等可能事件的概率教案
- 格式:doc
- 大小:18.00 KB
- 文档页数:3
随机事件的概率(3)——等可能事件的概率(2)一、课题:随机事件的概率(3)——等可能事件的概率(2)二、教学目标:1.巩固等可能性事件及其概率的概念;2.掌握排列组合的基本公式计算等可能性事件概率的基本方法与求解的一般步骤。
三、教学重、难点:等可能性事件概率的定义和计算方法;排列和组合知识的正确运用。
四、教学过程:(一)复习:1.基本事件、等可能性事件的概念;2.等可能性事件的概率公式及一般求解方法;3.练习:(1)甲、乙、丙、丁四人中选3名代表,写出所有的基本事件,并求甲被选上的概率。
解:基本事件:甲、乙、丙;甲、乙、丁;甲、丙、丁;乙、丙、丁分别选为代表,其中甲被选上的事件个数为3,所以,甲被选上的概率为34.(2)下列命题:①任意投掷两枚骰子,出现点数相同的概率是16;②自然数中出现奇数的概率小于出现偶数的概率;③三张卡片的正、反面分别写着1、2;2、3;3、4,从中任取一张朝上一面为1的概率为16;④同时投掷三枚硬币,其中“两枚正面朝上,一枚反面朝上”的概率为38,其中正确的有①③④(请将正确的序号填写在横线上).(二)新课讲解:例1 在100件产品中,有95件合格品,5件次品,从中任取2件,计算:(1)2件都是合格品的概率;(2)2件是次品的概率;(3)1件是合格品,1件是次品的概率。
解:(1)记事件1A=“任取2件,2件都是合格品”,∴2件都是合格品的概率为29512100893 ()990CP AC==.(2)记事件2A=“任取2件,2件都是次品”,∴2件都是次品的概率为25321001 ()495CP AC==.(3)记事件3A=“任取2件,1件是合格品,1件是次品”∴1件是合格品,1件是次品的概率119553210019 ()198C CP AC⋅==.例2 储蓄卡上的密码是一种四位数字号码,每位上的数字可以在0至9这10个数字中选出,(1)使用储蓄卡时,如果随意按下一个四位数字号码,正好按对着张储蓄卡的密码的概率是多少?(2)某人未记住储蓄卡的密码的最后一位数字,他在使用这张储蓄卡时,如果前三位号码仍按本卡密码,而随意按下最后一位数字,正好按对密码的概率是多少? 解:(1)由分步计数原理,这种四位数字号码共410个,又由于随意按下一个四位数字号码,按下其中哪一个号码的可能性都相等,∴正好按对密码的概率是14110P =; (2)按最后一位数字,有10种按法,且按下每个数字的可能性相等,∴正好按对密码的概率是2110P =. 例3 7名同学站成一排,计算:(1)甲不站正中间的概率;(2)甲、乙两人正好相邻的概率; (3)甲、乙两人不相邻的概率。
6.3 等可能事件的概率(第3课时与面积相关的等可能事件的概率)教学目标1.让学生了解与面积有关的一类事件发生概率的计算方法,并能进行简单计算.2.让学生学会运用与面积有关的概率解决实际问题.教学重点难点重点:能计算与面积有关的一类事件发生的概率.难点:能设计符合要求的简单概率模型.课时安排1课时教学过程导入新课必然事件发生的概率为1,记作P(必然事件)=1.不可能事件的概率为0,记作P(不可能事件)=0.如果A为随机事件,那么0<P(A)<1.探究新知【互动】(小组讨论)(1)如图是卧室和书房地板的示意图,图中每一块方砖除颜色外完全相同,小猫分别在卧室和书房中自由地走来走去,并随意停留在某块方砖上.在哪个房间里,小猫停留在黑砖上的概率大?(2)假如小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上,它最终停留在黑色方砖上的概率是多少?(图中每一块方砖除颜色外完全相同)(3)①小猫在同样的地板上走来走去,它最终停留在白色方砖上的概率是多少?②小明认为①的结果与下面发生的概率相等:袋中装有12个黑球和4个白球,这些球除颜色外都相同,从中任意摸出一球是黑球.你同意吗?【互动探索】(引发学生思考)根据随机事件概率大小的求法,找准两点:①符合条件的情况数;②全部情况的总数,二者的比值就是其发生的概率的大小.解:(1)在卧室房间里,小猫停留在黑砖上的概率大.(2)P(停在黑砖上)=41=164(3)①P(停在白砖上)=123=②同意164【归纳】(老师点评总结)几何图形中的概率计算公式:P (A )=A 事件发生的所有可能结果所组成的图形的面积所有可能结果所组成的图形的总面积.利用公式求几何概率通常分为三步:(1)分析事件所占面积与总面积的关系;(2)计算出各部分的面积;(3)代入公式求出几何概率.【互动】(小组讨论)某商场柜台为了吸引顾客,打出了一个小广告如下: 本专柜为了感谢广大消费者的支持和厚爱,特举行购物抽奖活动,中奖率100%,最高奖为50元购物券.具体方法是:顾客每购买100元的商品,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准黄、红、绿、白色区域,顾客就可以分别获得50元、20元、10元、5元的购物券.(转盘的各个区域均被等分)请根据以上信息,解答下列问题:(1)小亮的妈妈购物150元,她获得50元、5元购物券的概率分别是多少? (2)请在转盘的适当地方写上一个区域的颜色,使得自由转动这个转盘,当它停止转动时,指针落在某一区域的事件发生概率为38,并说出此事件.【互动探索】(引发学生思考)(1)根据随机事件概率大小的求法,找准两点:①符合条件的情况数;②全部情况的总数,二者的比值就是其发生的概率的大小;(2)指针落在某一区域的事件发生概率为38,则该区域应该有6份,据此解答即可.解:(1)因为转盘被等分为16份,黄色占1份,白色占11份,所以获得50元、5元购物券的概率分别是116,1116. (2)根据概率的意义可知,若指针落在某一区域的事件发生概率为38,那么该区域应有16×38=6(份).根据等级越高,中奖概率越小的原则,此处应涂绿色,事件为获得10元购物券.【归纳】(老师点评总结)(1)转盘问题中的概率计算:指针停留在某扇形内的概率等于该扇形的面积除以圆的面积,即P(指针停留在某扇形内)=某扇形的面积圆的面积=某扇形所占圆的份数总份数.(2)转盘中哪种区域的面积越大,则指针指向哪种区域的概率越大;(3)根据几何概率的大小设计概率模型就是选定一个图形,再分割图形,使其中一部分图形的面积与总面积的比值等于几何概率.课堂练习1.如图,AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为()A.14B. 15C.38D.232.一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是()A.13B.12C.34D.233.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A.P1<P2B.P1>P2C.P1=P2D.以上都有可能甲乙4.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是()A.转盘2与转盘3 B.转盘2与转盘4C.转盘3与转盘4 D.转盘1与转盘4转盘1转盘2转盘3转盘45.如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.6.如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数的概率是多少? (2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为23.参考答案1.A2.A3.B4.D5.156.解:(1)指针指向奇数的概率是36=12.(2)答案不唯一,如:自由转动的转盘停止时,指针指向大于2的区域. 课堂小结几何图形中的概率计算公式: P (A )=A 事件发生的所有可能结果所组成的图形的面积所有可能结果所组成的图形的总面积.转盘问题的概率计算公式: P (指针停留在某扇形内)=某扇形的面积圆的面积=某扇形所占圆的份数总份数.布置作业 完成教材习题6.6 板书设计与面积相关的等可能事件的概率1.与面积有关的等可能事件的概率 P (A )=A 事件发生的所有可能结果所组成的图形的面积所有可能结果所组成的图形的总面积.2.与面积有关的概率的应用.。
等可能事件的概率教案一、教学目标1. 了解等可能事件和概率的定义。
2. 掌握等可能事件的概率计算方法。
3. 能够通过实例掌握等可能事件的概率计算方法。
二、教学方式课堂讲授+小组讨论+个人练习三、教学内容1. 等可能事件定义:在实验中,每个事件发生的可能性相等,被称为等可能事件。
例如:掷一个硬币的正面或反面出现的概率均为1/2。
2. 概率定义:概率是事件发生的可能性大小的度量,它是介于0和1之间的实数。
例如:掷一个骰子,出现1的概率为1/6,出现6的概率也为1/6。
3. 等可能事件的概率计算对于等可能事件,它们的概率是相等的。
我们可以通过“有利结果数÷ 总体结果数”来计算等可能事件的概率。
例如:掷一个骰子,出现1的概率为1/6,出现2的概率也为1/6,出现3的概率也为1/6,以此类推。
4. 实例演示下面通过几个实例来演示等可能事件的概率计算方法。
例1:一个盒子里有5个红球和3个黑球,从盒子里任取一个球的概率是多少?答:由于每个球都有同等的可能性被选中,因此概率为:有利结果数(选到一个球)÷ 总体结果数(8个球)= 1/8。
例2:一个有10枚棋子的棋盘(其中2枚是绿色的,8枚是红色的),从中任选一个棋子的概率是多少?答:由于每一个棋子都有同等的可能性被选中,因此概率为:有利结果数(选到一个棋子)÷ 总体结果数(10枚棋子)= 1/10。
四、教学总结在本节课中,我们了解了等可能事件和概率的定义,并掌握了等可能事件的概率计算方法。
通过实例演示,我们更好地理解了等可能事件的概率计算方法。
在今后的学习和生活中,我们可以运用这些知识来解决各种问题,如赌场游戏等。
第六章概率初步3 等可能事件的概率(第1课时)一、学生起点分析学生的知识技能基础:学生在小学已经体验过事件发生的等可能性及游戏规则的公平性,会求简单事件发生的可能性,对简单事件发生的可能性能够做出预测,并阐述自己的理由。
学生已接触了不确定事件,前面两节课通过活动感受了事件发生的等可能性及游戏规则的公平性,为进一步了解计算一类事件发生可能性的方法、体会概率的意义奠定了知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经体验事件发生的等可能性及游戏规则的公平性,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析概率与我们现实生活的联系非常密切,通过本章的学习不仅能让学生体会到数学与现实生活联系的紧密性,而且也能培养学生的各种能力,特别是通过对数据的收集、整理、分析,锻炼学生的综合实践能力,对培养学生“自主、合作、探究”这种新的学习方式将起到重要的作用。
本节课中体会概率的意义不仅是本章的重点,也是学好本章的关键。
一方面可以使学生体会到概率和确定数学一样也是科学的方法,能够有效地解决现实世界中的众多问题;另一方面,也使学生认识到概率的思维方式与确定性思维的差异。
学生只有具备了这种随机观念才能明智地应付变化和不确定性,这也是构成在义务教育阶段学习概率的重要原因。
本节教学目标如下:1.知识与技能:通过摸球游戏,帮助学生了解计算一类事件发生可能性的方法,体会概率的意义,根据已知的概率设计游戏方案2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力3.情感与态度:通过环环相扣的、层层深入的问题设置以及分组游戏的设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣教学重点:1.概率的意义及其计算方法的理解与应用。
《等可能条件下的概率(一)》教案一、教学目标【知识与技能】理解和掌握在相等条件下,事件发生的概率的计算公式。
【过程与方法】通过具体的情境,进一步理解概率的意义,提高初步的抽象概括能力。
【情感态度与价值观】提高学习数学的兴趣,培养对数学的亲近感、合作意识,在合作中体现团队精神。
二、教学重难点【教学重点】等可能条件下,事件发生的概率。
【教学难点】在具体的情境中,能借助概率的计算判断事件发生的可能性的大小。
三、教学过程(一)导入新课抛掷一枚骰子,提问:(1)朝上点数的试验的结果是有限的吗?请大家一一列举出来。
(2)事件1:朝上点数大于4的情况有哪几种?事件2:朝上点数不大于4的情况有哪几种?学生在教师的引导下,列举出所有的情况,并将属于事件1和事件2的情况归类。
那么大家想计算事件1和事件2发生的概率怎么计算呢,大家一起来学习本堂课的知识,进而板书课"等可能条件下的概率"(二)生成新知1.组织小组讨论总结规律小组展开讨论,小组汇报讨论结果:符合事件1的是朝上点数为4点,朝上点数为5点,有两种情况。
符合事件2的有4种情况。
说明:我们所研究的事件大都是随机事件,所以其概率在0和1之间。
(三)深化新知不透明的袋子里有3个白球,4个红球,这些球除开颜色以外都相同,均匀搅拌后从中抽取1个球,问:(1)会出现哪些结果?(2)摸出白球的概率?(3)摸出红球的概率?(四)小结作业小结:引导学生自主思考本节所学,通过提问的方式总结全部知识点并补充。
作业:抛掷一枚均匀的骰子,它落地时,朝上点数为4的概率是( ),朝上点数是奇数的概率是( ),朝上点数是0的概率是( ),朝上点数大于3的概率是( )。
四、板书设计。
课题:等可能性事件的概率(一)一、教学目标:(1)知识与技能目标:了解等可能性事件的概率的意义,运用枚举法计算一些等可能性事件的概率。
(2)过程和方法目标:通过生活中实际问题的引入来创设情境,将一些生活问题构建成一个等可能性事件模型,学生的构建思维能力得到提升;在归纳定义时用到特殊到一般的思想;在解题时利用类比的方法,举一反三。
通过枚举法、图表法、排列的基础知识来计算一些等可能性事件的概率,学生对古典概型有个更深刻的理解。
(3)情感与态度目标:感受到亲切、和谐的学习氛围,在活动中进一步发展学生合作交流的意识和能力。
了解部分数学史,知道随机事件的发生既有随机性,又有规律性,了解偶然性寓于必然性之中的辩证思想,培养学生的综合素质。
二、教学重点:等可能性事件的概率的意义及其求法。
三、教学难点:等可能性事件的判断以及如何求某个事件所包含的基本事件数。
四、教学方法:启发式探索法五、教学过程:1、复习引入、创设情境问题1、(师)前面我们学习了随机事件及其概率,请问:事件分为哪三类?(生)必然事件,随机事件,不可能事件。
(师)好!问题2、(师)我们知道,随机事件的概率一般可以通过大量重复实验来求值。
是不是所有的随机事件都需要大量的重复试验来求得呢?(生)不一定。
(师)好!请同学们观看视屏(播足球比赛前裁判抛硬币的视频)。
问题3、(师)刚才的视屏是足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?2、逐层探索,构建新知问题4、(师)这是一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?通过前面抛硬币和掷骰子这两个随机事件的实例,大家观察到只做了一次试验就可以求出其概率,其结果与大量重复试验相吻合。
问题5、(师)这两个随机事件有什么共性呢?(尽量把抽象的问题具体化)(生)(1)、一次试验可能出现的结果是有限个的;(2)、每个结果出现的可能性相同。
6.3 等可能事件的概率(一)1. 了解概率的意义,会用概率对事件发生可能性的大小进行度量;2. 通过分析解决问题提高逻辑思维能力;3. 通过合作探究、阳光展示,享受合作学习的快乐。
重难点:概率的计算。
旧知回顾问题一:某地区林业局要考察一种树苗的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如下图所示的统计图,根据统计图提供的信息解决下列问题:1这种树苗成活的频率稳定在,成活的概率估计值为2该地区已经移植这种树苗5万颗,估计这种树苗成活万颗。
问题二:概率与频率的关系是什么?问题三:事件发生的概率的范围是什么?(一)基础知识探究探究点一:等可能事件问题一:(1)在正规乒乓球比赛开始时通常是裁判员将一个乒乓球握在手里,由运动员来猜球在哪只手里,猜中者先发球,双方运动员猜中的可能性相同吗?(2)从4张花色不同的扑克牌中任意抽取一张,有4种不同的结果,每种结果发生的可能性相同吗?问题二:我们在听新闻或看天气预报时,常常会听到气象预报员会报道说,“明天降雨的概率为80%”,那你说,明天下雨的可能性大还是不下雨的可能性大?归纳总结:例题. 判断下列事件是否属于等可能事件(1)在一副牌中随便抽取一张,抽到红桃2的可能性;(2)投掷一枚色子,出现数6朝上的可能性;(3)将一个圆盘3等分,分别图上红色、黑色、蓝色,投掷一枚飞镖,正好落在红色区域的可能性;(4)小明学习非常好,期末考试数学及格的可能性。
探究点二:概率的计算方法问题一:袋中装有2个红球,3个黑球,他们除颜色外完全相同:(1)小亮从袋中任意摸出一球,摸出的球可能是什么颜色?(2)任意摸出一球,摸到每个球的可能性一样吗?(3)若将每个球都编上号码,分别为1号球(红)、2号球(红)、3号球(黑)、4号球(黑)、5号球(黑),任意摸出一球,所有可能出现的结果有哪些?摸到红球可能出现的结果有哪些?P(摸出红球)等于多少?归纳总结:一般地,如果一个实验有n种等可能的结果,事件A包含其中的m种,那么事件发生的概率为:P(A)=_____________________练习:完成书本148页第3题(二)知识综合运用探究探究点一:概率的计算(重点)【例1】一个均匀正方体色子其中一个面上标有“1”,两个面上标有“2”,三个面上标有“3”,求这个色子掷出后(1)“2”朝上的概率;(2)朝上概率最大的数;(3)如果规定朝上的数为“1”或“2”时,甲胜;朝上的数为“3”时,乙胜;则甲乙谁获胜的概率大些?变式:有一张明星演唱会的门票,小明和小亮都想获得这张门票亲自去体验明星演唱会的热烈气氛,小红为他们除了一个好主意,方法就是:从牌面为1、2、3、4、5、4、6、7的8张扑克牌(两个4的花色不同)中任取一张,抽到比4大的牌,小明去;否则,小亮去。
3 等可能事件的概率人非圣贤,孰能无过?过而能改,善莫大焉。
《左传》原创不容易,【关注】店铺,不迷路!第1课时概率的计算方法教学目标一、基本目标理解和掌握概率的计算方法,体会概率是描述随机现象的数学模型.二、重难点目标【教学重点】概率的计算方法.【教学难点】灵活应用概率的计算方法解决各种类型的实际问题.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P147~P148的内容,完成下面练习.【3min反馈】1.设一个试验的所有可能的结果有n种,每次试验有且只有其中一种结果出现.如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的.2.一般地,如果一个试验有n种等可能的结果,事件A包含其中m种结果,那么事件A发生的概率为P(A)=m n .3.完成教材P147“议一议”第1题:解:(1)会摸到1号球、2号球、3号球、4号球、5号球这5种可能的结果.(2)相同.它们的概率均为1 5 .4.完成教材P147“议一议”第2题:解:所有可能的结果有有限个,每种结果出现的可能性相等.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例题】一只不透明的箱子里共有8个球,其中2个白球、1个红球、5个黄球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)再往箱子中放入多少个黄球,可以使摸到白球的概率变为0.2? 【互动探索】(引发学生思考)(1)从袋中任意摸出一个球,可能出现的结果有多少种?满足条件的结果有多少种?(2)已知摸到白球的概率,可以根据概率公式列方程求解.【解答】(1)因为一只不透明的箱子里共有8个球,其中2个白球, 所以从箱子中随机摸出一个球是白球的概率是28=14.(2)设再往箱子中放入x 个黄球. 根据题意,得28+x=0.2, 解得x =2.故再往箱子中放入2个黄球,可以使摸到白球的概率变为0.2.【互动总结】(学生总结,老师点评)(1)求概率主要是求随机事件发生的概率,关键是分别求出事件所有可能出现的结果数和所求的随机事件可能出现的结果数,后者与前者的比值即为该事件发生的概率.(2)第(2问也可以根据概率公式直接用除法求出盒子中球的总数,从而求出还需要往箱子中放入的黄球个数.活动2 巩固练习(学生独学)1.完成教材P148“习题6.4”第1~3题. 略2.已知一个口袋中装有7个只有颜色不同的球,其中3个白球、4个黑球. (1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个白球的概率是14,求y 与x 之间的函数关系式.解:(1)因为一个口袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,所以从随机抽取出一个黑球的概率是47 .(2)因为口袋中有3个白球、4个黑球,再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是1 4,所以x+37+x+y=14,则y=3x+5.环节3 课堂小结,当堂达标(学生总结,老师点评)一般地,如果一个试验有n种等可能的结果,事件A包含其中m种结果,那么事件A发的概率为P(A)=m n .练习设计请完成本课时对应练习!第2课时游戏的公平性及按要求设计戏教学目标一、基本目标理解游戏的公平性,并能根据不同问题的要求设计出符合条件的摸球游戏.二、重难点目标【教学重点】判断游戏的公平性,根据题目题目要求设计游戏方案.【教学难点】按题目要求设计游戏方案.教学过程环节1 自学提纲,生成问题【5mi阅读】阅读教材P19~P150的内容,完成下面练习.【3min反馈】1.用概率判断游戏的公平性:若获胜的概率相同,则游戏公平;若获胜的概率不相同,则游戏不公平.2.按要求设计游戏:若设计公平的游戏,则要使随机事件发生的概率相等;若设计不公平的游戏,则要使随机事件发生的概率不相等.3.完成教材P149“议一议”: 解:(1)第二位同学说的有道理.(2)不公平.游戏否公平,应看双方获胜的概率是否相等. 4.完成教材P149“做一做”:解:(1)在一个不透明的口袋里装入除颜色外完全相同的2个红球、2个白球,摇匀后,从中任摸一球,则摸到红球的概率为12,摸到白球的概率也为12.(2)在一个不透明的口袋里装入除颜色外完全相同的2个红球、1个白球和1个黄球,摇匀后,从中任摸一球,则摸到红球的概率为12,摸到白球和黄球的概率都为14.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】小明和小红一起做游戏,在一个不透明的袋中有8个白球和6个红球,它们除颜色外都相同,从袋中任意摸出一球,若摸到白球小明胜;若摸到红球小红胜,这个游戏公平吗?请说明理由;若你认为不公平,请你改动一下规则,使游戏对双方都是公平的.【互动探索】(引发学生思考)根据概率公式可计算出P (小明胜)和P (小红胜),再比较两个概率的大小即可判定游戏不公平,然后改动规则,满足袋中白球和红球的个数相等即可.【解答】不公平.理由如下: 因为P (小明胜)=88+6=47,P (小红胜)=68+6=37, 而47>37,即P (小明胜)>P (小红胜), 所以这个游戏不公平.可改为:从袋中取出2个白球或放入2个红球,使袋中白球和红球的个数相等,这样游戏对双方都是公平的.【互动总结】(学生总结,老师点评)判断游戏对双方是否公平,关键是看双方在游戏中所关注的事件发生的概率是否相等.【例2】用12个除颜色外完全相同的球设计一个摸球游戏. (1)使得摸到红球、白球和蓝球的概率都是13;(2)使得摸到红球的概率为13,摸到白球的概率为12,摸到蓝球的概率为16.【互动探索】(引发学生思考)根据摸到各种颜色球的概率,求出它们的个数,便可进行游戏的设计.【解答】(1)根据概率的计算公式可知,P (摸到红球)=摸到红球可能出现的结果数所有可能出现的结果数,所以摸到红球可能出现的结果数=所有可能出现的结果数×P (摸到红球)=12×13=4;同理可得摸到白球和蓝球可能出现的结果数均为4,所以只要使得红球、白球和蓝球的数目均为4个,就能满足题目要求.(2)同理,由(1)可知,只要使得红球的数目为4个,白球的数目为6个,蓝球的数目为2个,就能满足题目要求.【互动总结】(学生总结,老师点评)灵活运用概率的计算公式求出各色球的个数是解题的关键.活动2 巩固练习(学生独学)1.有8个大小相同的球,设计一个摸球游戏,使摸到白球的概率为12,摸到红球的概率为14,摸到黄球的概率为14,摸到绿球的概率为0,则白球有4个,红球有2个,绿球有0个.2.有一盒子中装有3个白色乒乓球、2个黄色乒乓球、1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是白色颜色; (2)请你计算摸到每种颜色乒乓球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?解:(2)P (摸到白色乒乓球)=36=12,P (摸到黄色乒乓球)=26=13,P (摸到红色乒乓球)=1 6 .(3)公平.理由如下:因为P(摸到白色乒乓球)=12,P(摸到其他球)=2+16=12,所以这个游戏对双方公平.3.现在有足够多除颜色外均相同的球,请你从中选12个球设计摸球游戏.(要求写出设计方案)(1)使摸到红球的概率和摸到白球的概率相等;(2)使摸到红球、白球、黑球的概率都相等;(3)使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.解:(1)12个球中,有6个红球、6个白球可使摸到红球的概率和摸到白球的概率相等.(2)12个球中,有4个红球、4个白球、4个黑球可使摸到红球、白球、黑球的概率都相等.(3)12个球中,有3个红球、3个白球、6个黑球可使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.环节3 课堂小结,当堂达标(学生总结,老师点评)1.游戏的公平性2.按要求设计游戏练习设计请完成本课时对应练习!第3课时几何图形中的概率教学目标一、基本目标1.理解和掌握与面积有关的一类事件发生的概率的计算方法,并能进行简单的计算.2.能设计符合要求的简单概率模型,进一步体会概率的意义.二、重难点目标【教学重点】能计算与面积有关的一类事件发生的概率.【教学难点】能设计符合要求的简单概率模型.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P151~P152的内容,完成下面练习.【3min反馈】1.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型.2.与面积有关的几何概率也就是概率的大小与面积大小有关,事件发生的概率等于此事件所有可能结果所组成的图形的面积除以所有可能结果所组成的图形的总面积.3.完成教材P152“想一想”:解:(1)图中共有20块方砖组成,这些方砖除颜色外其他完全相同,小球停留在任何一块方砖上的概率都相等,所以P(小球停留在白砖上)=1520=34.(2)同意.因为袋中共有20个球,这些球除颜色外其他都相同,从中任意摸出一个球,这20个球被摸到的概率都相等,所以P(任意摸出一球是白球)=15 20=34.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )A.P1>P2 B.P1<P2C .P 1=P 2D .以上都有可能【互动探索】(引发学生思考)由图甲可知,黑色方砖6块,共有16块方砖,所以黑色方砖在整个地板中所占的比值为616=38,所以在甲种地板上最终停留在黑色区域的概率为P 1=38;由图乙可知,黑色方砖3块,共有9块方砖,所以黑色方砖在整个地板中所占的比值=39=13,所以在乙种地板上最终停留在黑色区域的概率为P 2=13.因为38>13,所以P 1>P 2.【答案】A【互动总结】(学生总结,老师点评)利用公式求几何概率通常分为三步:(1)分析事件所占面积与总面积的关系;(2)计算出各部分的面积;(3)代入公式求出几何概率.【例2】如图,一个可以自由转动的转盘被均匀的分成了20个扇形区域,其中一部分被阴影覆盖.(1)转动转盘,当转盘停止时,指针落在阴影部分的概率是多少? (2)试再选一部分扇形涂上阴影,使得转动转盘,当转盘停止时,指针落在阴影部分的概率变为12.【互动探索】(引发学生思考)(1)先确定在图中阴影区域的面积在整个面积中所占的比例,根据这个比例即可求出指针指向阴影区域的概率;(2)根据概率等于相应的面积与总面积之比得出阴影部分面积即可.【解答】(1)因为转盘被均匀的分成了20个扇形区域,阴影部分占其中的6份,所以转动转盘,当转盘停止时,指针落在阴影部分的概率=620=310.(2)如图所示,当转盘停止时,指针落在阴影部分的概率变为12 .【互动总结】(学生总结,老师点评)在几何概型中若是等分图形,则只需求出总的图形个数与某事件发生的图形个数;若不是等分图形,则需求出各图形面积的大小.活动2 巩固练习(学生独学)1.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是( C )A.116B.18C.14D.122.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是( D )A.转盘2与转盘3 B.转盘2与转盘4C.转盘3与转盘4 D.转盘1与转盘43.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是1 8 .4.向如图所示的正三角形区域内扔沙包(区域中每个小正三角形除颜色外完全相同),沙包随机落在某个正三角形内.(1)扔沙包一次,落在图中阴影区域的概率是3 8;(2)要使沙包落在图中阴影区域和空白区域的概率均为12,还要涂黑几个小正三角形?请在图中画出.解:如图所示,要使沙包落在图中阴影区域和空白区域的概率均为12,还要涂黑2个小正三角形(涂法不唯一).环节3 课堂小结,当堂达标(学生总结,老师点评)几何图形中的概率计算公式:P(A)=事件A发生的所有可能结果所组成的图形的面积所有可能结果所组成的图形的总面积练习设计请完成本课时对应练习!第4课时转盘问题教学目标一、基本目标计算转盘问题中的概率,进一步理解几何概型,能设计出符合要求的简单概率模型.二、重难点目标【教学重点】计算转盘问题中的概率.【教学难点】设计符合要求的简单概率模型.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P154~P155的内容,完成下面练习.【3min反馈】1.转盘问题中的概率计算:指针停留在某扇形内的概率等于该扇形的面积除以圆的面积,即P(指针停留在某扇形内)=某扇形的面积圆的面积=某扇形所占圆的份数总份数.2.完成教材P154“想一想”:解:P(落在红色区域)=110°360°=1136,P(落在白色区域)=360°-110°360°=250°360°=2536.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例题】某商场柜台为了吸引顾客,打出了一个小广告如下:本专柜为了感谢广大消费者的支持和厚爱,特举行购物抽奖活动,中奖率100%,最高奖50元.具体方法是:顾客每购买100元的商品,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准黄、红、绿、白色区域,顾客就可以分别获得50元、20元、10元、5元的购物券.(转盘的各个区域均被等分)请根据以上信息,解答下列问题:(1)小亮的妈妈购物150元,她获得50元、5元购物券的概率分别是多少?(2)请在转盘的适当地方写上一个区域的颜色,使得自由转动这个转盘,当它停止转动时,指针落在某一区域的事件发生概率为38,并说出此事件.【互动探索】(引发学生思考)(1)根据随机事件概率大小的求法,找准两点:①符合条件的情况数;②全部情况的总数,二者的比值就是其发生的概率的大小;(2)指针落在某一区域的事件发生概率为38,则该区域应该有6份,据此解答即可.【解答】(1)因为转盘被等分为16份,黄色占1份,白色占11份,所以获得50元、5元购物券的概率分别是116,1116.(2)根据概率的意义可知,若指针落在某一区域的事件发生概率为38,那么该区域应有16×38=6(份).根据等级越高,中奖概率越小的原则,此处应涂绿色,事件为获得10元购物券.【互动总结】(学生总结,老师点评)(1)转盘中哪种区域的面积越大,则指针指向哪种区域的概率越大;(2)根据几何概率的大小设计概率模型就是选定一个图形,再分割图形,使其中一部分图形的面积与总面积的比值等于几何概率.活动2 巩固练习(学生独学)1.如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是25.2.完成教材P155“随堂练习”第1~2题. 略3.有一个质地均匀的正12面体,12个面上分别写有1到12这12个整数(每个面只有一个整数且互不相同),投掷这个正12面体一次,记事件A 为“向上一面的数字是3的整数倍”,记事件B 为“向上一面的数字是4的整数倍”请你判断事件A 与事件B ,哪个发生的概率大,并说明理由.解:因为P (A )=412=13,P (B )=312=14,13>14,所以事件A 发生的概率大于事件B 发生的概率.4.如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为23.解:(1)指针指向奇数区的概率是36=12. (2)答案不唯一,如:自由转动的转盘停止时,指针指向大于2的区域. 环节3 课堂小结,当堂达标(学生总结,老师点评)转盘问题的概率计算公式:P (指针停留在某扇形内)=某扇形的面积圆的面积=某扇形所占圆的份数总份数练习设计请完成本课时对应练习!【素材积累】宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。
等可能事件教案教案标题:等可能事件教案教案目标:1. 理解等可能事件的概念。
2. 能够识别和描述等可能事件。
3. 能够计算等可能事件的概率。
教学资源:1. 白板/黑板和彩色粉笔/白板笔。
2. 学生练习册。
3. 骰子、扑克牌或其他适合展示等可能事件的物品。
教学步骤:引入活动:1. 引发学生对等可能事件的兴趣,可以通过提问或展示一些例子。
例如,你认为抛硬币会出现正面还是反面?抽一张红色的牌还是黑色的牌?2. 引导学生思考这些例子中事件的可能性是否相等,以及如何确定等可能事件。
概念讲解:1. 解释等可能事件的概念:等可能事件指的是在给定条件下,每个事件发生的可能性相等。
2. 通过具体的例子进一步解释等可能事件的特征和判断方法。
例如,投掷一枚公正的骰子,每个面出现的可能性相等,因此骰子的每个面都是一个等可能事件。
示例演练:1. 分发骰子给学生,让他们观察骰子的面,并讨论每个面出现的可能性是否相等。
2. 请学生选择一个面,并解释为什么选择这个面是一个等可能事件。
3. 继续选择其他的等可能事件,并让学生解释他们的选择。
练习与巩固:1. 分发练习册,让学生完成一些关于等可能事件的练习题,例如判断事件是否等可能、计算等可能事件的概率等。
2. 在课堂上解答学生的问题,并纠正他们的错误。
拓展活动:1. 将学生分成小组,每个小组选择一个日常生活中的场景,并确定其中的等可能事件。
2. 让学生在小组内互相交流和讨论,并展示他们的选择和理由。
总结:1. 回顾本节课学习的内容,强调等可能事件的概念和判断方法。
2. 确保学生对等可能事件有清晰的理解,并能够应用到实际生活中。
3. 鼓励学生提出问题和思考更多与等可能事件相关的情境。
等可能性教案一、教学目标:1. 了解等可能性的概念及其在日常生活中的应用;2. 掌握计算等可能事件的概率的方法;3. 能够应用等可能性原理解决实际问题。
二、教学重点:1. 等可能性概念的理解;2. 概率计算方法的掌握。
三、教学难点:1. 等可能性原理的应用;2. 解决实际问题的能力培养。
四、教学过程:1. 导入新知引导学生回顾已学内容,复习概率的基本概念及计算方法。
2. 引入新知介绍等可能性的概念。
解释等可能性指的是几种可能性发生的概率相等的情况。
3. 探究活动设计实际情境,让学生通过掷硬币的实验来探究等可能性。
引导学生观察抛掷硬币时出现正面和反面的概率,帮助他们得出结论:抛掷硬币的结果有两种可能性,即正面和反面,出现的概率相等,所以这是一个等可能事件。
4. 深化理解通过多组数据的实验,引导学生总结等可能性事件的特点,如抛掷一颗骰子、从一副牌中抽出一张扑克牌等都属于等可能事件。
5. 计算概率介绍等可能事件的概率计算方法。
以抛掷一颗骰子为例,解释如何计算某一面朝上的概率。
假设骰子的面数为6,每个面朝上的可能性相等,所以某一面朝上的概率为1/6。
6. 解决问题通过一些实际问题的讨论,引导学生应用等可能性原理解决问题。
例如,从一副牌中随机抽3张牌,求其中至少有一张红桃牌的概率。
根据等可能性原理,总共抽取的可能性为52*51*50,而其中至少有一张红桃牌的情况为:不包括红桃的情况:非红桃的牌数为39,所以不包括红桃的情况为39*38*37;至少有一张红桃的情况:1张红桃+2张非红桃的情况为13*39*38;至少有两张红桃的情况:2张红桃+1张非红桃的情况为13*12*39。
根据该题目的要求,所以需求的概率为(13*39*38+13*12*39)/(52*51*50)。
7. 小结总结等可能性的概念及其在概率计算中的应用方法。
强调等可能事件的条件是各种可能性概率相等,通过计算概率解决实际问题的步骤。
五、课堂练习1. 设计一组实验,让学生通过实际操作考察等可能事件的特点。
等可能事件的概率教案(1)
一、教学目标
(一)知识目标:1、通过摸球游戏,帮助学生了解计算一类事件发生可能性的方法,体会概率的意义
(二)能力目标:通过活动,帮助学生更容易感受到数学与现实生活的联系,体验到数学在解决实际问题的作用,培养学生实事求是的态度和合作交流的能力
(三)情感价值:通过学生对数据的收集、整理、描述和分析活动的创设,鼓励学生积极参与,培养学生自主,合作,探究的学习方法,培养学生的学习兴趣
二、教学重点: 概率的意义及计算方法
教学难点:概率计算方法的理解
三、教学方法---探究—启发相结合
四、教学设计分析
第一环节问题
1、举例说明什么事必然事件,不可能事件,不确定事件
本节课的内容是从概率的角度更深层次的认识必然事件、不可能事件、不确定事件;尤其是要学会简单的概率计算的方法。
所以在学习新课以前复习有关必然事件、不可能事件、不确定事件的例子有利于学生学习新的知识,同时也为本节课的重要结论:
“P(必然事件)=1;P(不可能事件)=0;如果A表示不确定事件,则0<P(A)<1”的发现做好铺垫。
从而使学生更容易掌握这一知识点。
第二环节探究
1.盒子中装有三个红球和一个白球,它们出颜色外完全相同,小明从何种任意摸出一球。
(1)从中你有什么重要结论要告诉同学们?
(2)红球摸了次,白球摸了次
培养学生准确表达自己的思维结果的能力,培养学生运用已有经验解决新问题的能力。
一方面为后边引入概率学中的重要结论:“实验次数越多,实验的结果越接近事件本身的概率”做好铺垫。
2.发现新知
活动内容:学生每4~5人为一组,将学生分为9组,进行摸球实验,每组摸球10次,
并由本组同学记录实验结果。
以游戏和分组合作的方式验证结论,一方面可以加深学生对于正确结论的理解和记忆,为后边概率的具体求法做铺垫;另一方面有利于培养学生对于数学学习的兴趣,有利于培养学生与他人的合作、互助意识,锻炼学生与他人的沟通、协作能力。
3.归纳总结
提问:摸到红球的可能性是3/4这一结论是如何得到的?引出概率的概念和求法、记法。
要求学生利用新学到的概率的有关知识解释:“摸到白球的可能性是1/4。
”这一结论。
突出本节课的重点:概率的意义及其计算方法的理解。
第三环节应用
1、要求学生根据新学习的概率的有关知识,再结合前面的不可能事件、必然事件、不确定事件,尝试着发现新的结论。
(1)必然事件发生的概率为1 记作p(必然事件)=1
(2)不可能事件发生的概率为0,记作p(不可能事件)=0;
(3)如果A为不确定事件,那么0<P(A)<1。
2、例1:任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),“6”朝上的概率是多少?
如果我们扔6次,是不是“6”朝上的次数一定是1次?
解:P(“6”朝上)= 1/6 ,不一定。
第四环节整理
鼓励学生结合本节课的学习谈自己的收获与感想,包括:概率的计算方法;2.根据已有的概率设计游戏的方法;3.常见的概率问题;4.学习本节课的感想。
第五环节评价
通过让学生自由选择任务难度,实现分层次教学。
逐步突出本节课的第二个重点知识:根据已知的概率设计游戏方案
题目内容:
智慧版1:用4个除颜色外完全相同的球设计一个摸球游戏,使得摸到白球的概率为1/2,摸到红球的概率也是1/2。
智慧版2:用8个除颜色外完全相同的球设计一个摸球游戏,使得摸到白球的概率为1/2,摸到红球的概率也是1/2。
超人版1:用4个除颜色外完全相同的球设计一个摸球游戏,使得摸到白球的概率为1/2
摸到红球和黄球的概率都是1/4。
超人版2:用8个除颜色外完全相同的球设计一个摸球游戏,使得摸到白球的概率为1/2,
摸到红球和黄球的概率都是1/4。
4、巩固提高
1:花仙子自由自在地在空中飞行,然后随意落在图中所示某个方格中(每个方格除颜色外完全一样),分别计算花仙子停在白色方格中的概率。
2:如图所示有10张卡片,分别写有0至9十个数字。
将它们背面朝上洗匀后,任意抽出一张。
(1)P(抽到数字9)= ;
(2)P(抽到两位数)= ,P(抽到一位数)= ;
(3)P(抽到的数大于6)= ,P(抽到的数小于6)= ;
(4)P(抽到奇数)= ,P(抽到偶数)= ;
3:某超市为了促销一批新品牌的商品,设立了一个不透明的纸箱,装有1个红球、2
个白球和12个黄球。
并规定:顾客每购买50元的新品牌商品,就能获得一次摸球的机会,如果摸到红球、白球或黄球,顾客就可以分别获得一把雨伞、一个文具盒、一支铅笔。
甲顾客购此新商品80元。
他获得奖品的概率是;他得到一把雨伞概率是;
一个文具盒概率是;一支铅笔的概率分别是。
第六环节变练
1:如图,一个均匀的正二十面体形状的色子,其中的1个面标有“1”,2个面标有
“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”。
将
这个色子掷出后,
(1)“6”朝上的概率是。
(2)数字朝上的概率最大。
2.一副扑克牌(去掉大、小王),任意抽取其中一张,抽到方块的概为;抽到红桃3的概率为;抽到5的概率为。
3.任意翻一下日历,翻出是6月6日的概率为,翻出4月31日的概率为,翻出31日的概率为(一年按365天计算)。
4:中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竟猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻)。
某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是。
5.一家电视台综艺节目接到热线电话400个,现要从中抽取“幸运观众”4名,小惠打通了一次热线电话,那么小惠成为“幸运观众”的概率是。
6.4个红球和n个白球装在同一袋中,从中任摸一个是红球的概率是,则n= 。
7.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是。
8.一个口袋中放有20个球,其中红球6个,白球和黑球各若干个,每个球除颜色以外没有任何区别。
(1)小王通过大量反复的实验(每次取一个球,放回搅匀后再取第二个)发现,取出黑球的概率稳定在左右,则可以估计袋中的黑球的个数为。
(2)若小王取出的第一个球是白球,将它放在桌上。
闭上眼睛从袋中余下的球中再任意取出一个球,摸出红球的概率是。