去括号与添括号
- 格式:ppt
- 大小:547.00 KB
- 文档页数:13
如何快速理解添括号与去括号
一、法则
添括号法则:
如果括号前面是加号,加上括号后,括号里面的符号不变。
如果括号前面是减号,加上括号后,括号里面的符号全部改为与其相反的符号。
去括号法则:
括号前面是加号,把括号和它前面的加号去掉,括号里各项都不变号;括号前面是减号,把括号和它前面的减号去掉,括号里各项要改变符号.
二、讲解
因为正负数可以表示相反意义的量,所以我们可以用“好”和“坏”来表示“正”和“负”。
带正号的括号我们比喻成一个好国家,比如中国。
带负号的括号我们比喻成一个坏国家,比如日本。
在一个国家里有好人(正数)和坏人(负数)。
在我们中国(带正号的括号里),好人(正数)就是好人(正数),坏人(负数)就是坏人(负数)。
在日本(带负正号的括号里)所谓的好人,其实是坏人,所谓坏人反而是好人。
现在我们来理解添括号法则:
带正号的情况好理解,我们重点说添上带负号的括号:好人(正数)到了日本(带负号的括号里)会被认为是坏人(负数),而坏人(负数)到了日本(带负正号的括号里)反而成了好人(正数)。
现在我们来理解去括号法则:
去掉带正号的括号情况好理解,我们重点说去带负号的括号:日本国里(带负正号的括号里)所谓的好人(正数),去掉括号后,其实是坏人(负数);日本国里(带负正号的括号里)所谓的坏人(负数),去掉括号后,其实是好人(正数)。
去括号与添括号学习目标1.使学生初步掌握去括号、添括号的法则;2.会运用去括号法则,会按照法则,并根据要求添括号;3.通过去括号与添括号的学习,渗透对立统一的思想.知识讲解一、重点、难点分析去括号、添括号法则既是本课的重点,又是难点,突破的关键是无论去括号,还是添括号,认真把握法则要点,注意形成技能.①关于去括号:去括号时,连同括号前的符号同时去掉,要特别注意括号前是“-”号时,去括号后括号里的各项的符号都改变.如a2-(2a-b+c)=a2-2a-b+c是错误的;②关于添括号:一般要明确把哪些项放在括号内,以及括号前用什么样的符号,要特别注意把某些项括到前面带“-”号的括号内时,各项符号都改变;③关于去添括号,都改变了原来式子的形式,但不改变式子的值.二、去括号法则为什么要学习“去括号法则”?我们也看一个例子:计算(a-3b)+(2a+b),这里a与2a,-3b与b是同类项,但括号把它们隔开了,“可望而不可并”,只有设法把括号去掉才能计算化简.这就是学习去括号法则的一个道理.怎样才能正确地应用去括号法则?由于乘法分配律a(b+c)=ab+ac具有去括号的功能,所以去括号法则a+(b+c)=a+b+c,a-(b+c)=a-b-c,也可以理解为把括号前的“+”号或“-”号看成是“+1”或“-1”,然后再应用乘法分配律推导得到的.这样理解、记忆去括号法则有助于减少应用去括号法则的错误.比如,计算3(x-2y)-5(3x-y)时,应该想到:3×x,3×(-2y),(-5)×3x,(-5)(-y),即可正确地得到:原式=3x-6y-15x+5y=-12x-y.去括号的法则应注意两个方面;括号前为正号时,去掉括号后,不影响括号内“去”出来的各项的符号,即把括号连同前面的“+”号去掉以后,括号内的各项原原本本的“拿”出来,就算完成了去括号;而括号前如果是负号,就说明“要减去整个括号内的各项”,考虑应用符号法则,(减正等于加负、减负等于加正),再用省略加号的写法,也就完成了“括号前如果是负号,把括号和它前面的‘-’号去掉,要改变括号内各项的符号”的去括号过程.三、添括号法则添括号是根据实际需要而考虑进行的.需要添括号时,也分两类进行:添括号后,括号前是“+”号,就把需要括起来的那几项,括起来就行了;若添括号后,括号前是“-”号,要把括起来的各项都改变符号.如a+b-c+d=a+(b-c+d)=a+b-(c-d).去括号、添括号都存在一个“变号”与“不变号”的问题.正确的掌握“变号”与“不变号”是较难之处,添括号时这个难点更明显(易错).这些问题的关键是括号前的符号问题.若括号前面是“+”号,就出现“不变”之说,即去括号时,把括号里的各项“不变号”从括号里“解放”出来;添括号时,括号前添的是“+”号,被括起来的各项,也“不变号”进入括号就行了;若括号前面是“-”号,不论是去括号或是添括号,都会遇到“改变符号”的问题的.另外,不论是去或添括号,括号前面的符号和括号是一个整体,不能分割开来,顾此失彼.还有“变号”与“不变号”中都提到“各项”,要认真对待,不能只“变”或“不变”其中的一部分.典型例题例1 去括号:(1);(2)分析:(1)题括号前是“-”号,去掉括号和“-”,括号内的各项都变号,即变为-,-变为,变为-;(2)题第一个括号前是“-”号,去掉括号和括号前的“-”,括号内各项都改变符号,即变为-,-变成;第二个括号前是“+”号去掉括号及“+”,括号内各项不变号,即仍为,.解:(1)(2)例2化简:(1);(2).解:(1)(2)说明:要特别注意括号前有数字因数的情形.先用分配律数字与括号内的各项相乘,然后再去括号,熟练后,也可省略第二步,直接去括号,如(2)题的处理.例3 先去括号,再合并同类项:.解法一:解法二:说明:本题指出了多项式化简的运算顺序,多重括号的去括号,一般按去小括号→去中括号→去大括号的程序,逐次去掉括号,每去一层括号都要合并同类项一次,以使运算简便.也可以由外向里脱即按去大括号→去中括号→去小括号的程序逐渐去掉括号.例4按下列要求,把多项式添括号:(1)把多项式后三项括起来,括号前面带有“+”号;(2)把多项式的前两括起来,括号前面带有“-”号;(3)把多项式后三项括起来,括号前面带有“-”号;(4)把多项式中间的两项括起来,括号前面带有“-”号.分析:(1)题把后三项括起来,即把,,+4括起来,括号前面带有“+”号,因此把,,+4括到括号内时不变号;(2)题要求把多项式的前两项括起来,即把,括起来,括号前面带有“-”号,把,括到括号内时都要变号.(3)题、(4)题可进行类似地分析.解:(1);(2)(3);(4).说明:添括号和去括号正好相反,要想检查添括号是不是正确,可以用去括号法则检验.反馈练习1.化简:(1);(2);(3);(4).2.求下列各式的值:(1),其中;(2),其中.3.(1)在多项式中添括号:把含有的项放在前面带有“+”号的括号里,把含有的项放在前面带有“-”号的括号里;(2)把多项式化成以为被减数的两个式子的差的形式.答案:1.化简:(1);(2)(3)(4)2.求下列各式的值:(1);(2)3.(1);(2)。
知识点042:去括号与添括号(填空题)1.去括号:a﹣(b﹣c+d)=a﹣b+c﹣d.考点:去括号与添括号。
分析:利用去括号法则计算.括号前是负号的括号里的各项符号都要改变.解答:解:a﹣(b﹣c+d)=a﹣b+c﹣d.点评:注意:去括号时符号的变化.2.已知a﹣2b=1,则3﹣2a+4b=1.考点:去括号与添括号。
分析:先把代数式化为已知的形式,再把已知条件整体代入计算即可.解答:解:根据题意可得:3﹣2a+4b=3﹣2(a﹣2b)=3﹣2=1.点评:注意此题要用整体思想.3.a3+3a2﹣2a=a3+(2a2﹣2a),a﹣4﹣ab﹣c=(a﹣2b)﹣(4+ab+c﹣2b).考点:去括号与添括号。
分析:添括号时注意符号的变化,a3+3a2﹣2a=a3+(2a2﹣2a),加上同一个数,再减去同一个数结果不变,a﹣4﹣ab﹣c=(a﹣2b)﹣4﹣ab﹣c+2b=(a﹣2b)﹣(4+ab+c﹣2b).解答:解:根据添括号的法则可知,a3+3a2﹣2a=a3+(2a2﹣2a);a﹣4﹣ab﹣c=(a﹣2b)﹣(4+ab+c﹣2b).点评:添括号时,再运用括号前是“+”,括号里的各项都不改变符号;括号前是“﹣”,括号里的各项都改变符号这一法则.4.去括号:3a2﹣2(a﹣b﹣5c)=3a2﹣2a+2b+10c;添括号:a+2b﹣4c﹣3d=a﹣(﹣2b+4c+3d)=a+2b﹣(4c+3d).考点:去括号与添括号。
分析:(1)根据去括号法则,将﹣2与括号内的各项分别相乘;得原式=3a2﹣2a+2b+10c;(2)添括号后,括号前是“﹣”,括号里的各项都改变符号.得原式=a﹣(﹣2b+4c+3d)=a+2b ﹣(4c+3d).解答:解:3a2﹣2(a﹣b﹣5c)=3a2﹣2a+2b+10c,a+2b﹣4c﹣3d=a﹣(﹣2b+4c+3d)=a+2b﹣(4c+3d),故填3a2﹣2a+2b+10c;a+2b﹣(4c+3d).点评:运用(1)括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.(2)添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“﹣”,括号里的各项都改变符号.运用这一法则添掉括号.5.计算:2ab﹣(3ab﹣5a2b)=﹣ab+5a2b.考点:去括号与添括号。
去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示:a +(b + c)= a + b + c例如:23+(77+56)=23+77+56a +(b - c)= a + b - c例如:38+(62-48)=38+62-482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示:a -(b + c)= a - b - c例如:159-(59+26)=159-59-26a -(b - c)= a - b + c例如:378-(78-39)=378-78+393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。
整式的加减法去括号和添括号的用法(一)整式的加减法去括号和添括号的用法本文将介绍整式的加减法去括号和添括号的用法,并详细讲解以下几个方面:1.去括号和添括号的定义2.整式去括号的规则和示例3.整式添括号的规则和示例4.注意事项和常见错误1. 去括号和添括号的定义•去括号:将一个整式中的括号内的表达式按照括号前的符号进行分配运算,去掉括号。
•添括号:在一个整式中提取其中的一部分进行括号,用于改变运算顺序或减少计算量。
2. 整式去括号的规则和示例•去括号的规则:–括号前有正号或无符号:将括号内的每一项与括号前的符号相乘。
–括号前有负号:将括号内的每一项与括号前的符号相乘,并改变项内的符号。
•示例1:–原式:2(3x + 5y)–去括号后:6x + 10y•示例2:–原式:-3(2x - 4y)–去括号后:-6x + 12y3. 整式添括号的规则和示例•添括号的规则:–可以在整式中的任意位置添加括号,但需保持运算的正确性。
–添括号可以改变整式的运算顺序,提高计算效率。
•示例1:–原式:3x + 2y + 4z - 5w–添括号后:(3x + 2y) + (4z - 5w)•示例2:–原式:2x^2 + 3x - 5–添括号后:2x^2 + (3x - 5)4. 注意事项和常见错误•注意事项:–在运算中,括号的使用必须符合数学运算的法则。
–添括号时要注意运算顺序,确保计算的正确性。
•常见错误:–在去括号过程中,忽略了括号前的符号,导致计算错误。
–在添括号过程中,未保持原式的运算顺序,导致计算结果不正确。
这些是整式的加减法去括号和添括号的常用用法和规则,希望可以帮助你更好地理解和运用整式的运算。
在实际运算中,需要根据具体的情况和题目要求灵活运用这些方法。
第四章代数式(原卷板)7、去括号与添括号知识点梳理去括号与添括号(1)去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.(2)去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;②a﹣(b﹣c)=a﹣b+c,括号前是“﹣”号,去括号时连同它前面的“﹣”号一起去掉,括号内各项都要变号.说明:①去括号法则是根据乘法分配律推出的;②去括号时改变了式子的形式,但并没有改变式子的值.(3)添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.同步练习一.选择题(共20小题)1.下列去括号正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.x2﹣[﹣(﹣x+y)]=x2﹣x+yC.m﹣2(p﹣q)=m﹣2p+q D.a+(b﹣c﹣2d)=a+b﹣c+2d2.下列各式中去括号正确的是()A.a2﹣(2a﹣b2+b)=a2﹣2a﹣b2+bB.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5D.﹣a3﹣[﹣4a2+(1﹣3a)]=﹣a3+4a2﹣1+3a3.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d4.下列去括号正确的是()A.﹣3(b﹣1)=﹣3b﹣3B.2(2﹣a)=4﹣aC.﹣3(b﹣1)=﹣3b+3D.2(2﹣a)=2a﹣45.将3p﹣(m+5n﹣4)去括号,可得()A.3p﹣m+5n﹣4B.3p+m+5n﹣4C.3p﹣m﹣5n﹣4D.3p﹣m﹣5n+4 6.下列去括号正确的是()A.x2﹣(x﹣3y)=x2﹣x﹣3yB.x2﹣3(y2﹣2xy)=x2﹣3y2+2xyC.m2﹣4(m﹣1)=m2﹣4m+4D.a2﹣2(a﹣3)=a2+2a﹣67.下列各式中,去括号错误的是()A.a+(b﹣c)=a+b﹣c B.a﹣(b﹣c)=a﹣b+cC.a+(﹣b+c)=a﹣b+c D.a﹣(﹣b﹣c)=a+b﹣c8.下列去括号正确的是()A.a+(b﹣c)=a+b+c B.a﹣(b﹣c)=a﹣b﹣cC.a﹣(b﹣c)=a﹣b+c D.a+(b﹣c)=a﹣b+c9.去括号2﹣(x﹣y)=()A.2﹣x﹣y B.2+x+y C.2﹣x+y D.2+x﹣y 10.下列计算正确的是()A.3a2+a=4a3B.﹣2(a﹣b)=﹣2a+bC.5a﹣4a=1D.a2b﹣2a2b=﹣a2b11.﹣[a﹣(b﹣c)]去括号应得()A.﹣a+b﹣c B.﹣a﹣b+c C.﹣a﹣b﹣c D.﹣a+b+c 12.下面的计算正确的是()A.6a﹣5a=1B.﹣(a﹣b)=﹣a+bC.a+2a2=3a3D.2(a+b)=2a+b13.下列计算结果正确的是()A.﹣(2x﹣y)=﹣2x﹣yB.﹣3a+(4a2+2)=﹣3a+4a2﹣2C.﹣(2a﹣3y)=﹣2a+3yD.﹣3(a﹣7)=﹣3a+714.下列各式中,不能由3a﹣2b+c经过变形得到的是()A.3a﹣(2b+c)B.c﹣(2b﹣3a)C.(3a﹣2b)+c D.3a﹣(2b﹣c)15.﹣(a﹣b+c)变形后的结果是()A.﹣a+b+c B.﹣a+b﹣c C.﹣a﹣b+c D.﹣a﹣b﹣c16.下列运算正确的个数()①2a+3b=5ab;②3m2n﹣2nm2=m2n;③a﹣(b﹣c)=a﹣b+c;④y﹣x=﹣(x﹣y)A.1B.2C.3D.417.下列去括号正确的是()A.a+(b+c)=a+b﹣c B.a+(b﹣c)=a+b+cC.a﹣(b+c)=a﹣b+c D.a﹣(b﹣c)=a﹣b+c18.下列式子去括号正确的是()A.﹣(7a+3b﹣5c)=﹣7a﹣3b﹣5cB.7a+2(3b﹣3)=7a+6b﹣3C.5a﹣(b﹣5)=5a﹣b﹣5D.﹣2(3x﹣y+1)=﹣6x+2y﹣219.下列各式中去括号正确的是()A.﹣(﹣a﹣b)=a﹣bB.a2+2(a﹣2b)=a2+2a﹣2bC.5x﹣(x﹣1)=5x﹣x+1D.3x2﹣(x2﹣y2)=3x2﹣x2﹣y220.下列各式从左到右正确的是()A.﹣(3x+2)=﹣3x+2B.﹣(﹣2x﹣7)=﹣2x+7C.﹣(3x﹣2)=3x+2D.﹣(﹣2x﹣7)=2x+7二.填空题(共7小题)21.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=.22.化简﹣3(a﹣2b+1)的结果为.23.如果多项式4x3+2x2﹣(kx2+17x﹣6)中不含x2的项,则k的值为.24.多项式中不含xy项,则常数k的值是.25.在括号内填上恰当的项:1﹣x2+2xy﹣y2=1﹣.26.﹣4m+3n=﹣.27.计算:|﹣3|=;2a﹣(﹣3a)=.。
去括号和添括号的法则一、去括号法则在代数表达式中,有时候我们需要去除括号来简化表达式。
去括号法则适用于求和、求差和乘法运算。
下面是去括号的三个法则:1.同号相乘法则:当括号外面有一个正号或者一个负号时,我们可以通过将括号里面的每一项与括号外面的符号相乘来去括号。
例如,对于表达式(a+b+c),如果去除括号,则结果为a+b+c。
2.一正一负相乘法则:当括号外面有一个正号,而括号里面的每一项前面有一个负号时,我们可以通过去除括号并反转每一项的正负号来去括号。
例如,对于表达式(a-b-c),如果去除括号,则结果为a-b-c。
3.乘法分配律:当括号外面有一个数与括号里面的每一项相乘时,我们可以通过将括号里面的每一项与括号外面的数相乘来去括号。
例如,对于表达式3(a+b+c),如果去除括号,则结果为3a+3b+3c。
这些去括号法则是非常有用的,因为它们可以使复杂的表达式变得简洁,并且可以更容易地进行计算。
二、添括号法则添括号法则正好与去括号法则相反,它适用于求和、求差和乘法运算。
添加括号可以改变表达式的结构和优先级。
下面是添括号的两个法则:1.加减添括号法则:当一个数和一个和式相加或相减时,我们可以通过在和式的前后添加括号来添括号。
例如,对于表达式a+b-c,我们可以添括号为(a+b)-c,或者a+(b-c),这样可以改变运算的顺序和结果。
2.乘法添括号法则:当一个数与一个乘积相乘时,我们可以通过在乘积的前后添加括号来添括号。
例如,对于表达式a*b+c,我们可以添括号为(a*b)+c,或者a*(b+c),这样可以改变运算的顺序和结果。
添括号法则在对表达式进行化简、分解或重组时非常有用。
它可以帮助我们更好地理解和计算复杂的代数运算。
三、应用场景和示例示例1:简化表达式考虑以下代数表达式:3(a+b)+2(b-c)。
使用乘法分配律和去括号法则,我们可以简化这个表达式为3a+3b+2b-2c。
示例2:重组表达式考虑以下代数表达式:a*b+c*d。
武汉快乐多教育培训中心第四讲去括号与添括号【知识要点】一、去括号法:如果括号前面是加号或乘号,去括号后,原来括号里的符号都不变;如果括号前面是减号或除号,去括号后,原来括号里的加号变为减号。
减号变为加号,乘号变为除号,除号变为乘号。
二、添括号法:如果需要改变运算顺序,就要添加括号;如果括号前面是加号或乘号,括到里面的各个数都不用改变符号;如果括号前面的是减号或除号,括到括号里面的数原来是加号要变成减号,原来是减号要变为加号,乘号变为除号,除号变为乘号。
【典型例题】例178+(29+122)134+(82-34)例2185-(36-15)127-(27+50)例3540÷(18×6)180×(2÷60)例4875-29-371 492-193+93例57200÷25÷4 210÷42×613×81÷91武汉快乐多教育培训中心课后作业1.75+(25+8)187-39-61 145+(67-45)2.175-57-43 116-(48-84)723+(82-23)3.3×25×4 23×63÷7 270×(15÷90)4.10÷5÷2 186÷(3÷2)27×8÷95.195×81+19×195 25÷4+75÷4 187÷12-63÷12-52÷126、(99+88)÷11 (230-46)÷23 (125-10)×87、47×25-17×25 7676×54-5454×76☆8、计算下面各题。
(30秒内完成)(1000-100-10)÷5777+777-777×777÷7772武汉快乐多教育培训中心随堂小测姓名成绩1.75+(129+25)156+(82-156)1320-63-372.278-(41-22)3293.24×25×4 264.1600÷25÷4 2405.86×123-86×23 286.1300÷25÷48-(29+78)527×180÷60 120÷72×9 450×9÷7÷7+9÷7+11÷73-114+14×(3÷60)÷(25×9)。
去括号与添括号教案一、教学目标1. 让学生掌握去括号和添括号的法则。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队协作能力。
二、教学内容1. 去括号法则:如果括号外的因数是正数,去括号后,括号内的各项都不改变符号;如果括号外的因数是负数,去括号后,括号内的各项都改变符号。
2. 添括号法则:添括号时,要注意保持等式的平衡,即等式两边要添加括号,并且括号内的符号要根据括号前的符号进行变化。
三、教学重点与难点1. 教学重点:去括号和添括号的法则。
2. 教学难点:如何判断去括号或添括号后,括号内各项的符号变化。
四、教学方法1. 采用讲解法,讲解去括号和添括号的法则。
2. 采用练习法,让学生通过实际操作,掌握去括号和添括号的方法。
3. 采用小组讨论法,让学生分组讨论,共同解决问题。
五、教学步骤1. 导入新课:讲解去括号和添括号的重要性,激发学生的学习兴趣。
2. 讲解去括号法则:通过例题,讲解去括号的方法和步骤。
3. 讲解添括号法则:通过例题,讲解添括号的方法和步骤。
4. 课堂练习:布置一些去括号和添括号的题目,让学生独立完成。
5. 小组讨论:让学生分组讨论,共同解决练习题目中的问题。
6. 总结与反思:对本节课的内容进行总结,让学生反思自己的学习过程。
7. 课后作业:布置一些有关去括号和添括号的题目,让学生巩固所学知识。
六、教学评价1. 评价方式:采用课堂练习、课后作业和小测验等形式进行评价。
2. 评价内容:判断学生对去括号和添括号法则的掌握程度,以及运用所学知识解决实际问题的能力。
3. 评价标准:正确掌握去括号和添括号法则,能熟练运用所学知识解决实际问题,成绩优良;基本掌握去括号和添括号法则,能解决简单问题,成绩中等;未完全掌握去括号和添括号法则,需要进一步学习,成绩较差。
七、教学拓展1. 结合现实生活中的例子,让学生运用去括号和添括号的知识解决问题。
2. 引导学生探索去括号和添括号法则的规律,提高学生的逻辑思维能力。