因是关闭时间长。
5、介质可向两侧任意⽅向流动,易于安装。
闸阀通道两侧是对称的。
6、结构长度(系壳体两连接端⾯之间的距离)较⼩。
7、形体简单, 结构长度短,制造⼯艺性好,适⽤范围⼴。
8、结构紧凑,阀门刚性好,通道流畅,流阻数⼩,密封⾯采⽤不锈钢和硬质合⾦,使⽤寿命长,采⽤PTFE填料.密封可靠.操作轻便灵活.缺点:密封⾯之间易引起冲蚀和擦伤,维修⽐较困难。
外形尺⼨较⼤,开启需要⼀定的空间,开闭时间长。
孔板式调节阀原理及阀门整体设计计算孔板式阀门的先进技术,可成功地解决普通控制阀门所遇到的诸如汽蚀、高噪音、震动等问题,目前同样广泛运用在电厂锅炉I、Ⅱ级减温水、给水泵最小流量阀、锅炉主给水门以及其他流量控制中。
它能提供比较精确的流量控制,按照用户的不同需要,可设计成不同的流量特性,具有严谨的关闭特性,能保证工厂安全、稳定地运行,提高效率并延长维修周期。
孔板式系列调节阀门是专门针对客户的不同要求而设计的,通过对介质流速的控制而彻底消除了汽蚀、噪音、腐蚀及振动问题,维修方方便,可很便捷地更换阀芯。
孔板式系列调节阀门的阀芯具有长久的使用寿命。
当然要得到很好的使用寿命的关键在于正确的安装及在使用中的适当维护。
1 原理孔板式系列调节阀门的抗汽蚀设计是利用孔板式芯包多级降压的原理,通过强制介质流经芯包孔板上的许多小孔通道使流速得到完全的控制,达到逐级降压的目的。
无论压降大小,这些小孔的阻力使得介质流速流出芯包的速度收到限制。
经过多级降压,使介质的压力始终维持在介质的汽化压力PV之上,从而避免了气蚀现象,消除了不安全因素,如图1所示。
1/ 10孔板式芯包包括很多孔板片,经过机加工形成许多小孔通道,每个通道能通过定量介质。
介质流过小孔时产生很大的阻力,产生压降。
根据电厂各种机组不同的参数,经过精确的计算,选定不同孔板片数和孔板片上不同的小空数以及小孔的不同直径,使得流经孔板式芯包的介质压降达到电厂不同场合的需要。
并且能使每一级压降始终保持在汽化压力之上,从而达到抗汽蚀的要求。
孔板式系列阀门使用机加工技术制造孔板片,孔板片再用焊接的方法组合为整体芯包(图2)。
由于每一片孔板片的小孔数及小孔直径都是根据用户提供的参数进行设计,而且孔板片的厚度可以设计得很薄,所以芯包就可以根据用户的特殊要求设计以提供精准的流量控制。
根据阀门的应用场合及用户的要求,调节阀的流量特性曲线可被设计为不同形式,包括线性、等百分比、修正等百分比以及其他特殊曲线。
工艺设计改造及检测检修 China Science & Technology Overview气动阀调试和常见故障分析与处理唐志国(中核检修有限公司海盐分公司,浙江嘉兴314300)摘要:随着我国科技的不断进步,工业改革进程在飞速开展,其中最显著的特点是工业自动化。
随着工业自动化的进程不断加快, 电力、冶金、石油、化工等行业中对于气动阀门的应用也越来越广泛。
气动阀的使用过程直接影响工业自动化系统的进程,因此对其 调试和常见故障分析是有必要并且迫在眉睫的。
本文将对气动阀调试和常见故障分析与处理提出建议,更好地利用气动阀的功能,促进 工业自动化系统建设。
关键词:乞动阀;故障;分析;调试中图分类号:TM623 文献标识码:A 文章编号:1671-2064(2020) 12-0094-02在工业生产进程自动化的快速推进过程中,气动阀门成 为一种在电力企业、化工企业、石油企业等众多工业企业生 产过程中的控制仪表,同时也是工业自动化系统的重要组成装置。
气动阀在工业生产中的应用能够便利工业生产,但其 运行过程中可能出现的故障将会影响其正常化工业生产。
为了尽量提升气动阀的使用率,本文将对气动阀调试和常见故障及处理方法提出相关建议。
1气动阀结构组成气动执行机构、阀体和仪附件共同构成气动阀门。
其中 气动执行机构可分材质功能为薄膜式和活塞式两种;阀体一 般按其行程分为直行程和角行程;仪附件包括电磁阀、位置指示开关、空气过滤减压阀、定位器、电气转换器、手轮操作机构、气源管等。
2气动开关阀的调试气动开关阀的调试必须遵守其构成结构的性能,为确保正常使用阀门,气动开关阀在安装完成后的调试必须按以下顺序和步骤进行。
2.1检查气动阀开关安装的位置及管线连接检查事项:第一阀门安装方向(针对有流向要求的)正确与否,第二确认减压阀和电磁阀的出入口连接是否正确;第三关于连接阀门供气回路的接头牢固程度以及严密情况;最后确认电磁阀与位置开关接线位置的准确与否⑴。
控制阀的口径计算一、 引言控制阀(调节阀)在工业生产过程自控系统中的作用犹如“手足”,其重要性是不言而喻的。
如何使用户获得满意的产品,除了制造上的精工细作外,还取决于正确的口径计算,产品选型,材料选用等,而其前提是要准确掌握介质、流量、压力、温度、比重等工艺参数和技术要求。
这是供需双方务必充分注意的。
本手册编制参考了国内外有关专业文献,也结合了我厂长期来产品选型计算中的实际经验。
二、术语定义1、调节阀的流量系数流量系数Kv值的定义:当调节阀全开,阀两端压差为1×102Kpa(1.03巴)时,流体比重为1g/cm3的5℃~40℃水,每小时流过调节阀的立方米数或吨数。
Kv是无量纲,仅采用m3/h或T/h的数值。
Cv值则是当阀全开,阀前后压差1PSi,室温水每分钟流过阀门的美加仑数。
Cv=1.167 Kv。
确定调节阀口径的依据是流量系数Kv值或Cv值。
所以正确计算Kv(Cv)值就关系到能否保证调节品质和工程的经济性。
若口径选得过大,不仅不经济,而且调节阀经常工作在小开度,会影响控制质量,易引起振荡和噪音,密封面易冲蚀,缩短阀的使用寿命。
若口径选得过小,会使调节阀工作开度过大,超负荷运行,甚至不能满足最大流量要求,调节特性差,容易出现事故。
所以口径的选择必须合理,其要求是保证最大流量Qmax时阀的最大开度Kmax≤90%,实际工作开度在40—80%为宜,最小流量Qmin时的开度Kmin≥10%。
如兼顾生产发展,Kmax可选在70—80%,但必须满足Kmin≮10%。
对高压阀、双座阀、蝶阀等小开度冲刷厉害或稳定性差的阀则应大于20%~30%。
2、压差压差是介质流动的必要条件,调节阀的压差为介质流经阀时的前后压力之差,即ΔP=P1-P2。
在亚临界流状态下,压差的大小直接影响流量的大小。
调节阀全开压差是有控制的,其与整个系统压降之比(称S)是评定调节阀调节性能好坏的依据,如果流量波动较大时,S值应大些;波动小,也应小些。
调节阀的工作原理调节阀是一种常见的工业自动控制装置,用于控制流体介质的流量、压力和温度。
它在工业过程中的应用广泛,包括石化、能源、冶金、造纸等领域。
调节阀的工作原理主要基于流体动力学和静力学原理,下面将详细介绍调节阀的工作原理。
调节阀主要由阀体、阀芯、执行机构和传感器等组成。
其基本工作原理是通过改变阀芯的位置来改变阀口的开度,从而调节流体的流量和压力。
具体来说,调节阀的工作原理包括以下几个关键步骤:1. 流体介质进入阀体:当流体介质进入阀体后,流体会受到阀芯的控制进入阀口,进而通过流道进入下游设备。
2. 产生差压:通过改变阀芯的位置,调节阀产生的压差会作用在流体上,由此产生流体阻力,进而影响流体的流速和流量。
3. 阀芯调节:阀芯的位置决定了阀口的开度。
当阀芯向上移动时,阀口变小,流体的流量减小,反之亦然。
通过控制阀芯的位置,可以精确地调节流体的流量。
4. 液压控制:液压执行机构会根据传感器的反馈信息对阀芯进行控制,使其达到预设的位置和开度。
这种液压控制可以实现远程操作和自动控制,提高系统的可靠性和稳定性。
5. 反馈控制:传感器会监测阀芯位置和开度,并将反馈信号传输给液压执行机构。
根据反馈信号,液压执行机构会调整阀芯的位置,保持阀口的开度恒定,从而实现精确的流量和压力控制。
调节阀的工作原理可以根据不同的应用需求来设计和选择。
对于需要大流量和高精度控制的应用,可以选用多级调节阀或特殊结构的调节阀。
而对于一些较为简单的工业过程,常用的单级调节阀已经能够满足要求。
调节阀的工作原理是基于流体力学原理的应用,它通过改变阀芯位置来调节阀口开度,从而控制流体的流量和压力。
在自动化控制系统中,调节阀与传感器和执行机构紧密配合,能够实现精确的流量和压力控制,提高系统的稳定性和可靠性。
因此,深入了解调节阀的工作原理对于工程师和技术人员来说至关重要,而对调节阀的合理选择与使用也对于流体系统的正常运行起着至关重要的作用。