9.3等可能事件的概率(4)
- 格式:ppt
- 大小:549.50 KB
- 文档页数:23
等可能条件下的概率(二)教学设计一、教学内容概述本节课为九年级上册,第4章等可能条件下的概率第3小节第2课时教学内容,本节课的主要任务是理解能转化为古典概型的几何概型概率的求法。
结合实际生活中的转盘模型及抽奖等生活实际,进一步理解概率在生活中的应用。
二、教学目标设计知识目标:1.在具体情境中进一步理解概率的意义,体会概率是描述不确定现象的数学模型.2.进一步理解等可能事件的意义,会解决能转化为古典概型的几何概型概率问题,会把事件分解成等可能的结果(基本事件).能力目标:通过学生动手操作、实验、探索的过程,培养学生观察能力、动手能力、合作讨论的能力和转化思想解决问题的能力;情感目标:通过观察、实验、理解几何概型概率的求法,探索能转化为古典概型的几何概型概率的求解思想,掌握这类事件概率在实际生活的应用。
三、教学重难点设计1.教学重点:学会求一类事件的概率(能转化为古典概型的几何概型)的概率,理解概率的大小和面积大小有关,掌握这类问题在实际生活的应用,会用列举法(包括列表、画树状图)计算一些随机事件所含的可能结果(基本事件)数及事件发生的概率.2.教学难点:会将能转化为古典概型的几何概型概率转化成古典概型,理解这类事件概率的大小和面积大小有关,并利用概率公式并解决实际问题,并会灵活运用列举法(包括列表、画树状图)计算几何概型这类事件概率.四、学生学情分析学生在学习过程中,古典概型由于有八年级学习的基础和上节课学习的准备,易于理解,但要真正理解能转化为古典概型的几何概型的这一类问题中概率的大小与面积的大小有关,并能转化成古典概型利用概率公式解决实际问题,还有一定难度,让学生边学习边体会这些区别和变化。
五、教学策略设计说明本课题设计的基本理念是通过实验、观察、操作,主要采用的小组合作、讨论、研究和探索等策略,重点是探索和发现,几何概型概率求法和古典概型之间的关系,难点是理解几何概型问题中概率的大小和面积大小有关,并利用概率公式并解决实际问题,并由浅入深,逐渐深入研究本节课在实际问题的应用,采用探究、合作、交流、讨论法等教学方法。
概率知识点及习题第四章————————————————————————————————作者:————————————————————————————————日期:23 / 15第四章《概率》一、 重点知识事件分类⎪⎩⎪⎨⎧有时不发生的事件件下,试验时有时发生③随机事件:在一定条都不会发生的事件条件下,每一次试验时②不可能事件:在一定会发生的事件件下,每一次试验时都①必然事件:在一定条1、事件随机事件不可能事件必然事件确定事件2、随机事件A 发生的频率与概率频率:在相同条件下大量重复的n 次试验中,随机事件A 发生了m 次,则频率为nm 。
概率:随着试验次数的增加,若nm稳定在某一个常数p 附近,则p 即为事件A 的概率,记为P ()p A =,P (A )=nm 可理解为:(1)求一个事件的概率的基本方法是通过大量的重复试验;(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率; (3)概率是频率的稳定值,而频率是概率的近似值; (4)概率反映了随机事件发生的可能性的大小; (5),必然事件的概率为,不可能事件的概率为,随机事件时。
二、知识要点1.确定事件发生的可能性在某一条件下,事件发生的可能性是有大小的.不可能事件是永远不会发生的事件,其发生的可能性为0;必然事件是在一定的条件下必然发生的事件,其发生的可能性是100%. 2.不确定事件发生可能性不确定事件发生的可能性是不确定的,一个不确定事件发生的可能性可以用0到1之间的数表示.对于一个不确定事件,我们可以通过大量的试验来探究其发生可能性.根据不确定事件发生可能性,不确定事件又可分为很可能发生事件(发生的可能性很大);可能发生事件(有一定的发生可能性);不太可能发生事件(发生的可能性较小).很可能发生事件只是发生的可能性非常大,但4 / 15其发生的可能性不是1;不太可能发生事件虽然发生的可能性相当小,但其发生的可能性不是0. 3.频率与可能性试验是估计可能性的一种方法.通过试验的方法用频率估计可能性应注意以下几点:(1)通过试验的方法用频率估计可能性,试验要在相同的条件下进行,否则结果可能会受到影响. (2)通过试验,用频率估计可能性,需要经过多次的试验,当频率逐渐稳定时,用稳定时的频率值估计可能性.4.游戏的公平与不公平一个公平的游戏应该是游戏的双方获胜的可能性相同,不公平的游戏是指游戏双方或获胜的可能性不同.较简单的游戏可以从通过分析的方法判断其是否公平;对于比较复杂且比较难判断公平性的游戏,我们可以通过做试验的方法来确定其公平性. 5.两种模型的概率(1)等可能性事件的概率:在一次试验中,如果不确定现象的可能结果只有有限个,且每一个结果都是等可能的,求这种类型事件的概率称为等可能事件的概率型.如摸球、掷硬币、掷骰子等都属于等可能性.在等可能事件中, 如果所有等可能的结果为n ,而其中所包含的事件A 可能出现的结果数是m ,那么事件A 的概率P (A )=nm . (2)区域事件发生的概率:在与图形有关的概率问题中,概率的大小往往与面积有关,这种类型的概率称为区域型概率.在区域事件中,某一事件发生的概率等于这一事件所有可能结果组成的图形的面积除以所有可能结果组成的图形的面积. 如P (小猫停留在黑砖上)=地板砖总面积黑砖总面积.6.利用概率解决实际问题用概率来解释生活中的实际问题的关键是能够准确计算出事件发生的概率,再结合事件发生的等可能性加以判断说明.三、易混易错1.混淆确定事件、不确定事件、必然事件和不可能事件之间的区别与联系.如,下列事件是必然事件的是( )A.明天要下雨B.打开电视机,正在直播足球比赛C.抛掷一枚正方体骰子,掷得的点数不会小于1D.买一张3D 彩票,一定会中一等奖不少同学会错误地选择A ,或B ,或D .而事实上,在特定的条件下,有些事件我们事先能够肯定它一定会发生,就是必然事件.因为明天到底是否下雨,今天我们还不能够知道,因此,问题中的“明天要下雨” 是一个随机事件;打开电视机所看到的节目与所在的时间、所收看的频道有关系,因此,问题中的“打开电视机,正在直播足球比赛”,也是一个随机事件;一枚正方体骰子有6个面,上面的点数分别为1、2、3、5 / 154、5、6,无论怎样进行抛掷,都是这6个数中的一个,因而“抛掷一枚正方体骰子,掷得的点数不会小于1”是一个必然事件;同样买一张3D 彩票,能否中一等奖也是不确定的.因此,本题正确应该选C .2.混淆单一事件发生的可能结果和所有可能发生的结果之间的关系.如,一布袋中放有红、黄、自三种颜色的球各一个,它们除颜色外其他都一样,贝贝从布袋中摸出一球后放回去摇匀,再摸出一个球,试求贝贝两次都能摸到白球的概率.不少同学会错误认为:因为一布袋中放有红、黄、自三种颜色的球各一个,它们除颜色外其他都一样,所以小亮从布袋中摸出一球后放回去摇匀,再摸出一个球的概率均为13. 而事实上,题目是要求贝贝两次都能摸到白球的概率,而不是每一次贝贝两次都能摸到白球的概率.由于布袋中放有红、黄、自三种颜色的球各一个,它们除颜色外其他都一样,所以贝贝从布袋中摸出一球后放回去摇匀,再摸出一个球,这样两次摸出球的结果是:(红,红)、(红,黄)、(红,白)、(黄,红)、(黄,黄)、(黄,白)、(白,红)、(白,黄)、(白,白),由此贝贝两次都能摸到白球的概率是P (白,白)=19. 3.玩游戏受表面现象所迷惑.如,从一副扑克中分离出所有的红桃,并将红桃J 记为11,红桃Q 记为12,红桃K 记为13,现将分离出来的红桃洗匀,背面朝上,从中任意抽取一张,数字是偶数的贝贝赢,奇数的京京赢.你认为游戏是否公平吗?咋一看,数字只有偶数和奇数,所以这个游戏是公平的,而仔细分析一下这13个数字中有6个偶数,7个奇数,显然贝贝和京京获胜的概率是不等的,因此这个游戏不公平.参考答案:一、填空题 1.12;2.16;3.公平;4.不确定;5.<;6.227;7.23;8.211;9.0;10.0.5; 二、选择题 11.C;12.C;13.D;14.A;15.A;D.17.D;18.A; 19.B;20.C;三、解答题21.(1)13;(2)3;(3)甲、乙一样大; 22.设黑球的个数为x,则球的总数为x+42,由题意,得34210x x =+,解得x=18.23.甲每次猜对的概率为137,赢钱137×30=3037(元);乙每次获胜的概率为3637,赢钱36 37×1=3637(元),故乙获胜的机会大些.24.原来口袋里的球共有36个,其中红球6个,蓝球18个,白球12个,为了使摸出的各色球的概率相同,三色球的数量应相等,为了使口袋里的球尽量多,各色球也应尽量多,但红球最多只能达16个,白球只能达15个,因此,唯一的方案是再放入白球3个,红球9个,然后取出蓝球3个.25.(1)抛掷一正一反两块竹板,面朝上的可能性有(正,正),(正,反),(反,正),(反,反)四种情况,每次“允”的概率为12,故P(连允三次)=12×12×12=18;(2)可以动员长辈向关二爷这样说:如果不可以放个北门,请关二爷连允三次.这样,关二不允许放北门的概率是18,而允许放北门的概率是78.典型例析例1:有如下事件,其中“前100个正整数”是指把正整数按从小到大的顺序排列后的前面100个.事件1:在前100个正整数中随意选取一个数,不大于50;事件2:在前100个正整数中随意选取一个数,恰好为偶数解:事件1:在前100个正整数中,不大于50的数共有50个(1,2.…,50),因此,事件1发生的概率为而50/100=1/2;事件2:在按顺序排列好的一列正整数中,奇偶相间,所以前100个正整数中恰好有50个偶数,因此,事件2发生的概率也是1/2.例2:将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【解析】解法一:或根据题意,画表格:第二次第一次1 2 3 46 / 15111 12 13 142 21 22 23 243 31 32 33 344 41 42 43 44由表格可知,共有16种等可能的结果,而且它们出现的可能性相等;其中是4的倍数的有4种:12,24,32,44。
七上数学第九章概率初步单元作业设计02单元分析(一)课标要求能描述简单的随机事件的特征,即可能结果的个数有限,每一个可能结果出现的概率相等。
能计算简单随机事件的概率;知道经历大量重复试验,随机事件发生的频率具有稳定性,能用频率估计概率。
随机事件概率的教学,引导学生感悟随机事件,理解概率是对随机事件发生可能性大小的度量;引导学生认识一类简单的随机事件,其所有可能发生的结果的个数是有限的,每个可能结果发生的概率是相等的,在此基础上了解简单的随机事件概率的计算方法。
(二)教材分析1.知识网络不确定事件发生的概率是0~1之间的一个常数游戏的公平性设计符合要求的简单概率模型必然事件(发生的概率为1)确定事件不可能事件(发生的概率为0)不确定事件一般的,在大量重复试验中,我们常用的不确定事件A发生的概率来估计事件A发生的概率。
2.内容分析“统计与概率”的内容在新课标中得到重视,是与“数与代数”“图形与几何”“综合与实践”并列的四部分内容之一.概率是研究随机现象的科学,对一些简单的随机现象发生的可能性大小做出定性的描述.在义务教育阶段,对现象的研究都基于简单随机事件概率研究的对象是随机现象,其核心是通过对数据进行分析,发现其中蕴含的信息,从中发现规律.生活中的抽签、中奖、抛硬币等实际应用的例子说明了大量重复试验中频率具有稳定性.在义务教育阶段,学习“概率”的目标不仅仅是计算一些事件的概率,重要的是体会概率的意义和作用。
3. 学情分析(1)学生年龄特点分析七年级学生是正处于形象思维向抽象思维过渡的时期,对于过于抽象的“随机”性理解起来有一定难度,所以在教学过程中强调问题情境创设的直观性,借助于主富、多样的活动引发学生的积极思考,用学生的主动参与试验将学生拉到要解决的问题情境中与问题零距离,自觉主动地展开思考与探索.乐于发言、积极讨论是本班学生的优点,抓住这一点充分利用小组合作的力量把问题逐一突破。
(2)学生已有知识经验分析本节教学内容学生已具备充足的生活经验,然而学生对于所学知识的应用能力度仍需提高。
《等可能事件的概率》作业设计方案(第一课时)一、作业目标通过本节课的作业练习,使学生能够:1. 掌握等可能事件的基本概念;2. 理解概率的基本计算方法;3. 能够通过实例分析,将概率问题应用于实际生活中。
二、作业内容1. 概念理解题(1)请简述等可能事件的概念,并举例说明。
(2)请解释概率的定义,并说明其计算方法。
2. 计算题(1)根据给出的数据表,计算每个事件的概率(附数据表)。
(2)通过抛硬币实验,记录正反面出现的次数,并计算正面朝上的概率。
(3)利用公式P(A)=m/n(m为有利结果数,n为全部可能结果数),求出以下问题的概率:①在五次掷骰子中,出现六点的概率;②一个家庭有三个孩子,两个女孩的概率为多少?3. 应用题(1)商场有奖促销活动中,参与一次抽奖的机会获得奖品的概率为多少?若抽中一次,你会选择什么样的策略?(2)学校举行班级足球赛,预测每队胜负的概率,并根据此概率判断各队的胜率。
(3)结合生活中的实际情境,自行设计一个概率问题,并给出解答过程。
三、作业要求1. 所有题目均需独立完成,不得抄袭他人答案;2. 计算题需详细展示解题步骤,特别是涉及到公式应用的题目;3. 应用题应结合生活实际情境,提出自己的观点或策略;4. 每个题目的答案均需有清晰的表述和完整的计算过程;5. 字迹要工整、规范,不得潦草涂抹。
四、作业评价作业的评价将依据以下标准:1. 准确度:学生解答的正确率;2. 思路清晰:学生是否能够清晰地展示解题思路;3. 逻辑性:学生在解题过程中的逻辑性是否合理;4. 创意性:学生是否能结合生活实际情境提出自己的见解或策略;5. 整洁度:学生作业的字迹是否工整、整洁。
五、作业反馈作业收齐后,教师将对学生的作业进行批改与反馈:1. 对于完成较好的学生给予表扬和鼓励;2. 对于完成情况不佳的学生进行针对性的辅导和指导;3. 根据学生在解题过程中出现的普遍问题,进行课堂讲解和指导;4. 鼓励学生自行发现并解决问题,提高自主学习的能力。
初中七年级数学单元备课设计第九章《概率初步》一、课标分析(一)内容要求本章的主要内容是在前面学习的基础上,通过实验进一步体会概率的意义,建立正确的概率直觉,培养随机观念;了解实验频率与理论概率的关系;学习计算简单事件发生概率的两种方法——列举法、画树状图法;会用模拟实验的方法估计一个事件发生的概率。
概率模型也由一步实验较简单的概率模型涉及到二步实验或二步以上的实验。
(二)学业要求1.能运用列举法(列表法、画树状图法)计算简单事件发生的概率.2.用实验的方法估计一个事件发生的概率,并会设计一个方案来估计一个事件发生的概率。
二、教材分析本章内容是概率初步。
教科书先以学生喜闻乐见的掷骰子游戏为背景,经历猜测、试验、收集试验数据、分析试验结果等活动过程,让学生体验生活中有许多事件的发生是不确定的,加深对确定事件与随机事件,必然事件与不可能事件等概念的理解,并感受随机事件发生的可能性有大有小。
同时,初步体会人们一般通过重复多次试验来估计事件发生的可能性大小。
在第二节中,通过抛掷图钉和抛掷均匀的硬币的试验,让学生感受到频率的稳定性,并得出概率的统计定义,即用事件发生的频率的稳定值作为该事件发生的概率。
在第三节中,通过对摸到红球的概率的讨论,对一类事件(古典概型)发生的概率进行简单的理论计算。
通过对停留在黑砖上的概率的讨论,对另一类事件(几何概型)发生的概率进行简单的理论计算,从而加深对概念意义的理解。
三、学情分析学生在以前的学习中已经认识了许多随机事件,研究了一些简单的随机事件发生的可能性的大小,并对一些现象作出了合理的解释,对一些游戏活动的公平性作出了自己的评判。
但学生对随机事件以及发生的概率的认识是一个较长的认知过程,学生对概率的理解也有必要随着其数学活动经验。
义务教育阶段学生可以掌握的有关概率模型大致分为类:第一类借助实验获得估计值,第二类模拟实验。
第三类是简单的计算。
四、单元目标1.经历猜测、试验、收集试验数据、设计试验方案,分析试验结果等活动过程,发展数据分析观念。
随机事件的概率(4)——等可能事件的概率(3)一、课题:随机事件的概率(4)——等可能事件的概率(3) 二、教学目标:1.掌握求解等可能性事件的概率的基本方法;2.能正确地对一些较复杂的等可能性事件进行分析。
三、教学重点:等可能性事件及其概率的分析和求解。
四、教学难点:对事件的“等可能性”的准确理解。
四、教学过程: (一)复习:1.等可能性事件的概率公式及一般方法、步骤; 2.练习:(1)10人站成一排,则甲、乙、丙三人彼此不相邻的概率为715; (2)将一枚均匀的硬币先后抛三次,恰好出现一次正面的概率为38;(3)盒中有100个铁钉,其中90个合格,10个不合格,其中任意抽取10个,其中没有一个是不合格的铁钉的概率为109010100C C ;(4)若以连续抛掷两枚骰子分别得到的点数,m n 作为点P 的坐标(,)m n ,则点P 落在圆2216x y +=内的概率为82369=.(列举法) (二)新课讲解:例1 4个球投入5个盒子中,求:(1)每个盒子最多1个球的概率;(2)恰有一个盒子放2个球,其余盒子最多放1个球的概率。
解:4个球投入5个盒子中,每个球有5个选法,4个球有45种不同选择结果,(1)相当于从5个盒子中选4个盒子,每个盒子放1个球,有45A 种不同选择结果,∴所求概率为454245125A =.(2)先从5个盒子中选1个,从4个球中选2个放入其中,其余2个球放入剩余的4个盒子中的2个中,有122544C C A ⋅⋅个不同结果,∴所求概率为1225444725125C C A ⋅⋅=.说明:本题属于古典概率的另一基本题型——盒子投球问题,所投的球可以是真实的球,还可以是学生、旅客等,盒子可以是房间、教室、座位等。
例2 袋中有4个白球和5个黑球,连续从中取出3个球,计算:(1)“取后放回,且顺序为黑白黑”的概率; (2)“取后不放回,且取出2黑1白”的概率。
解:(1)每一次取球都有9种方法,共有39种结果,顺序为黑白黑的有111545100A A A ⋅⋅=种,∴所球的概率为11154531009729A A A ⋅⋅=. (2)3次取球,有39A 种结果,2黑1白的取法有213543480C C A ⋅⋅=种,∴所求概率为213543391021C C A A ⋅⋅=. 说明:模型中的“球”,可以是一种颜色或几种不同颜色、编号、不编号的真实球,也可以是合格和不合格产品,也可以是不同币值的货币,或几枚骰子、扑克等,解题时要分清“有放回”与“无放回”、“有序”与“无序”,不能混淆。