等可能事件概率计算
- 格式:ppt
- 大小:1.72 MB
- 文档页数:11
第六章概率初步3 等可能事件的概率(第1课时)一、学生起点分析学生的知识技能基础:学生在小学已经体验过事件发生的等可能性及游戏规则的公平性,会求简单事件发生的可能性,对简单事件发生的可能性能够做出预测,并阐述自己的理由。
学生已接触了不确定事件,前面两节课通过活动感受了事件发生的等可能性及游戏规则的公平性,为进一步了解计算一类事件发生可能性的方法、体会概率的意义奠定了知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经体验事件发生的等可能性及游戏规则的公平性,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析概率与我们现实生活的联系非常密切,通过本章的学习不仅能让学生体会到数学与现实生活联系的紧密性,而且也能培养学生的各种能力,特别是通过对数据的收集、整理、分析,锻炼学生的综合实践能力,对培养学生“自主、合作、探究”这种新的学习方式将起到重要的作用。
本节课中体会概率的意义不仅是本章的重点,也是学好本章的关键。
一方面可以使学生体会到概率和确定数学一样也是科学的方法,能够有效地解决现实世界中的众多问题;另一方面,也使学生认识到概率的思维方式与确定性思维的差异。
学生只有具备了这种随机观念才能明智地应付变化和不确定性,这也是构成在义务教育阶段学习概率的重要原因。
本节教学目标如下:1.知识与技能:通过摸球游戏,帮助学生了解计算一类事件发生可能性的方法,体会概率的意义,根据已知的概率设计游戏方案2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力3.情感与态度:通过环环相扣的、层层深入的问题设置以及分组游戏的设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣教学重点:1.概率的意义及其计算方法的理解与应用。
等可能条件下的概率--知识讲解【学习目标】1.知道试验的结果具有等可能性的含义;2.会求等可能条件下的概率;3.能够运用列表法和树状图法计算简单事件发生的概率.【要点梳理】要点一、等可能性一般地,设一个试验的所有可能发生的结果有n个,它们都是随机事件,每次试验有且只有其中的一个结果出现.如果每个结果出现的机会均等,那么我们说这n个事件的发生是等可能的,也称这个试验的结果具有等可能性.要点二、等可能条件下的概率1.等可能条件下的概率一般地,如果一个试验有n个等可能的结果,当其中的m个结果之一出现时,事件A发生,那么事件A发生的概率P(A)=mn(其中m是指事件A发生可能出现的结果数,n是指所有等可能出现的结果数).当一个随机事件在一次试验中的所有可能出现的结果是有限个,且具有等可能性时,只需列出一次试验可能出现的所有结果,就可以求出某个事件发生的概率.2.等可能条件下的概率的求法一般地,等可能性条件下的概率计算方法和步骤是:(1)列出所有可能的结果,并判定每个结果发生的可能性都相等;(2)确定所有可能发生的结果的个数n和其中出现所求事件的结果个数m;(3)计算所求事件发生的可能性:P(所求事件)=mn.要点三、用列举法计算概率常用的列举法有两种:列表法和画树状图法.1.列表法当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)列表法适用于涉及两步试验的随机事件发生的概率.2.树状图当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)树状图法同样适用于各种情况出现的总次数不是很大时,求概率的问题;(2)在用树状图法求可能事件的概率时,应注意各种情况出现的可能性务必相同.【典型例题】类型一、等可能性1.如图所示,转盘停止后,指针落在哪个颜色区域的可能性大?为什么?【思路点拨】可以采用面积法计算各颜色所占的比例,比例大的,指针落在该区域的可能性也大.【答案与解析】解:落在黄色区域的可能性大.理由如下:由图可知:黄色占整个转盘面积的;红色占整个转盘面积的;蓝色占整个转盘面积的.由于黄色所占比例最大,所以,指针落在黄色区域的可能性较大.【总结升华】计算随机事件的可能性的大小,根据不同题目的不同条件确定解法,如面积法、数值法等.类型二、等可能条件下的概率2.(优质试题•本溪)在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A.16个B.20个C.25个D.30个【思路点拨】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】A.【解析】设红球有x个,根据题意得,4:(4+x)=1:5,解得x=16.故选A.【总结升华】用频率估计概率,强调“同样条件,大量试验”.举一反三:【变式】从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为()A.19B.18C.29D.13【答案】D.3.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是()A.12B.13C.14D.16【思路点拨】确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率.【答案】B.【解析】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是2÷6=13.故选B.【总结升华】本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.举一反三:【变式1】如图是地板格的一部分,一只蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_____.【答案】P(停在阴影部分)=23.【变式2】如图,已知等边△ABC的面积为1,D、E分别为AB、AC的中点,若向图中随机抛掷一枚飞镖,飞镖落在阴影区域的概率是(不考虑落在线上的情形)()A.14B.12C.34D.23【答案】C.类型三、用列举法计算概率4.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是()A.13B.23C.16D.56【思路点拨】根据题意列出相应的表格,得出所有等可能的情况数,找出之和为奇数的情况数,即可求出所求的概率.【答案】B.【解析】解:列表得:所有等可能的情况有12种,其中之和为奇数的情况有8种,则p=82123=,故选B.【总结升华】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.举一反三:【变式】现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.13B.12C.14D.23【答案】B.提示:解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:∵一共有12种情况,每种情况都是等可能的,两个粽子都没有蛋黄的有6种情况,∴则这两个粽子都没有蛋黄的概率是61 122=.5.(优质试题•朝阳)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)【思路点拨】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.【答案与解析】解:(1)甲同学的方案公平.理由如下:获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;4种,故小明获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.【总结升华】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.举一反三:【变式】不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12.(1)试求袋中蓝球的个数.(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图法,求两次。
第二十六章概率初步26.2 等可能情形下的概率计算第1课时一、教学目标1.了解结果、等可能的概念,理解等可能情形下的随机事件的概率;2.明确概率的取值范围,能求简单的等可能事件的概率;3.经历在具体情境中探索概率的意义的探索过程,体会事件发生的可能性的大小与概率的值的关系;4.通过数学活动,体会数学的应用价值,培养积极思考的学习习惯.二、教学重难点重点:随机事件概率的特点和一步随机事件概率的求法;难点:理解随机事件概率的意义和求法.三、教学用具多媒体课件四、教学过程设计追问2:具有上述特点的试验,如何表达事件的概率?教师活动:教师提出问题,可以让学生以掷骰子试验为例积极思考.启发学生注意到,对于具有上述特点的试验,用事件所包含的各种可能的结果数在全部可能的结果总数中所占的比,表示事件发生的概率.小组交流后选取代表回答.【归纳】【思考】问题3 在掷骰子试验中,计算下列事件的概率.(1)事件A:点数是奇数;(2)事件B:点数是小于6的数;(3)事件C:点数是小于0的数.预设答案:(1) 事件A包含了1,3,5共3种可能的结果,故事件A发生的概率:P(A)=36=12;(2) 事件B包含了1,2,3,4,5,共5种可能的结果,故事件B发生的概率:P(B)=56;(3) 事件C包含了0种可能的结果,故事件C 发生的概率:P(C)=0.教师活动:教师简单叙述,引出问题,引导学生结合概率的公式进行计算.【探究】事件发生的概率的取值范围是多少呢?由m和n的含义可知:0≤m≤n,0≤mn≤1,即:0≤P(A)≤1【思考】什么时候事件的概率为0或1?举例说明.小组合作:1.两人一组,合作完成;2.适当举例,小组内交流后,总结规律.教师活动:教师组织学生小组合作、举例,待学生充分交流后,选代表回答,全班交流.预设答案:如图,不透明袋子里装有5个大小相同的黑球,标号分别为1-5,从中随机摸取1个球,P(摸到白球)=0 ;P(摸到黑球)=1 .结论:不可能事件的概率为0;必然事件的概率为1.【归纳】①0≤P(A)≤1;②当A为必然事件时,m=n,P(A) =1;③当A为不可能事件时,m=0,P(A) =0.【典型例题】思维导图的形式呈现本节课的主要内容:。