第三章 判别分析
- 格式:pptx
- 大小:2.27 MB
- 文档页数:30
判别分析导言判别分析是统计学中一种常用的数据分析方法,用于区分不同群体或类别之间的差异。
它通过寻找最佳的分类边界,帮助我们预测或判定未知样本的分类。
判别分析常用于模式识别、数据挖掘、生物学、医学等领域。
本文将介绍判别分析的基本概念、应用领域和算法。
一、判别分析的基本概念判别分析旨在通过构造合适的判别函数,将不同群体或类别的样本区分开来。
判别函数的建立是判别分析的核心任务,而判别函数的类型通常根据问题的特点来选择。
常见的判别函数有线性判别函数、二次判别函数、贝叶斯判别函数等。
判别分析的目标是使得样本在不同类别的判别函数值有较大差异。
二、判别分析的应用领域1. 模式识别判别分析在模式识别中的应用非常广泛。
通过判别分析,我们可以建立能够识别不同模式的模型。
例如,在人脸识别任务中,我们可以使用判别分析来建立一个分类器,能够将不同人脸的图像正确分类。
2. 数据挖掘在数据挖掘领域,判别分析可以帮助我们发现变量之间的关系,并进行预测。
通过对已有数据进行判别分析,我们可以预测未知样本的分类。
例如,在市场营销中,通过对消费者进行判别分析,我们可以预测消费者的购买行为,从而制定更精准的营销策略。
3. 生物学和医学判别分析在生物学和医学领域中也有广泛的应用。
例如,在癌症诊断中,通过对患者的临床数据进行判别分析,我们可以建立一个分类器,能够判断该患者是否患有癌症。
三、判别分析的算法判别分析的算法根据问题的特点和要求选择。
下面介绍两种常见的判别分析算法:1. 线性判别分析(LDA)线性判别分析是一种常见且简单的判别分析算法。
它的核心思想是通过将高维数据映射到低维空间中,使得不同类别的样本在投影空间中有较大的差异。
在LDA算法中,我们需要计算类内散度矩阵和类间散度矩阵,并求解其特征值和特征向量,从而确定投影向量。
2. 二次判别分析(QDA)二次判别分析是一种更为复杂的判别分析算法。
它假设不同类别的样本的协方差矩阵不相等,即每个类别内部的变化程度不同。