【山东省新人教B版数学(理科)2012届高三单元测试22:选修2-3第二章《概率》
- 格式:doc
- 大小:338.50 KB
- 文档页数:5
1.3.2 杨辉三角双基达标(限时20分钟)1.已知(a +b )n 展开式中只有第5项的二项式系数最大,则n 等于 ( ). A .11 B .10 C .9 D .8 解析 ∵只有第5项的二项式系数最大,∴n2+1=5.∴n =8. 答案 D2. ⎝ ⎛⎭⎪⎫x +1x n 的展开式中第8项是常数,则展开式中系数最大的项是 ( ). A .第8项 B .第9项C .第8项或第9项D .第11项或第12项解析 ⎝ ⎛⎭⎪⎫x +1x n 展开式中的第8项为C 7n (x )n -7⎝ ⎛⎭⎪⎫1x 7为常数,即n -212=0,∴n =21.∴展开式中系数最大的项为第11项或第12项. 答案 D3.设(3-x )n =a 0+a 1x +a 2x 2+…+a n x n ,若n =4,则a 0-a 1+a 2+…+(-1)n a n= ( ). A .256 B .136 C .120 D .16 解析 在展开式中令x =-1得a 0-a 1+a 2-a 3+a 4=44.故选A. 答案 A4.在二项式(1-2x )6的展开式中,所有项的系数之和为________. 解析 令x =1,得(1-2x )6展开式中所有项的系数和为(1-2)6=1. 答案 15. 如图是一个类似杨辉三角的递推式,则第n 行的首尾两个数均为________.解析 由1,3,5,7,9,…,可知它们成等差数列, 所以a n =2n -1. 答案 2n -16.设(1+x )+(1+x )2+(1+x )3+…+(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,当a 0+a 1+a 2+…+a n =254时,求n 的值.解 令x =1,得a 0+a 1+a 2+…+a n =2+22+23+…+2n =2(2n -1)2-1=254,∴2n =128,即n =7.综合提高(限时25分钟)7.若(x +3y )n 展开式的系数和等于(7a +b )10展开式中的二项式系数之和,则n 的值为 ( ). A .5 B .8 C .10 D .15解析 (7a +b )10展开式的二项式系数之和为210,令x =1,y =1,则由题意知, 4n =210,解得n =5. 答案 A8.(2012·济宁高二检测)如果⎝⎛⎭⎪⎪⎫3x -13x 2n 的展开式中各项系数之和为128,则展开式中1x 3的系数是( ).A .7B .-7C .21D .-21 解析 令x =1,则(3-1)n =128=2n ,∴n =7即求⎝⎛⎭⎪⎪⎫3x -13x 27展开式中通项T r +1=C r 7·(3x )7-r ·(x -23)r ·(-1)r =C r 737-r ·x 7 -5r 3·(-1)r.令7-5r 3=-3,得r =6,即系数为C 67·3=21. 答案 C9.在(a -b )10的二项展开式中,系数最小项是________.解析 在(a -b )10的二项展开式中,奇数项的系数为正,偶数项的系数为负,且偶数项系数的绝对值为对应的二项式系数,因为展开式中第6项的二项式系数最大,所以系数最小的项为T6=C510a5(-b)5=-252a5b5.答案-252a5b510.若(1-2x)2 012=a0+a1x+a2x2+…+a2 012x2 012(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2 012)=________.(用数字作答)解析在(1-2x)2 012=a0+a1x+a2x2+…+a2 012x2 012中,令x=0,则a0=1,令x=1,则a0+a1+a2+a3+…+a2 012=(-1)2 012=1,故(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2 012)=2 011a0+a0+a1+a2+a3…+a2 012=2 012.答案 2 01211.已知(1-2x+3x2)7=a0+a1x+a2x2+…+a13x13+a14x14,求:(1)a1+a2+…+a14;(2)a1+a3+a5+…+a13.解(1)令x=1得a0+a1+a2+…+a14=27.令x=0得a0=1,∴a1+a2+…+a14=27-1.(2)由(1)得a0+a1+a2+…+a14=27,①令x=-1得a0-a1+a2-…-a13+a14=67,②由①-②得:2(a1+a3+a5+…+a13)=27-67,∴a1+a3+a5+…+a13=27-672.12.(创新拓展)(2012·长沙高二检测)对于二项式(1-x)10.(1)求展开式的中间项是第几项?写出这一项;(2)求展开式中除常数项外,其余各项的系数和;(3)写出展开式中系数最大的项.解(1)由题意可知:r=0,1,2,…,11,展开式共11项,所以中间项为第6项:T6=C510(-x)5=-252x5.(2)设(1-x)10=a0+a1x+a2x2+…+a10x10,令x=1,得a0+a1+a2+…+a10=0,令x=0,得a0=1,∴a1+a2+…+a10=-1.(3)∵中间项T6的系数为负,∴系数最大的项为T5和T7,T5=C410x4=210x4,T7=C610x6=210x6.。
一、选择题1.已知随机变量ξ的分布列如下表,若()2E ξ=,则()D ξ的最小值等于( )A .0B .2C .1D .122.近几年新能源汽车产业正持续快速发展,动力蓄电池技术是新能源汽车的核心技术.已知某品牌新能源汽车的车载动力蓄电池充放电次数达到800次的概率为90%,充放电次数达到1000次的概率为36%.若某用户的该品牌新能源汽车已经经过了800次的充放电,那么他的车能够达到充放电100次的概率为( ) A .0.324B .0.36C .0.4D .0.543.从一个装有3个白球,3个红球和3个蓝球的袋中随机抓取3个球,记事件A 为“抓取的球中存在两个球同色”,事件B 为“抓取的球中有红色但不全是红色”,则在事件A 发生的条件下,事件B 发生的概率()|P B A =( ) A .37B .1237C .1219D .16214.元旦游戏中有20道选择题,每道选择题给了4个选项(其中有且只有1个正确).游戏规定:每题只选1项,答对得2个积分,否则得0个积分.某人答完20道题,并且会做其中10道题,其它试题随机答题,则他所得积分X 的期望值()E X =( ) A .25B .24C .22D .205.已知随机变量()2~0,X N σ,若()10.2P X>=,则()01P X <<的值为( )A .0.1B .0.3C .0.6D .0.46.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为( ) A .12B .25C .35D .457.已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未失效,则这个元件使用寿命超过2年的概率为( ) A .0.75B .0.6C .0.52D .0.488.某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为( )A .313 B .413C .14D .159.已知ξ是离散型随机变量,则下列结论错误的是( ) A .21133P P ξξ⎛⎫⎛⎫≤≤≤ ⎪ ⎪⎝⎭⎝⎭ B .()()()22E E ξξ≤C .()()1D D ξξ=-D .()()()221D D ξξ=-10.吸烟有害健康,远离烟草,珍惜生命.据统计一小时内吸烟5支诱发脑血管病的概率为0.02,一小时内吸烟10支诱发脑血管病的概率为0.16.已知某公司职员在某一小时内吸烟5支未诱发脑血管病,则他在这一小时内还能继吸烟5支不诱发脑血管病的概率为( ) A .67B .2125C .4950D .不确定11.已知随机变量X 的分布列如下表所示则(25)E X -的值等于 A .1B .2C .3D .412.随机变量()~1,4X N ,若()20.2p x ≥=,则()01p x ≤≤为( ) A .0.2B .0.3C .0.4D .0.6二、填空题13.加工某种零件需要两道工序,第一道工序出废品的概率为0.4,两道工序都出废品的概率为0.2,则在第一道工序出废品的条件下,第二道工序又出废品的概率为__________. 14.一批产品的一等品率为0.9,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的一等品件数,则D()X =__________。
条件概率教学设计课标分析《条件概率》是人教B 版普通高中课程标准实验教科书《数学》选修2-3 第二章随机变量及其分布中,二项分布及其应用的第一课时的内容,主要包括:(1)条件概率的概念;(2)条件概率的性质;(3)条件概率公式的简单应用。
《条件概率》的内容,利用“抽奖”这一典型案例,以无放回抽取奖券的方式,通过对有无“第一名同学没有中奖”条件,最后一名同学中奖的概率的比较,引出条件概率的概念,给出了条件概率的两个性质,并通过条件概率公式的简单应用加深对条件概率概念本质特征的理解掌握。
为相互独立事件和二项分布的内容教学,起“引流开山”之作用,即为定义相互独立事件和研究二项分布做好了知识铺垫。
正因本节是数学新概念引入建立,其教学便化身为本章的难点,对其进行合理的教学处理尤显重要。
本节教学重点和难点都是对条件概率的概念理解,应用公式对条件概率的计算是围绕这一中心的;在条件概率概念的引入中,应抓住“条件概率的本质是样本空间范围的缩小下的概率”这一转化关键。
教学关键是实际案例对比,甚者要辅以图示直观说明解释和反例验证等教学方式对条件概率的概念进行多角度分析研究,才能突破本节教学重点和教材分析《条件概率》第一课时是高中数学选修2-3第二章第二节的内容本节课是在必修三学习了概率的定义,概率的关系与运算,概率的基本性质,古典概型特点及其运算的基础上,学习如何计算已知某一事件发生的条件下,另一事件发生的概率,它仍属于概率的范畴。
它在教材中起着承前启后的作用,一方面,可以巩固古典概型概率的计算方法,另一方面,为研究相互独立事件打下良好的基础教学重点、难点和关键:教学重点是条件概率的定义、计算公式的推导及条件概率的计算;难点是条件概率的判断与计算;教学关键是数学建模条件概率是比较难理解的概念。
教科书利用大家比较熟悉的抽奖为实例,以无放回抽取奖券的方式,通过比较抽奖前和在已知第一名同学没有中奖的条件下,最后一名同学中奖的概率从而引入条件概率的概念,给出条件概率的两种计算方法。
一、选择题1.红外线自动测温门能有效避免测温者与被测温者的近距离接触,降低潜在的病毒感染风险.为防控新冠肺炎,某厂生产的红外线自动测温门,其测量体温误差服从正态分布()20.1,0.3N ,从已经生产出的测温门中随机取出一件,则其测量体温误差在区间()0.4,0.7内的概率为( )(附:若随机变量ξ服从正态分布()2,Nμσ,则()68.27%P μσξμσ-<<+=,()2295.45%P μσξμσ-<<+=)A .31.74%B .27.18%C .13.59%D .4.56%2.假定男女出生率相等,某个家庭有两个小孩,已知该家庭至少有一个女孩,则两个小孩都是女孩的概率是( ) A .12B .13C .14D .163.已知随机变量X 的取值为1,2,3,若()136P X ==,()53E X =,则()D X =( ) A .19 B .39 C .59 D .794.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为4x y +>,事件B 为x y ≠,则概率()|P B A =( )A .45B .56C .1315D .2155.条件:p 将1,2,3,4四个数字随机填入如图四个方格中,每个方格填一个数字,但数字可以重复使用.记方格A 中的数字为1x ,方格B 中的数字为2x ;命题1若p ,则()()1122E x E x =,且()()()1212E x x E x E x +=+;命题2若P ,则()()1124D x D x =,且()()()1212D x x D x D x +=+( )A .命题1是真命题,命题2是假命题B .命题1和命题2都是假命题C .命题1是假命题,命题2是真命题D .命题1和命题2都是真命题6.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A .8225B .12C .38D .347.一个盒子装有4件产品,其中有3件一等品,1件二等品.从中不放回的取两次,每次取出一件.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”.则()|P B A =( )A .34B .13C .23D .128.已知离散型随机变量X 的分布列如下:由此可以得到期望()E X 与方差()D X 分别为( ) A .() 1.4E X =,()0.2D X = B .()0.44E X =,() 1.4D X = C .() 1.4E X =,()0.44D X =D .()0.44E X =,()0.2D X =9.已知某随机变量X 的概率密度函数为0,0,(),0,x x P x e x -≤⎧=⎨>⎩则随机变量X 落在区间(1,3)内在概率为( )A .21e e +B .231e e-C .2e e -D .2e e +10.把一枚骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为( ) A .14B .13C .12D .111.2018年6月18日,是我国的传统节日“端午节”.这天,小明的妈妈煮了5个粽子,其中两个腊肉馅,三个豆沙馅.小明随机抽取出两个粽子,若已知小明取到的两个粽子为同一种馅,则这两个粽子都为腊肉馅的概率为( ) A .14B .34C .110D .31012.已知某次数学考试的成绩服从正态分布2(102,4)N ,则114分以上的成绩所占的百分比为( )(附()0.6826P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<+=≤)A .0.3%B .0.23%C .0.13%D .1.3%二、填空题13.已知随机变量X 服从正态分布()23,N σ,若()130.3P X <≤=,则()5P X ≥=______.14.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是________.15.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率(A |B)P 等于______.16.随机变量ξ的取值为0,1,2,若()104P ξ==,()1E ξ=,则()D ξ=______. 17.已知1 000名考生的某次成绩X 近似服从正态分布2(530,50)N ,则成绩在630分以上的考生人数约为_______.(注:正态总体2(,)N μσ)在区间(,),(2,2),(3,3)μσμσμσμσμσμσ-+-+-+内取值的概率分别为0.683,0.954,0.997) 18.设随机变量()()10,1,910XN P X a ≤<=,其中1419a =⎰,则()11P X ≥=__________.三、解答题19.上饶市正在创建全国文明城市,我们简称创文.全国文明城市是极具价值的无形资产和重要城市品牌.创文期间,将有创文检查人员到学校随机找学生进行提问,被提问者之间回答问题相互独立、互不影响.对每位学生提问时,创文检查人员将从规定的5个问题中随机抽取2个问题进行提问.某日,创文检查人员来到A 校,随机找了三名同学甲、乙、丙进行提问,其中甲只能答对这规定5个问题中的3个,乙能答对其中的4个,而丙能全部答对这5个问题.计一个问题答对加10分,答错不扣分,最终三人得分相加,满分60分,达到50分以上(含50分)时该学校为优秀. (1)求甲、乙两位同学共答对2个问题的概率;(2)设随机变量X 表示甲、乙、丙三位同学共答对的问题总数,求X 的分布列及数学期望,并求出A 校为优秀的概率.20.为迎接2020年国庆节的到来,某电视台举办爱国知识问答竞赛,每个人随机抽取五个问题依次回答,回答每个问题相互独立.若答对一题可以上升两个等级,回答错误可以上升一个等级,最后看哪位选手的等级高即可获胜.甲答对每个问题的概率为13,答错的概率为23. (1)若甲回答完5个问题后,甲上的台阶等级数为X ,求X 的分布列及数学期望; (2)若甲在回答过程中出现在第()2i i ≥个等级的概率为i P ,证明:{}1i i P P --为等比数列.21.某校拟举办“成语大赛”,高一(1)班的甲、乙两名同学在本班参加“成语大赛”选拔测试,在相同的测试条件下,两人5次测试的成绩(单位:分)的茎叶图如图所示.(1)你认为选派谁参赛更好?并说明理由;(2)若从甲、乙两人5次的成绩中各随机抽取1次进行分析,设抽到的2次成绩中,90分以上的次数为X ,求随机变量X 的分布列和数学期望()E X .22.魔方,又叫鲁比克方块,最早是由匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授于1974 年发明的.魔方与华容道、独立钻石棋一起被国外智力专家并称为智力游戏界的三大不可思议,而魔方受欢迎的程度更是智力游戏界的奇迹.通常意义下的魔方,即指三阶魔方,为333⨯⨯的正方体结构,由26个色块组成.常规竞速玩法是将魔方打乱,然后在最短的时间内复原.截至2020年,三阶魔方还原官方世界纪录是由中国的杜宇生在2018年11月24日于芜湖赛打破的纪录,单次3.475秒.(1)某魔方爱好者进行一段时间的魔方还原训练,每天魔方还原的平均速度y (秒) 与训练天数x (天)有关,经统计得到如下数据:x (天)1 234 5 6 7y (秒)99 99 45 323024 21现用y a x=+作为回归方程类型,请利用表中数据,求出该回归方程,并预测该魔方爱好者经过长期训练后最终每天魔方还原的平均速度y 约为多少秒(精确到1) ?参考数据(其中1i iz x =)71i ii z y =∑z72217i i zz =-⨯∑184.50.37 0.55对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线ˆˆˆva u β=+的斜率和截距的最小二乘估计公式分别为:1221ˆˆˆ,ni i i nii u vnuv av u unu ββ==-==--∑∑.(2)现有一个复原好的三阶魔方,白面朝上,只可以扭动最外侧的六个表面.某人按规定将魔方随机扭动两次,每次均顺时针转动90︒,记顶面白色色块的个数为X,求X的分E X.布列及数学期望()23.某市有两家共享单车公司,在市场上分别投放了黄、蓝两种颜色的单车,已知黄、蓝两种颜色单车的投放比例为1:2.监管部门为了解两种颜色单车的质量,决定从市场中随机抽取5辆单车进行体验,若每辆单车被抽取的可能性相同.(1)求抽取的5辆单车中有3辆是蓝色单车的概率;(2)在骑行体验过程中,发现蓝色单车存在一定质量问题,监管部门决定从市场中随机抽取一辆送技术部门作进一步抽样检测并规定若抽到的是蓝色单车,则抽样结束,若抽取的是黄色单车,则将其放回市场中,并继续从市场中随机抽取下一辆单车,并规定抽样的次数最多不超过4次.在抽样结束时,已取到的黄色单车数量用ξ表示,求ξ的分布列及数学期望.24.2020年5月1日起,北京市实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类. 生活垃圾中有一部分可以回收利用,回收1吨废纸可再造出0.8吨好纸,降低造纸的污染排放,节省造纸能源消耗.某环保小组调查了北京市房山区某垃圾处理场2020年6月至12月生活垃圾回收情况,其中可回收物中废纸和塑料品的回收量(单位:吨)的折线图如图:(Ⅰ)现从2020年6月至12月中随机选取1个月,求该垃圾处理厂可回收物中废纸和塑料品的回收量均超过4.0吨的概率;(Ⅱ)从2020年6月至12月中任意选取2个月,记X为选取的这2个月中回收的废纸可再造好纸超过3.0吨的月份的个数. 求X的分布列及数学期望;(Ⅲ)假设2021年1月该垃圾处理场可回收物中塑料品的回收量为a吨. 当a为何值时,自2020年6月至2021年1月该垃圾处理场可回收物中塑料品的回收量的方差最小.(只需写出结论,不需证明)(注:方差()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为1x ,2x ,…… n x 的平均数)25.假设有3箱同种型号零件,里面分别装有50件、30件、40件,而且一等品分别有20件、12件和24件,现在任取一箱,从中不放回地先后取出两个零件,试求:(1)先取出的零件是一等品的概率; (2)两次取出的零件均为一等品的概率.26.为研究一种新药的耐受性,要对白鼠进行连续给药后观察是否出现F 症状的试验,该试验的设计为:对参加试验的每只白鼠每天给药一次,连续给药四天为一个给药周期,试验共进行三个周期.假设每只白鼠给药后当天出现F 症状的概率均为13,且每次给药后是否出现F 症状与上次给药无关.(1)从试验开始,若某只白鼠连续出现2次F 症状即对其终止试验,求一只白鼠至少能参加一个给药周期的概率;(2)若在一个给药周期中某只白鼠至少出现3次F 症状,则在这个给药周期后,对其终止试验,设一只白鼠参加的给药周期数为X ,求X 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知0.1,0.3μσ==,结合题意得出(0.20.4)68.27%P ξ-<<=,(0.50.7)95.45%P ξ-<<=,再由()(0.50.7)(0.20.4)0.40.72P P P ξξξ-<<--<<<<=,即可得出答案.【详解】由题意可知0.1,0.3μσ==则(0.20.4)68.27%P ξ-<<=,(0.50.7)95.45%P ξ-<<= 即()(0.50.7)(0.20.4)95.45%68.27%0.40.713.59%22P P P ξξξ-<<--<<-<<===故选:C 【点睛】本题主要考查了利用正态分布对称性求概率,属于中档题.2.B解析:B【分析】记事件A 为“至少有一个女孩”,事件B 为“另一个也是女孩”,分别求出A 、B 的结果个数,问题是求在事件A 发生的情况下,事件B 发生的概率,即求(|)P B A ,由条件概率公式求解即可. 【详解】解:一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}.记事件A 为“至少有一个女孩”,事件B 为“另一个也是女孩”,则{A =(男,女),(女,男),(女,女)},{B =(男,女),(女,男),(女,女)},{AB =(女,女)}.于是可知3()4P A =,1()4P AB =. 问题是求在事件A 发生的情况下,事件B 发生的概率,即求(|)P B A ,由条件概率公式,得()114334P B A ==.故选:B . 【点睛】本题的考点是条件概率与独立事件,主要考查条件概率的计算公式:()()()P AB P B A P A =,等可能事件的概率的求解公式:()mP M n=(其中n 为试验的所有结果,m 为基本事件的结果).3.C解析:C 【分析】设(1)P X p ==,(2)P X q ==,则由1(3)6P X ==,5()3E X =,列出方程组,求出p ,q ,即可求得()D X .【详解】设(1)P X p ==,(2)P X q ==,1563()23E X p q =++⨯=——①,又161p q ++=——② 由①②得,12p =,13q =,222111()(1)(25555333(9))2336D X ∴=-+-+-=故选:C. 【点睛】本题考查离散型随机变量的方差的求法,考查离散型随机变量的分布列、数学期望的求法等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.4.C解析:C 【分析】分别得到所有基本事件总数、4x y +>的基本事件个数、满足4x y +>且x y ≠的基本事件个数,根据古典概型概率公式计算可得()P AB 和()P A ;由条件概率公式计算可得结果. 【详解】先后抛掷骰子两次,正面朝上所得点数(),x y 的基本事件共有6636⨯=个 则4x y +≤的有()1,1、()1,2、()2,1、()2,2、()1,3、()3,1,共6个基本事件4x y ∴+>的基本事件共有36630-=个,其中x y =的有()3,3、()4,4、()5,5、()6,6,共4个∴满足4x y +>且x y ≠的基本事件个数为30426-=个()26133618P AB ∴==,()30153618P A == ()()()131318151518P AB P B A P A ∴=== 故选:C【点睛】本题考查条件概率的计算问题,涉及到古典概型概率问题的求解;关键是能够准确计算基本事件总数和满足题意的基本事件的个数.5.D解析:D 【分析】方格A 中的数字为1x ,方格B 中的数字为2x ;由题意可知:所填入的数字1x 与2x 相互独立.再利用数学期望的性质及其方差的性质即可得出. 【详解】方格A 中的数字为1x ,方格B 中的数字为2x ;由题意可知:所填入的数字1x 与2x 相互独立.命题1若p ,则由数学期望的性质可得:()()1122E x E x =,且()()()1212E x x E x E x +=+;命题2若P ,则由方差的性质可得:()()1124D x D x =,且()()()1212D x x D x D x +=+.因此命题1,2都正确. 故选:D. 【点睛】本题考查数学期望的性质及其方差的性质,考查逻辑推理能力和运算求解能力.6.C解析:C 【分析】利用条件概率公式,即可求得结论. 【详解】该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110, ∵设A 事件为下雨,B 事件为刮风,由题意得,P (A )415=,P (AB )110=, 则P (B |A )()()13104815P AB P A ===, 故选C . 【点睛】本题考查概率的计算,考查条件概率,考查学生的计算能力,属于基础题.7.C解析:C 【分析】利用古典概型概率公式计算出()P AB 和()P A ,然后利用条件概率公式可计算出结果. 【详解】事件:AB 前两次取到的都是一等品,由古典概型的概率公式得()232412A P AB A ==,由古典概型的概率公式得()34P A =,由条件概率公式得()()()142233P AB P B A P A ==⨯=, 故选C. 【点睛】本题考查条件概率公式求概率,解题时要弄清楚各事件之间的关系,关键在于灵活利用条件概率公式计算,考查运算求解能力,属于中等题.8.C解析:C 【分析】由离散型随机变量X 的分布列的性质求出x =0.1,由此能求得结果 【详解】由x +4x +5x =1得x =0.1, E(X)=0×0.1+1×0.4+2×0.5=1.4,D(X)=(0-1.4)2×0.1+(1-1.4)2×0.4+(2-1.4)2×0.5=0.44. 故选C 【点睛】本题主要考查了离散型随机变量的分布列的性质,由已知先求出x 的值,然后运用公式求得期望和方差,属于基础题.9.B解析:B 【分析】求概率密度函数在(1,3)的积分,求得概率. 【详解】由随机变量X 的概率密度函数的意义得3233111d xx e P e x ee---==-=⎰,故选B . 【点睛】随机变量X 的概率密度函数在某区间上的定积分就是随机变量X 在这一区间上概率.10.C解析:C 【解析】分析:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,利用古典概型概率公式求出()(),P A P AB 的值,由条件概率公式可得结果. 详解:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,()()31111,62224P A P AB ===⨯=, ()()()114|122P AB P B A P A ===,∴在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为12,故选C. 点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用,同时注意区分独立事件同时发生的概率与条件概率的区别与联系.11.A解析:A 【解析】分析:设事件A =“取到的两个为同一种馅”,事件B =“取到的两个都是腊肉馅”,求出22223241,10101010C C C P A P AB +====(),() ,利用()()|P AB P B A P A =(),可得结论. 详解:设事件A =“取到的两个为同一种馅”,事件B =“取到的两个都是腊肉馅馅”,由题意,22223241,10101010C C C P A P AB +====(),(),()()1|.4P AB P B A P A ∴==() 故选A .点睛:本题考查条件概率,考查学生的计算能力,正确运用公式是关键.12.C解析:C 【解析】分析:先求出u,σ,再根据(33)0.9974P X μσμσ-<≤+=和正态分布曲线求114分以上的成绩所占的百分比.详解:由题得u=102,4,σ=3114.u σ∴+= 因为(33)0.9974P X μσμσ-<≤+=,所以10.9974(114=0.00130.13%2P X ->==). 故答案为C.点睛:(1)本题主要考查正态分布曲线和概率的计算,意在考查学生对这些知识的掌握水平和数形结合思想方法.(2)利用正态分布曲线求概率时,要画图数形结合分析,不要死记硬背公式.二、填空题13.02【分析】根据随机变量X 服从正态分布可知正态曲线的对称轴是利用对称性可得结果【详解】随机变量服X 从正态分布正态曲线的对称轴是故答案为:02【点睛】本题考查了正态分布考查了计算能力属于一般题目解析:0.2 【分析】根据随机变量X 服从正态分布2(3),δN ,可知正态曲线的对称轴是3x =,利用对称性,可得结果. 【详解】随机变量服X 从正态分布2(3),δN ,正态曲线的对称轴是3x =(35)(13)0.3≤<=<≤=P X P X ,(5)0.5(35)0.2>=-≤<=P X P X故答案为:0.2 【点睛】本题考查了正态分布,考查了计算能力,属于一般题目.14.【分析】利用列举法求出已知这个家庭有一个是女孩的条件下基本事件总数n=3这时另一个也是女孩包含的基本事件个数m=1由此能求出已知这个家庭有一个是女孩的条件下这时另一个也是女孩的概率【详解】一个家庭有解析:13【分析】利用列举法求出已知这个家庭有一个是女孩的条件下,基本事件总数n =3,这时另一个也是女孩包含的基本事件个数m =1,由此能求出已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率. 【详解】一个家庭有两个小孩,假设生男生女是等可能的, 基本事件有: {男,男},{男,女},{女,男},{女,女}, 已知这个家庭有一个女孩的条件下,基本事件总数n =3 , 这时另一个也是女孩包含的基本事件个数m =1,∴已知这个家庭有一个女孩的条件下,这时另一个也是女孩的概率是13m p n ==, 故答案为:13【点睛】本题主要考查了条件概率,可以列举在某条件发生的情况下,所有事件的个数及所研究事件的个数,利用古典概型求解,属于中档题.15.【分析】本题利用条件概率公式求解【详解】至少出现一个5点的情况有:至少出现一个5点的情况下三个点数之和等于15有一下两类:①恰好一个5点则另两个点数只能是4和6共有;②恰好出现两个5点则另一个点数也 解析:113【分析】本题利用条件概率公式()(|)()n AB P A B n B =求解. 【详解】至少出现一个5点的情况有:336591-=,至少出现一个5点的情况下,三个点数之和等于15有一下两类:①恰好一个5点,则另两个点数只能是4和6,共有11326C C ⨯=;②恰好出现两个5点,则另一个点数也只能是5点,共有1种情况.()611(|)()9113n AB P A B n B +∴===, 故答案为:113. 【点睛】本题考查条件概率的公式,需要求出基本事件的个数,运用正难则反的思想.16.【分析】根据计算得到再计算得到答案【详解】则;故故答案为:【点睛】本题考查了方差的计算意在考查学生的计算能力 解析:12【分析】根据()()3124P P ξξ=+==,()()()1221P E P ξξξ=+===计算得到 ()()111,224P P ξξ====,再计算()D ξ得到答案.【详解】()104P ξ==,则()()3124P P ξξ=+==;()()()1221P E P ξξξ=+===故()()111,224P P ξξ====.()()()()22211111011214242D ξ=-+-+-=故答案为:12【点睛】本题考查了方差的计算,意在考查学生的计算能力.17.23【分析】根据正态分布的对称性求得成绩在分以上的概率为进而可求得成绩在分以上的考生人数得到答案【详解】由题意某次成绩X 近似服从正态分布即所以在区间的概率为所以成绩在分以上的概率为则成绩在分以上的考解析:23 【分析】根据正态分布的对称性,求得成绩在630分以上的概率为0.023,进而可求得成绩在630分以上的考生人数,得到答案. 【详解】由题意,某次成绩X 近似服从正态分布2(530,50)N ,即530,50μσ==,所以在区间(430,630)的概率为0.954, 所以成绩在630分以上的概率为10.9540.0232-=,则成绩在630分以上的考生人数约为10000.02323⨯=人. 【点睛】本题主要考查了正态分布的性质的应用,以及3σ原则的应用,其中解答中熟记正态分布的对称性,合理应用是解答的关键,着重考查了推理与运算能力,属于基础题.18.【解析】分析:随机变量根据曲线的对称性得到根据概率的性质得到结果详解:由题意所以因为随机变量所以曲线关于对称所以点睛:本题主要考查了正态分布曲线的特点及曲线所表示的意义其中利用正态分布曲线的对称性是解析:16【解析】分析:随机变量()10,1X N ~,根据曲线的对称性得到()()1190.5(910)P X P X P X ≥=≤=-≤<,根据概率的性质得到结果.详解:由题意1144191|3a ===,所以1(910)3P X ≤<=, 因为随机变量()10,1X N ~,所以曲线关于10x =对称, 所以()()11190.5(910)6P X P X P X ≥=≤=-≤<=. 点睛:本题主要考查了正态分布曲线的特点及曲线所表示的意义,其中利用正态分布曲线的对称性是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.三、解答题19.(1)310;(2)分布列见解析,期望值245,3350. 【分析】(1)首先事件甲、乙两位同学共答对2个问题,分为两人各答对1题,或是乙答对2题,再求互斥事件和的概率;(2)由条件可知3,4,5,6X =,再根据随机变量对应的事件,分别求概率,再列出分布列,并计算数学期望,根据分布列,列出该学校为优秀的概率. 【详解】(1)记“甲、乙两位同学共答对2题”为事件A ,则()()111122324124225310C C C C C C P M C ⋅⋅⋅+⋅==(2)由题意可知随机变量X 的可能取值为3、4、5、6,()()211224153251325C C C C P X C ⋅⋅⋅===()()3410P X P M ===()()211211223415324532512525C C C C C C C C P X C ⋅⋅⋅+⋅⋅⋅===()()2223453259650C C C P X C ⋅⋅===所以,随机变量X 的分布列如下表所示:13129243456251025505EX =⨯+⨯+⨯+⨯= A 校为优秀的概率()()1293356255050P X P X =+==+=. 【点睛】关键点点睛:本题的关键是分清随机变量代表的事件,其中容易错的是乙同学会5题中的四个题,所以两个题,至少会一题. 20.(1)分布列答案见解析,数学期望:203;(2)证明见解析. 【分析】(1)首先确定X 的所有可能取值5,6,7,8,9,10X =,根据概率公式分别求出对应发生的概率,列出分布列,即可求出数学期望;(2)根据已知的关系,求出1i P +与i P ,1i P -的关系式112133i i i P P P +-=+,再通过化简和等比数列的定义求解即可. 【详解】解:(1)依题意可得,5,6,7,8,9,10X =,55552232(5)33243P X C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,4445212180(6)53333243P X C ⎛⎫⎛⎫⎛⎫===⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 32352180(7)33243P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()23252140833243P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()4152110933243P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()50511103243P X C ⎛⎫=== ⎪⎝⎭, 则X 的分布列如表所示.()56789102432432432432432433E X =⨯+⨯+⨯+⨯+⨯+⨯=. (2)处于第1i 个等级有两种情况: 由第i 等级到第1i等级,其概率为23i P ; 由第1i -等级到第1i 等级,其概率为113i P -;所以112133i i i P P P +-=+,所以()1113i i i i P P P P +--=--,即1113i i i i P P P P +--=--. 所以数列{}1i i P P --为等比数列. 【点睛】本题考查概率公式、随机变量的分布列及数学期望,考查运算求解能力、数据处理能力,考查数学运算、逻辑推理核心素养.其中第二问解题的关键在于寻找1i P +与i P ,1i P -的关系式,即:()1121233i i i P P P i +-=+≥,进而根据等比数列的定义证明. 21.(1)选派乙参赛更好,理由见解析;(2)分布列见解析,()25E X =. 【分析】(1)计算出甲、乙两人5次测试的成绩的平均分与方差,由此可得出结论;(2)由题意可知,随机变量X 的取值有0、1、2,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可计算得出()E X . 【详解】(1)甲5次测试成绩的平均分为555876889236955x ++++==甲,方差为22222213693693693693695704555876889255555525s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦甲,乙5次测试成绩的平均分为658287859541455x ++++==乙,方差为22222214144144144144142444658285879555555525s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦乙,所以,x x <甲乙,22s s >甲乙,因此,选派乙参赛更好;(2)由题意可知,随机变量X 的可能取值有0、1、2,()24160525P X ⎛⎫=== ⎪⎝⎭,()148125525P X ==⨯⨯=,()2112525P X ⎛⎫=== ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:因此,()0122525255E X =⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.22.(1)100ˆ13y x=+,每天魔方还原的平均速度y 约为13秒;(2)分布列见解析,509. 【分析】(1)利用题设中的数据清除y 的平均值,进而可以求出ˆb的值和ˆa 的值,即可求解; (2)写出随机变量X 的可能取值,求出对应的概率,得出分布列,利用期望的公式,即可求解. 【详解】(1)由题意,根据表格中的数据,可得99994532302421507y ++++++==,可得7172217184.570.375055ˆ1000.550.557i ii i i z y z ybz z==-⋅-⨯⨯====-∑∑,所以501000.3713a y bz =-=-⨯=,因此y 关于x 的回归方程为:100ˆ13yx=+, 所以最终每天魔方还原的平均速度y 约为13秒 (2)由题意,可得随机变量X 的取值为3,4,6,9,可得141(3)669A P X ===⨯,1422(4)669A P X ⨯===⨯,()111142241205(6)66369A A A A P X ++====⨯,11221(9)669A A P X ⨯===⨯, 所以X 的分布列为所以()346999999E X =⨯+⨯+⨯+⨯=. 【点睛】求随机变量X 的期望与方差的方法及步骤: 理解随机变量X 的意义,写出X 可能的全部值; 求X 取每个值对应的概率,写出随机变量的分布列; 由期望和方差的计算公式,求得数学期望()(),E X D X ;若随机变量X 的分布列为特殊分布列(如:两点分布、二项分布、超几何分布),可利用特殊分布列的期望和方差的公式求解. 23.(1)80243;(2)分布列答案见解析,数学期望:4081. 【分析】(1)利用独立重复试验的概率公式可求得所求事件的概率;(2)由题可知,随机变量ξ的可能取值有0、1、2、3、4,计算出随机变量ξ在不同取值下的概率,由此可得出随机变量ξ的分布列和期望. 【详解】(1)因为随机地抽取一辆单车是蓝色单车的概率为23,用X 表示“抽取的5辆单车中蓝色单车的个数”,则X 服从二项分布,即2~5,3X B ⎛⎫ ⎪⎝⎭, 所以抽取的5辆单车中有3辆是蓝色单车的概率为3235218033243C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; (2)随机变量ξ的可能取值为:0、1、2、3、4.()203p ξ==,()1221339p ξ==⨯=,()212223327p ξ⎛⎫==⨯= ⎪⎝⎭, ()312233381p ξ⎛⎫==⨯= ⎪⎝⎭,()4114381p ξ⎛⎫=== ⎪⎝⎭.所以ξ的分布列如下表所示:()012343927818181E ξ=⨯+⨯+⨯+⨯+⨯=.【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 24.(Ⅰ)17;(Ⅱ)分布列见解析,67;(Ⅲ) 4.4a =. 【分析】(Ⅰ)这是一个古典概型,共有7个月,该垃圾处理厂可回收物中废纸和塑料品的回收量均超过4.0吨的只有8月份,然后代入公式求解.(Ⅱ)先得到6月至12月回收的废纸可再造好纸超过3.0吨的月份有:7月、8月、10月,共3个月,则X 的所有可能取值为0,1,2,再分别求得相应的概率,列出分布列,再求期望.(Ⅲ)根据添加的新数a 等于原几个数的平均值时,方差最小求解. 【详解】(Ⅰ)记“该垃圾处理厂可回收物中废纸和塑料品的回收量均超过4.0吨”为事件A 由题意,只有8月份的可回收物中废纸和塑料品的回收量均超过4.0吨 所以1()7P A =. (Ⅱ)因为回收利用1吨废纸可再造出0.8吨好纸。
人教B版数学选修2-3《1.1基本计数原理》说课稿各位老师,大家好,我今天说课的课题是《基本计数原理》,我将从教材、学情、教学策略、教学过程、板书设计、教学反思等几个方面对本节课进行说明。
一、教材分析本节课是人教B版的数学教材选修2-3第一章第一节第一课,本节课所讲授的两个基本计数原理,即分类加法原理与分步乘法原理,是本章继续学习排列、组合的基础,学生能否理解并能应用两个基本原理,是学好本章知识的一个关键,本节课建议安排两课时,本节为第一课时,根据其在教材中的地位,结合课标的要求,设置了如下的教学目标:1、知识目标理解分类加法计数原理和分步乘法计数原理,并能应用两个基本原理分析、解决一些简单的应用问题。
2、能力目标在概念形成的过程中培养学生的总结与概括能力,在解决实际问题过程中锻炼学生逻辑思维能力。
3、情感目标让学生体验知识从生活中来又应用到生活中去得过程,培养学生用数学的眼光观察世界和用数学的思想思考世界的习惯。
教学重点是两个基本计数原理的内容。
难点是如何正确是用两个基本计数原理来解决实际问题。
二、学情分析高二学段的高中生已经具备较好的计算能力和基本的逻辑思维能力,但是对于实际问题的生活背景了解不多,对问题中创设的实际背景和如何完成一件事的含义的理解将成为学生运用两个基本计数原理解决问题是的瓶颈,所以找到如何完成一项实际任务的方法,是应用过程中难点。
三、教学策略本课由于内容比较简单学生通过预习多都能够看懂,在实际授课时,我将使用更能贴近学生生活的实例,以激发学生的求知欲和学习热情。
采用教师启发、学生小组合作学习方式进行教学,利用多媒体课件展示引例的问题环境,引导学生思维,具体的分析比较进而归纳出两个基本计数原理,遵循从特殊到一般的思维过程,在学生现有的认知基础上,促使其获取知识,让学生始终保持高水平的思维活动水平,增强学习效果。
四、教学过程1、设置情景,引入新课使用多媒体课件展示郑板桥《咏雪》让学生齐读古诗并请学生对古诗进行自由鉴赏。
高二数学理科选修2-3第二章、第三章综合测试卷一、选择题(本大题共12小题,每小题5分,共60分)1.在一次试验中,测得()x y ,的四组值分别是A (1,2),B (3,4),C (5,6)D (7,8),则y 与x 之间的回归直线方程为( ) A. 1y x =+$B. $2y x =+C. $21y x =+D. ˆ1yx =- 2.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:则认为多看电视与人冷漠有关系的把握大约为 ( ) A. 90%B. 97.5%C. 95%D. 99.9%3.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是( )A. 列联表中c 的值为30,b 的值为35B. 列联表中c值为15,b 的值为50C. 根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”D. 根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系”4.有下列数据下列四个函数中,模拟效果最好的为( )A . 132x y -=⨯B. 2log y x =C. 3y x =D. 2y x =5. .盒子里有25个外形相同的球,其中10个白的,5个黄的,10个黑的,从盒子中任意取出一球,已知它不是白球,则它是黑球的概率为 A.15B.25C.13D.236.将一颗质地均匀的骰子先后抛掷3次,至少出现一次6点向上的概率是( ) A.91216B.31216C.25216D.52167.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A. 0.1536B. 0.1808C. 0.5632D. 0.97288.已知随机变量X 的分布,则()E X = ( )A. 0B. -0.2C. -1D. -0.39.随机变量()~,Y B n p ,且()()3.6, 2.16E Y D Y ==,则此二项分布是 ( ) A (4,0.9)BB. (9,0.4)BC. (18,0.2)BD. (36,0.1)B10. 某市期末教学质量检测,甲、乙、丙三科考试成绩近似服从正态分布,则由如图曲线可得下列说法中正确的是( )A. 甲学科总体的方差最小B. 丙学科总体的均值最小C. 乙学科总体的方差及均值都居中D. 甲、乙、丙的总体的均值不相同 11.已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( ) (附:若随机变量ξ服从正态分布()2,Nμσ,则()68.26%P μσξμσ-<<+=,()2295.44%P μσξμσ-<<+=.) A. 4.56% B. 13.59%C. 27.18%D. 31.74%12.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布()0,1N 的密度曲线)的点的个数的估计值为( )A. 2386B. 2718C. 3413D. 4772二、填空题(本大题共4小题,每小题5分,共20分)13.关于x 与y ,有如下数据有如下的两个模型:(1)ˆ 6.517.5yx =+;(2)ˆ717y x =+.通过残差分析发现第(1)个线性模型比第(2)个拟合效果好,则21R ________22R ,1Q ______2Q (用大于,小于号填空,,R Q是相关指数和残差平方和)x2 4 5 6 8 y304060507014.已知随机变量X 服从正态分布N(0,σ2)且P(-2≤X≤0)=0.4,则P(X>2)=____________. 15.若以连续掷两次骰子分别得到的点数,m n 作为P 的坐标,则点P 落在圆2216x y +=内的概率_________.16.100件产品中有5件次品,不放回地抽取2次,每次抽1件.已知第1次抽出的是次品,则第2次抽出正品的概率是_________.三、解答题(本大题共6小题,共70分)17.编号为1,2,3的三位学生随机入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是ξ.(1)求随机变量ξ的概率分布; (2)求随机变量ξ的数学期望和方差.18. 某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银行卡被锁定的概率;(Ⅱ)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.19.有20件产品,其中5件是次品,其余都是合格品,现不放回的从中依次抽2件.求:(1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率. 20.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23. (1)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望; (2)求乙至多击目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.21.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出4人中种子选手的人数,求随机变量X 的分布列和数学期望.22. 某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程ˆy=bx+a;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?。
选修2 — 3综合素质测试木测试仅供教师备用,学生书中没有。
时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有 一项是符合题目要求的•)1. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有 ()A. 192 种B. 216 种C. 240 种D. 288 种[答案]B[解析]分两类:最左端排甲有Al=20种不同的排法,最左端排乙,由于甲不能排在最右 端,所以有C ;A : = 96种不同的排法,由加法原理可得满足条件的排法共有216种.2. (2015 •新课标II 理,3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论屮不正确的是()A. 逐年比较,2008年减少二氧化硫排放量的效果最显著B. 2007年我国治理二氧化硫排放显现成效C. 2006年以来我国二氧化硫年排放量呈减少趋势D. 2006年以来我国二氧化硫年排放量与年份正相关 [答案]D[解析]考查正、负相关及对柱形图的理解.由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关, 故选0.3. (0—276 (^e R )展开式中的常数项是() A. -20 B. -15 C. 15D. 202 7002 600- 2 500- 2 4()0・ 2 300・ 2 200- 2 100- 2 000- 2004年2005年 2006年2007年2008年2009年 2010年 2011 年 2012 年 2013年[答案]C[解析]本小题考查二项展开式的指定项的求法.九=以(們宀・(一2一丁=賦一1)空心化 令 12—3厂=0, Ar=4, ・・・%=a=15.n v4. 设随机变量才服从二项分布X 〜B5, p ),则 一等于() A. 6 B.仃一Q ), C. 1-p D.以上都不对[答案]Bn v[解析]因为 X 〜BG p ), (ZO )2=["(l —刀)]2, UU ))2=(%)2,所以 _ = 血□]二(1-旅故选氏"P5-某地区空气质量监测资料表明,一夭的空气质量为优良的概率是0. 75,连续两天为优良的 概率是0・6,已知某夭的空气质量为优良,则随后一天的空气质量为优良的概率是()B. 0. 75C. 0.6D. 0. 45[答案]A[解析]木题考查条件概率的求法.设弭=“某一天的空气质量为优良” ,3= “随后一天的空气质量为优2 ,则P(B\A)=P =拾=0.8,故选 A.6. (2015 •广东理,4)袋中共冇15个除了颜色外完全相同的球,其中冇10个白球,5个红11 c-刃 [答案]B[解析]从袋中任取2个球共有C215 = 105种,其中恰好1个白球1个红球共有C110C15 = 50种,所以恰好1个白球1个红球的概率为語=普,故选B.7. 某校高三年级举行一次演讲比赛共有10位同学参赛,其中一班有3位,二班有2位,其他 班有5位,若采用抽签方式确定他们的演讲顺序,则一班3位同学恰好被排在一起,而二班2位同 学没A. 0.8 球•从袋中任取2个球, 所取的2个球中恰有1个白球,1个红球的概率为(A.5 21B. 102? D. 1有被排在一起的概率为()A丄B丄10 20[答案]B[解析]基本事件总数为A 粘而事件力包括的基本事件可按“捆绑法”与“插空法”求解. 10个人的演讲顺序有A 幣种可能,即基本事件总数为A ;:, —班同学被排在-•起,二班的同学没有被排在一起这样来考虑:先将一班的3位同学当作一个元素与其他班的5位同学一起排列有皿 种,二班的2位同学插入到上述6个元素所留7个空当中,有朋种方法.依分步计数原理得不同的战・・住 1排法有皿•用•為中.・••所求概率A .o故选B.8. 为了评价某个电视栏目的改革效果,在改革前后分别从居民点随机抽取了 100位居民进行 调查,经过计算 疋的观测值 塔=99,根据这一数据分析,下列说法正确的是()A. 有99%的人认为该栏日优秀B. 有99%的人认为栏目是否优秀与改革有关C. 冇99%的把握认为电视栏冃是否优秀与改革冇关系D. 以上说法都不对 [答案]C[解析]当">6.635时有99%的把握认为电视栏冃是否优秀与改革有关系.故选C.9. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局 才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为()1 A.-D.[答案]D局甲赢和第一局甲没赢,第二局甲贏.・・・Q*+*X(1-寺岭 选D.10. (2015 •新课标I 理,4)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某 同学每次投篮投屮的概率为0.6, 口各次投篮是否投屮相互独立,则该同学通过测试的概率为B. 0. 432D.1 120B. [解析] 考查互斥事件的概率加法公式. 甲获得冠军包括两种情况:在接下来的比赛屮,第一A. 0. 648C.0. 36D. 0.312 [答案]A[解析1考查独立重复试验;互斥事件和概率公式.根据独立重复试验公式得,该同学通过测试的概率为C^O. 62X0.4 + 0.6;5=0. 648,故选A.11. 如图,已知面积为1的正三角形昇%三边的屮点分别为〃、E 、F,从畀,B, C, D, E, F 六个点中任取三个不同的点,所构成的三角形的面积为才(三点共线时,规定/=0),则E3 = ()11[答案]B1 I3 3[解析]由题意知尤可取0,1,戶(*=0)=忑=帀W_| 20=?12. 已知(1 —2方〃的展开式中,奇数项的二项式系数之和是64,则(1 —2方”(1 +力的展开式 中,卫的系数为()A. -672B. 672C. -280 [答案]D[解析]由2宀=64,所以/7-1=6, n=l.则(1一2方"1+0的展开式中含"的项为:C?(- 2"+C ;(—2力S= (24C}-23C?)?=280y,所以”的系数为 280.故选 D.二、填空题(本大题共4个小题,每小题4分,共16分,将止确答案填在题中横线上) 13. (2015 •广东理,13)己知随机变量才服从二项分布B5, p ).若以力=30,=20,则p= _________ -z 1、 6=20 = 3T oz 、 1 'm=1)=20-3 To J_13 20 = 40*D. 2809[答案]I[解析]依题可得=%=30且〃(x)=®仃一p) =20,解得p=|.14. 如下图,A. B 、a 〃为海上的四个小岛,要建三座桥,将这四个小岛连接起来,则不同[答案]16[解析]一类:从一个岛出发向其它三岛各建一桥.共有C=4种;二类:一个岛最多建两座桥如〃一旷—〃与这样两个排列对应一种建桥方法,因 此共有¥=12种,据分类计数原理共有16种.15. 设/为平面上过点(0,1)的直线,/的斜率等可能地取一2萌、—£、—爭、0、平羽、2品 用§表示坐标原点到/的距离,则随机变量§的数学期望£(§) =[答案] 求数学期望,关键是求出其分布列.根据题意,先确定§的所有可能的取值,再计算概率,从而列出分布列.当Z 的斜率&为土2応时,直线方程为土2侮一y+l=0,此时/=*; k=±书时,k2寸,厶=亍;&=0时,d ;=\.由等可能事件的概率可得分布列如卜•:4丄3 丄2 23 1P2 2 2 1 7777z rX 12,1 2,2 2 , ...Mn=-x 7+-x ?+-x-+ix ?=-16. (2015 •上海理,11)在(1+龙+古『°的展开式中,"项的系数为 示) [答案]45的建桥方案共有 种.[解析](结果用数值表[解析]因为(1+卄占)”=[(1+力+占]”=(1+方” + (:;。
山东省新人教B 版2012届高三单元测试22
选修2-3第二章《概率》
(时间120分钟 满分150分)
一、选择题(本大题共10小题,每小题5分,共50分)
1、给出下列四个命题: ①15秒内,通过某十字路口的汽车的数量是随机变量;
②在一段时间内,某侯车室内侯车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量. 其中正确的个数是( ) A.1 B.2 C.3 D.4
2、已知10件产品中有3件次品,从中任取2件,取到次品的件数为随机变量,用X 表示,那么X 的取值为 ( ) A. 0,1 B. 0,2 C. 1,2 D. 0,1,2
3、甲、乙两人独立解答某道题,解错的概率分别为a 和b ,那么两人都解对此题的概率是( ) A .1-ab B .(1-a )(1-b ) C .1-(1-a )(1-b ) D .a (1-b )+b (1-a )
4、在15个村庄中,有7个村庄不太方便,现从中任意选10个村庄,用X 表示这10个村庄
中交通不方便的村庄数,下列概率等于46
781015
C C C 的是 ( )
A. (2)P X =
B. (2)P X ≤
C. (4)P X =
D. (4)P X ≤
5、盒子里有25个外形相同的球,其中10个白的,5个黄的,10个黑的,从盒子中任意取出一球,已知它不是白球,则它是黑球的概率为 ( ) A.
15 B.25 C. 13 D. 23 6、将一颗质地均匀的骰子先后抛掷3次,至少出现一次6点向上的概率是 ( ) A.
5216 B.25215 C. 31216 D. 91
216
7、一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机
床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A. 0.1536 B. 0.1808 C. 0.5632 D. 0.9728 8、已知随机变量X
则()E X 等于 ( )
A. 0
B. -0.2
C. -1
D. -0.3
9、随机变量Y ~),(p n B ,且() 3.6E Y =,16.2)(=Y D ,则此二项分布是 ( )
A. (4,0.9)B
B. (9,0.4)B
C. (18,0.2)B
D. (36,0.1)B
10、某市期末教学质量检测,甲、乙、丙三科考试成绩近似服从正态分布,则由如图曲线可
得下列说法中正确的是( )
A.甲学科总体的方差最小 B.丙学科总体的均值最小
C.乙学科总体的方差及均值都居中 D.甲、乙、丙的总体的均值不
二、填空题(本大题共5小题,每小题5分,共25分)
11、某射手射击1次,击中目标的概率是0.9 .她连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是3
0.90.1⨯;③他至少击中目标1次的概率是4
10.1-.其中正确结论的序号是___________。
(写出所有正确结论的序号).
12、已知随机变量X ~2(0)N σ,且(20)P X -≤≤0.4=则(2)P X >= .
13、若以连续掷两次骰子分别得到的点数m ,n 作为P 的坐标,则点P 落在圆1622=+y x 内的概率___________。
14、100件产品中有5件次品,不放回地抽取2次,每次抽1件.已知第1次抽出的是次品,则第2次抽出正品的概率是 .
15、若(0)1P X p ==-,(1)P X p ==,则(23)E X -= 三、解答题(本大题共5小题,每小题15分,共75分)
16、(本题满分15分)设A 、B 、C 3个事件两两相互独立,事件A 发生的概率是2
1
,A 、B 、C 同时发生的概率是
241,A 、B 、C 都不发生的概率是4
1。
(1)试分别求事件B 和事件C 发生的概率。
(2)试求A ,B ,C 中只有一个发生的概率。
17、(本题满分15分)编号为1,2,3的三位学生随意入坐编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是ξ.
(1)求随机变量ξ的概率分布;(2)求随机变量ξ的数学期望和方差。
18、(本题满分15分)有20件产品,其中5件是次品,其余都是合格品,现不放回的从中依次抽2件.求:⑴第一次抽到次品的概率;⑵第一次和第二次都抽到次品的概率;⑶在第一次抽到次品的条件下,第二次抽到次品的概率.
19、(本题满分15分)甲、乙两人各进行3次射击,甲每次击中目标的概率为1
2
,乙每次击
中目标的概率为2
3
,(1)记甲击中目标的次数为X,求X的概率分布及数学期望()
E X;
(2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率.
20、(本题满分15分)袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是
3
1
,从B 中摸出一个红球的概率为p . (Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次.(i )恰好有3次摸到红球的概率;(ii )第一次、第三次、第五次摸到红球的概率.
(Ⅱ) 若A 、B 两个袋子中的球数之比为1:2,将A 、B 中的球装在一起后,从中摸出一个红球的概率是2
5
,求p 的值.
参考答案
一、选择题:DDBCD DDBBA
二、填空题:11、①③ 12、0.1 13、
92 14、99
95
15、32-p 16.解:设事件B 发生的概率为P 1,事件C 发生的概率为P 2,则24
1
2121=P P
(1-21)(1-1P )
(1-P 2)=41即 ⎪⎪⎩⎪⎪⎨⎧
==+12112
72121P P P P 解得⎪⎪⎩⎪⎪⎨⎧==314121P P 或⎪⎪⎩
⎪⎪⎨⎧==413121P P 故事件B 、C 发生的概率分别为4
13131
41,或, 。
(
2
)
P=P
(
-
-C B A ··+-
-
C
B A ··+
C
B A ··-
-)
=2411)311)(211(41)411)(211(31)411)(311(21=--+--+-- 17、解:(1)312)0(33===A P ξ;2
1
)1(331
3===A C P ξ,0)2(==ξP ;
6
1
1)3(3
3==
=A P ξ;所以概率分布列为:
(2).16321=⨯+⨯
=ξE .16
1
)13(0)21(21)11(31)01()(2222=⋅-+⋅-+⋅-+⋅-=ξD
18.解:设第一次抽到次品为事件A,第二次都抽到次品为事件B.
⑴第一次抽到次品的概率()51.204p A == ⑵19
1)()()(==B P A P AB P ⑶在第一次抽到次品的条件下,第二次抽到次品的概率为()114.19419
p B A =
÷= 19
()0123 1.58888E X =⨯+⨯+⨯+⨯=或()3 1.52
E X =⨯=
(2)乙至多击中目标2次的概率为33
32191()327
C -=
(3)设甲恰好比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件1B ,甲恰击中目标3次且乙恰击中目标1次为事件2B ,则12A B B =+,
1B 、2B 为互斥事件,1231121
()()()8278924
P A P B P B =+=
+= 20.解:(Ⅰ)(ⅰ) 3
2
351240.33243C ⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ⅱ)3
11327
⎛⎫= ⎪⎝⎭.
(Ⅱ)设袋子A 中有m 个球,袋子B 中有2m 个球,由1
22
335
m mp m +=,得1330p =。