14-15-1学期-《线性代数A》B卷-答案
- 格式:doc
- 大小:105.50 KB
- 文档页数:3
线性代数考试题库及答案第一部分 客观题(共30分)一、单项选择题(共 10小题,每小题2分,共20分)1. 若行列式111213212223313233a a a a a a d a a a =,则212223111213313233232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d -2. 设123010111A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( )(A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( )(A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( )(A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ⨯矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。
(A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,,,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立 (B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立(C) 存在一组数12,,s k k k ,使得1122s s k k k βααα=+++ 成立(D) 对β的线性表达式唯一8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( )(A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解9. 设110101011A ⎛⎫⎪= ⎪ ⎪⎝⎭,则A 的特征值是( )。
线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。
A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
2. 向量α和向量β线性相关,则下列说法正确的是()。
A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。
3. 对于n阶方阵A,下列说法不正确的是()。
A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。
4. 矩阵A和矩阵B相等,当且仅当()。
A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。
5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。
A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。
6. 矩阵A可逆的充分必要条件是()。
A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。
7. 矩阵A的特征值是()。
A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。
线性代数试题集与答案解析二、判断题(判断正误,共5道小题)9.设A ,B 是同阶方阵,则AB=BA 。
正确答案:说法错误解答参考:10. n维向量组{ α 1 , α 2 , α 3 , α 4 } 线性相关,则{ α 2 , α 3 , α 4 } 线性无关。
正确答案:说法错误解答参考:11.若方程组Ax=0 有非零解,则方程组Ax=b 一定有无穷多解。
正确答案:说法错误解答参考:12.若A ,B 均为n阶方阵,则当| A |>| B | 时,A ,B 一定不相似。
正确答案:说法正确解答参考:相似矩阵行列式值相同13.设A是m×n 阶矩阵且线性方程组Ax=b 有惟一解,则m≥n 。
正确答案:说法正确解答参考:(注意:若有主观题目,请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。
在线只需提交客观题答案。
)三、主观题(共12道小题)14.设A是m×n 矩阵, B是p×m 矩阵,则A T B T 是×阶矩阵。
参考答案:A T B T是n×p 阶矩阵。
15.由m个n维向量组成的向量组,当m n时,向量组一定线性相关。
参考答案:m>n时向量组一定线性相关16.参考答案:a=6(R( A )=2⇒| A |=0)17._________________。
参考答案:( 1 2 3 4 ) T+k ( 2 0 −2 −4 ) T。
因为R ( A )=3 ,原方程组的导出组的基础解系中只含有一个解向量,取为η2+ η3−2 η1,由原方程组的通解可表为导出组的通解与其一个特解之和即得。
18.时方程组有唯一解。
参考答案:当a=−2 时方程组无解,当a=1 时方程组有无穷多个解,当a≠1,−2 时方程组有唯一解。
19.参考答案:2420.参考答案:t=6 21.参考答案:22.参考答案:23.参考答案:24.已知方阵(1)求a,b的值;(2)求可逆矩阵P及对角矩阵D,使得参考答案:25.参考答案:本次作业是本门课程本学期的第1次作业,注释如下:一、单项选择题(只有一个选项正确,共8道小题)1. 下列矩阵中,不是初等矩阵。
上海海洋大学试卷答案一、填空与选择题(1836='⨯) 1. 行列式的值是_____________.2. 已知A 为四阶方阵, 且=2, 是的伴随矩阵, 则=___128______.3. 当__2____时, 方程组有非零解 4.设, ,若初等矩阵, 使得,则P =___100001010æèççöø÷÷______5. 已知四阶行列式中第三列元素依次是它们的余子式依次为, 则=________6.已知=, 且则一定有:( D )(A )E A = (B )0=A (C )矩阵E A -一定可逆 (D )矩阵E A +一定可逆 二、(16分)计算下列行列式 1.... (10分) 解:D =232-23-101421-354-10=-6-1043-101421-3960-33=9-2-141-1112-16=9-3031-113018=-9-3331=108103.(6分)解:D n +1=x -n 11100x -n +111000x -n +210000x -10nn -1n -211 (3)=(-1)2n +2x -n 1110x -n +111000x -2100x -1 (5)=(x -i )i =1nÕ (6)三、(15分)设, , 求1. 2. 3.若, 求矩阵. 解: (1)A -3E =2-112131-11æèççöø÷÷-300030003æèççöø÷÷ (2)=-1-112-231-1-2æèççöø÷÷ (3)(2)A E ()=2-112131-11100010001æèççöø÷÷...........2®10001000110-11414-1-34141æèççççöø÷÷÷÷..................7 所以A -1=10-11414-1-34141æèççççöø÷÷÷÷ (8)(3)X =BA -1..................................2=-34142-74142æèçççöø÷÷÷ (4)四、(15分)设矩阵, 求1.矩阵的列向量组的秩2.的列向量组的一个极大无关组3.将向量组中的其余向量表达为极大无关组的线性组合 解:由a 1,a 2,a 3,a 4()=22311-3-211033-132-1320-2æèçççççöø÷÷÷÷÷®10330187001100000000æèçççççöø÷÷÷÷÷..............5®1000010-1001100000000æèçççççöø÷÷÷÷÷ (7)得1. 向量组的秩为3 (2)2. 向量组的极大无关组为a 1,a 2,a 3...................3 3. a 4=-a 2+a 3 (3)五、(10分)设列向量组线性相关, 列向量组线性无关, 证明: (1)一定可由线性表示;(2)4α不可由321,,ααα线性表示。
线性代数a期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 对角矩阵D. 奇异矩阵答案:B2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行的最大数目D. 矩阵中非零列的最大数目答案:C3. 如果一个矩阵A的行列式为0,则:A. A是可逆的B. A是不可逆的C. A是正定的D. A是负定的答案:B4. 以下哪个选项不是线性方程组解的性质?A. 唯一性B. 存在性C. 零解D. 非零解答案:D二、填空题(每题5分,共20分)1. 矩阵的________是矩阵中所有元素的和。
答案:迹2. 如果一个向量组线性无关,则该向量组的________等于向量的个数。
答案:秩3. 对于一个n阶方阵A,如果存在一个非零向量x使得Ax=0,则称x为矩阵A的________。
答案:零空间4. 一个矩阵的________是指矩阵中所有行向量或列向量的最大线性无关组的个数。
答案:秩三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的行列式。
答案:\[ \text{det}(A) = 1*4 - 2*3 = 4 - 6 = -2 \]2. 设A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],B=\[\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}\],求AB。
答案:\[ AB = \begin{pmatrix} 1*2 + 2*1 & 1*0 + 2*3 \\ 3*2 +4*1 & 3*0 + 4*3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 10 & 12 \end{pmatrix} \]3. 已知矩阵A=\[\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\],求A的特征值。
XXX 学年期末考试试卷《线性代数》期末考试题及详细答案(本科A 、B 试卷)A 卷一、填空题 (将正确答案填在题中横线上。
每小题2分,共10分)。
1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。
2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,每小题2分,共20分)。
1、若方程13213602214x x xx -+-=---成立,则x 是:课程代码: 适用班级:命题教师:任课教师:(A )-2或3; (B )-3或2; (C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为: (A )()332233A B+3AB +B A B A +=+; B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B ; 3、设A 为可逆n 阶方阵,则()**A=?(A )A E ; (B )A ; (C )nA A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵:(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭; (C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是:(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关; (B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关; (D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。
5.5.已知3阶方阵A 的特征值分别为1,-2,3则|A|=( ) A . 2 B .6 C .-6D . 06.若方程组 02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩有非零解,则k =( D )A. -2B. -1C. 0D. 2二、填空题(本大题共6小题,每小题3分,共18分)1.设A =[1,2,4],B =[-2,-1,1],则AB T = 0 .2.设矩阵A =⎪⎭⎫ ⎝⎛--4321,则矩阵A 的伴随矩阵A *= ⎪⎪⎭⎫⎝⎛1324 3.设向量α=(-1,2,-2,4),则其单位向量的是______________. 4. 设方阵A 满足A 3-2A+E=0,则21(A 2E)-- = -A . 5.已知向量)2,1,1(-=α与向量),2,2(x -=β正交,则=x -2.6.设线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡211111111321x x x a a a 有无穷多个解,则a = 1 . 三、计算题(1,2,3,4每小题8分;5,6每题12分。
共56分)1.求行列式11213513241211111----。
解:11213513241211111----=1122051504111111----- (2)=145008130032101111--- ……4=342002030032101111---- (6)=14203410032101111---=-142 (8)2.已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=432122102101a a A 且R(A)<3,求R(A)及数a 。
解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=432122102101a a A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-→a a a 4622202102101 ……2 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→a a a 6622002102101 (4)由于R(A)<3,所以066022=-=-a a ,, (6)故21==)(,A R a (8)3.设向量组)7,3,1,2(1=α )0,1,0.1(2-=α,)7,1,1,4(3=α)3,0.1,3(4---=α)3,1,3,4(5--=α求其一个最大无关组,并将其他向量用此最大无关组线性表示。
鲁东大学2014—2015学年第1学期
2013级物理类、计算类、电子类、软件本、电气本、能源本专业
本科卷B 参考答案与评分标准 课程名称 线性代数A
课程号(2190050) 考试形式(闭卷笔试) 时间(120分钟)
一、判断题:本大题共5个小题,每小题4分。
共20分。
如果命题成立,则在题后( )内划“√”,否则划“×”。
1. √;
2. ×;
3. × ;
4. √ ;
5.√. 二、填空题 本题共5小题,满分15分。
1、 CB ;
2、010⎛⎫ ⎪
± ⎪ ⎪⎝⎭
;3、3 ;4、 01020315k ⎛⎫⎛⎫
⎪ ⎪
⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
;5、 0 .
三、选择题 本题共5小题,满分15分。
1、C ;
2、D ;
3、A;
4、B ;
5、B. 四 、计算题 本题共4小题,满分60分。
1、(12分)计算行列式64278116
9
4
14321111
1=
D =
48
184012
6
2
032101111---------------(5分)
=48
18412623
21---------------(3分)
=3610062
321
=6
006203
21=12---------------(4分)
注: 解法不是唯一的,根据解题情况适当给分.
2、(14分)求解矩阵方程X A AX +=,其中⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=010312022A 。
解:把所给方程变形为A X E A =-)(,而由
⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡-=-010110312302022021)(A E
A ---------------------(3分)
经初等行变换,得
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-----31210030201062
2001~)(A E
A ---------------------(6分)
所以,得E A -可逆,且⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡----=-=-31230262
2)(1
A E A X ---------------------(5分)
(也可以按照公式法求解)
3、(14分)求线性方程组⎪⎩⎪
⎨⎧=---=++-=++-1
151132232641
75324321
43214321x x x x x x x x x x x x 的通解.
解:对增广矩阵)(b A 进行初等行变换得
⎪⎪⎪⎪⎪
⎪⎭
⎫ ⎝⎛
-0000008
11
100211610231~)(b A ---------------------(8分)
所以方程组的特解为T
)0,0,0,2
1(=η ---------------------(2分)
导出组的基础解系为:T
T
)16,22,0,1(,)0,0,2,3(21-==ξξ ---------------------(2分) 方程组的通解为R c c c c x ∈++=212211,,
ηξξ ---------------------(2分)
4、(20分)把实二次型222
123123121323(,,)4484f x x x x x x x x x x x x =++---用正交变换x Py =化二
次型为标准形,求出所用正交变换以及所得到的标准形.
解:二次型对应的矩阵为A=124242421--⎡⎤
⎢⎥--⎢⎥⎢⎥--⎣⎦
………………… (3分) 则21
24
24
2(4)(5)04
2
1
I A λλλλλλ--=
-=+-=- ………………… (4分)
特征值分别为234,51λλλ=-== ………………… (1分) (1)当4A+4E X=0λ=-时,解方程组()
由
⎪⎪
⎪
⎭
⎫ ⎝⎛------=+5242824254E A 初等行变换
⎪
⎪⎪
⎪⎭
⎫
⎝⎛-0002110101,得一特征向量
T p )2,1,2(1= …………………
(3分)
(2)当5A-5E X=0λ=时,解方程组()
由⎪⎪⎪⎭⎫
⎝⎛---------=-4242124245E A 初等行变换⎪
⎪⎪⎪⎪⎭
⎫
⎝⎛0000001211,得两个特征向量T
p )0,2,1(2-=,
T p )1,2,0(3-=. ………………… (3分)
利用施密特正交化方法确定正交矩阵为231
31520
3
P ⎡-
⎢⎢⎢⎢
=-
⎢⎥
⎢⎥⎢⎥⎢⎥⎣⎦,…………………(5分) 则1455P AP --⎡⎤
⎢⎥=
⎢⎥
⎢⎥⎣⎦
即标准形为222
123123(,,)455q y y y y y y =-++。
………………… (1分)。