大学物理切向加速和法向加速
- 格式:pptx
- 大小:468.55 KB
- 文档页数:21
1-1.质点在Oxy 平面内运动,其运动方程为j t i t r )219(22-+=。
求:(1)质点的轨迹方程;(2)s .t 01=时的速度及切向和法向加速度。
1-2.一质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置矢量i r 100=。
求:(1)在任意时刻的速度和位置矢量;(2)质点在oxy 平面上的轨迹方程,并画出轨迹的示意图。
1-3. 一质点在半径为m .r 100=的圆周上运动,其角位置为342t +=θ。
(1)求在s .t 02=时质点的法向加速度和切向加速度。
(2)当切向加速度的大小恰等于总加速度大小的一半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则角速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=⋅⨯==ωr a22s t t s m 80.4d d -=⋅==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的角位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所示,在水平地面上,有一横截面2m 20.0=S 的直角弯管,管中有流速为1s m 0.3-⋅=v 的水通过,求弯管所受力的大小和方向。
解:在t ∆时间内,从管一端流入(或流出)水的质量为t vS m ∆=∆ρ,弯曲部分AB 的水的动量的增量则为()()A B A B v v t vS v v m p -∆=-∆=∆ρ依据动量定理p I ∆=,得到管壁对这部分水的平均冲力()A B v v I F -=∆=Sv t ρ从而可得水流对管壁作用力的大小为N 105.2232⨯-=-=-='Sv F F ρ作用力的方向则沿直角平分线指向弯管外侧。
大物切向加速度和法向加速度公式在我们探索物理世界的奇妙旅程中,大物切向加速度和法向加速度公式就像是两把神奇的钥匙,能帮助我们打开许多未知的大门。
咱先来说说切向加速度。
这切向加速度啊,简单来说,就是描述物体在运动轨迹切线方向上速度变化快慢的物理量。
它的公式是$a_{t} = \frac{dv}{dt}$,这里的$v$表示速度,$dt$表示时间的微小变化量。
给您举个例子吧,就说骑自行车。
您在平坦的道路上骑车,使劲儿蹬的时候,车子速度越来越快,这个速度增加的快慢程度,在物理上就可以用切向加速度来衡量。
比如说,您一开始以 5 米每秒的速度前进,然后在 5 秒钟内加速到了 10 米每秒。
那速度的变化量就是 10 - 5= 5 米每秒。
时间变化量是 5 秒。
所以切向加速度就是 5÷5 = 1 米每秒²。
这就意味着您骑车的速度每秒增加了 1 米。
再聊聊法向加速度。
法向加速度呢,是描述物体在运动轨迹法向方向上速度变化快慢的物理量。
它的公式是$a_{n} = \frac{v^{2}}{r}$,其中$v$是速度,$r$是运动轨迹的曲率半径。
还拿骑车举例,当您骑着车转弯的时候,您会感觉到有一种向外甩的力。
这个时候就有法向加速度在起作用啦。
比如说您以 8 米每秒的速度骑进一个半径为 10 米的弯道,那法向加速度就是 8²÷10 = 6.4 米每秒²。
这股力量会让您在转弯的时候紧紧握住车把,保持平衡。
在实际生活中,这两个加速度常常是同时存在的。
就像汽车在盘山公路上行驶,既沿着道路有速度的变化(切向加速度),又因为道路的弯曲而有向心的加速度(法向加速度)。
对于学习物理的同学们来说,理解这两个加速度公式可太重要啦。
在解题的时候,搞清楚物体的运动状态,准确判断是切向加速度在起主要作用,还是法向加速度更关键,或者是两者都要考虑,这是解题的关键步骤。
总之,大物中的切向加速度和法向加速度公式虽然看起来有点复杂,但只要我们结合实际生活中的例子去理解,就会发现它们其实就在我们身边,无时无刻不在影响着我们的生活和运动。