r τ (t)
τ
r
θ
θ + θ
x
r τ r θ : 大小 τ = 2sin 2 ≈ θ
dτ dτ dθ dτ dθ ds dτ r ds = ρ ds =V = = , =n , dθ , dt dt dθ dt dθ ds dt dθ
r τ ≈ θ n r r r dτ r τ θ n r lim θ →0, θlim θ = θ →0 θ = n dθ = n →0
α
r a
an
dV 2 V 2 2 2 a = at2 + an = ( ) + ( ) , tgα = an / at dt ρ
讨论:(1 直线运动, 讨论:(1)直线运动,ρ = ∞, an = 0 :( dV V2 a = 0, an = 匀速率圆周运动, (2)匀速率圆周运动, t = :向心加速度 R dt 一般曲线运动及变速率圆周运动, (3)一般曲线运动及变速率圆周运动,at ≠ 0, an ≠ 0 V2 V2 (4) an = ρ= :计算曲率半径
θ = 63.4o
第6节 节
圆周运动的角量表示
角坐标, s = Rθ θ :角坐标,rad θ = θ (t) s = s(t)
y
r P r s θ A R O
V = ωR,
dω d 2θ :角加速度, 角加速度, rad / s2 β= = 2 dt dt V 2 ω2 R2 = = ω2 R at = Rβ, an = R R
第5 节
相对运动
P
r r
S
O
静系
r r0
S′
O′
动系
r r′
r r r r = r ′ + r0 r r r dr dr ′ dr0 = + dt d = r′ + r0