证明二复习
- 格式:doc
- 大小:436.50 KB
- 文档页数:4
BC九年级数学 作业1、已知:菱形ABCD 中,对角线AC = 16 cm ,BE ⊥BC 于点E ,则BE 的长.为 。
2、直角梯形的一条对角线把梯形分成两个三角形, 其中一个是边长为4的等边三角形,那么梯形的中位线长为 。
3、如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩 形的一个角沿折痕AE 翻折上去,使AB 和AD 边上的AF 重合,则四边形ABEF 就是一个最大的正方形,他的判定方法是 。
4、下列图形:线段、正三角形、平行四边形、矩形、菱形、正方形、等腰梯形、直角梯形,其中既是中心对称图形,又是轴对称图形的共有 ( )(A )3个 (B )4个 (C )5个 (D ) 6个5、如图,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD.有下列四个结论:①∠PBC =15°;②AD ∥BC ;③直线PC 与AB 垂直;④四边形ABCD 是轴对称图形.其中正确的结论的个数为 ( )(A )1个 (B )2个 (C )3个 (D )4个6、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC=12,BD=9, 则该梯形两腰中点的连线EF 长是( ) A 、10 B 、221 C 、215 D 、127、如图,等腰梯形ABCD 中,AD ∥BC ,∠DBC=45º。
翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点F 、E 。
若AD=2,BC=8, 求:(1)BE 的长。
(2)CD :DE 的值。
CFBEADCB ADPDBCAEF CDBA EF8、如图是规格为8×8的正方形网格,请在所给网格中......按下列要求操作:⑴请在网格中建立平面直角坐标系, 使A点坐标为(-2,4),B点坐标为(-4,2);⑵在第二象限内的格点上..........画一点C, 使点C与线段AB组成一个以AB为底的等腰三角形, 且腰长是无理数, 则C点坐标是,△ABC的周长是(结果保留根号);⑶画出△ABC以点C为旋转中心、旋转180°后的△A′B′C, 连结AB′和A′B, 试说出四边形ABA′B′是何特殊四边形, 并说明理由.△与R t ABD△中,90=,,ABC BAD∠=∠= ,AD BC AC BD 相交于点G,过点A作AE D B∥交D A的∥交C B的延长线于点E,过点B作B F C A延长线于点F AE BF,,相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明四边形A H B G是菱形;(3)若使四边形A H B G是正方形,还需在R t ABC△的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)EF。
DCBAD九年级数学 作业1、如图,设M ,N 分别是直角梯形ABCD 两腰AD ,CB 的中点,DE 上AB 于点E ,将△ADE 沿DE 翻折,M 与N 恰好重合,则AE :BE 等于( ) A .2:1 B .1:2 C .3:2 D .2:32、小宇同学在一次手工制作活动中,先把一张矩形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是( )A .0.5cmB .1cmC .1.5cmD .2cm3、如图,若将四根木条钉成的矩形木框变为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于 。
4、矩形ABCD 中,22=AB ,将角D 与角C 分别沿过A 和B 的直线AE 、BF 向内折叠,使点D 、C 重合于点G ,且AGB EGF ∠=∠,则=AD .5、已知平行四边形A B C D ,AD a AB b ABC α===,,∠.点F 为线段B C 上一点(端点B C ,除外),连结A F A C ,,连结D F ,并延长D F 交A B 的延长线于点E ,连结C E .(1)当F 为B C 的中点时,求证E F C △与A B F △的面积相等;(2)当F 为B C 上任意一点时,E F C △与A B F △的面积还相等吗?说明理由.左右左右第二次折叠 第一次折叠图1图26、在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD 分割成四个部分,使含有一组对顶角的两个图形全等; (1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有 组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线; (3)由上述实验操作过程,你发现所画的两条直线有什么规律?7、如图:把一个矩形如图折叠,使顶点B 和D 重合,折痕为EF 。
BC九年级数学中午作业(06-09-15) 姓名1、已知:菱形ABCD 中,对角线AC = 16 cm ,BE ⊥BC 于点E ,则BE 的长.为 。
2、直角梯形的一条对角线把梯形分成两个三角形, 其中一个是边长为4的等边三角形,那么梯形的中位线长为 。
3、如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩 形的一个角沿折痕AE 翻折上去,使AB 和AD 边上的AF 重合,则四边形ABEF 就是一个最大的正方形,他的判定方法是 。
4、下列图形:线段、正三角形、平行四边形、矩形、菱形、正方形、等腰梯形、直角梯形,其中既是中心对称图形,又是轴对称图形的共有 ( )(A )3个 (B )4个 (C )5个 (D ) 6个5、如图,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD.有下列四个结论:①∠PBC =15°;②AD ∥BC ;③直线PC 与AB 垂直;④四边形ABCD 是轴对称图形.其中正确的结论的个数为 ( )(A )1个 (B )2个 (C )3个 (D )4个6、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC=12,BD=9, 则该梯形两腰中点的连线EF 长是( ) A 、10 B 、221 C 、215 D 、127、如图,等腰梯形ABCD 中,AD ∥BC ,∠DBC=45º。
翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点F 、E 。
若AD=2,BC=8, 求:(1)BE 的长。
(2)CD :DE 的值。
CFBEADCB ADPDBCAEF CDBA EF8、如图是规格为8×8的正方形网格,请在所给网格中......按下列要求操作:⑴请在网格中建立平面直角坐标系, 使A点坐标为(-2,4),B点坐标为(-4,2);⑵在第二象限内的格点上..........画一点C, 使点C与线段AB组成一个以AB为底的等腰三角形, 且腰长是无理数, 则C点坐标是,△ABC的周长是(结果保留根号);⑶画出△ABC以点C为旋转中心、旋转180°后的△A′B′C, 连结AB′和A′B, 试说出四边形ABA′B′是何特殊四边形, 并说明理由.△与R t ABD△中,90=,,ABC BAD∠=∠= ,AD BC AC BD 相交于点G,过点A作AE D B∥交D A的∥交C B的延长线于点E,过点B作B F C A延长线于点F AE BF,,相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明四边形A H B G是菱形;(3)若使四边形A H B G是正方形,还需在R t ABC△的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)EF。
2023年中考数学二轮复习之命题与证明一.选择题(共10小题)1.(2022秋•鸡泽县期末)下列命题中是真命题的有( )个.①作线段AB∥CD;②正数大于负数;③钝角和锐角之和为180°;④今天的天气好吗?⑤等腰三角形是轴对称图形;⑥若a、b满足a2=b2,则a=b.A.2B.3C.4D.5 2.(2022秋•沧州期末)下列众题中,其逆命题是假命题的是( )A.等腰三角的两个底角相等B.直角三角形中两个锐角互余C.全等三角形的对应角相等D.如果,那么a=b3.(2022秋•未央区期末)下列命题是真命题的是( )A.对角线相等的四边形是矩形B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的矩形是正方形4.(2022秋•抚州期末)下列命题中,是真命题的有( )个①同旁内角互补;②两条边及一个内角分别对应相等的两个三角形是全等三角形;③的算术平方根是3;④若ab>0,则点(a,b)在第一象限或第三象限.A.1B.2C.3D.4 5.(2022秋•屯留区期末)下列命题中,为真命题的是( )A.﹣9的平方根为±3B.一个数的平方根等于它的算术平方根C.的相反数为D.没有倒数6.(2022秋•桥西区期末)下列命题的逆命题是真命题的是( )A.若a>0,b>0,则a+b>0B.若a=b,则|a|=|b|C.对顶角相等D.两直线平行,同位角相等7.(2022秋•陕西期末)下列命题的逆命题中,属于真命题的是( )A.如果a=0,b=0,则ab=0B.全等三角形的周长相等C.两直线平行,同位角相等D.若a=b,则a2=b28.(2022秋•宝山区期末)下列命题中,假命题是( )A.若点C、D在线段AB的垂直平分线上,则AC=BC,AD=BDB.若AC=BC,AD=BD,则直线CD是线段AB的垂直平分线C.若PA=PB,则点P在线段AB的垂直平分线上D.若PA=PB,则过点P的直线是线段AB的垂直平分线9.(2022秋•南安市期末)下列命题是假命题的是( )A.有一个角是60°的三角形是等边三角形B.有两个角是60°的三角形是等边三角形C.三个角都相等的三角形是等边三角形D.三边相等的三角形是等边三角形10.(2022秋•永安市期末)能说明命题“对于任意实数,.”是假命题,其中a可取的值是( )A.﹣1B.0C.1D.二.填空题(共8小题)11.(2022秋•慈溪市期末)能说明命题:“若两个角α,β互补,则这两个角必为一个锐角一个钝角”是假命题的反例是 .12.(2022秋•盐田区期末)用一个k的值推断命题“一次函数y=kx+1(k≠0)中,y随着x 的增大而增大”为假命题,这个值可以是 .(注:举出一个即可)13.(2022秋•青田县期末)命题“如果ab=1,那么a,b互为倒数”的逆命题为 .14.(2023•金水区开学)“你的作业做完了吗”这句话 命题.(填“是”或者“不是”)15.(2022秋•徐汇区校级期末)在平面内,经过点P且半径等于1的圆的圆心的轨迹是 .16.(2022秋•常德期末)用反证法证明:在一个三角形中不能有两个角是钝角.应先假设: .17.(2022秋•莲池区校级期末)用一组a,b的值说明“若a<b,则a2<b2”是假命题,若小明取a=﹣2,则b= .18.(2022秋•仙居县期末)如图,在△ABC中,∠ABC=115°,AB=BC=6cm,将△ABC 绕点B顺时针旋转得到△DBE,过点C作CF⊥BE于点F,当点E、B、A在同一直线上时停止旋转.在这一旋转过程中,点F所经过的路径长为 .三.解答题(共2小题)19.(2022秋•卧龙区校级期末)学习了三角形全等的判定方法后可知,有两边及其中一边的对角分别相等的两个三角形不一定全等,那么什么时候全等什么时候不全等呢?小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.并思考要想解决问题,应把∠B分为“直角、锐角、钝角”三种情况进行探究:(1)第一种情况:当∠B是直角时,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.(2)第二种情况:当∠B是锐角时,如图,BC=EF,∠B=∠E<90°,在射线EQ上有点D,使DF=AC,在答题卡的图中画出符合条件的点D,根据作图可以判断△ABC 和△DEF的关系 .A、不全等B、不一定全等C、全等(3)第三种情况:当∠B是钝角时,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°,求证:△ABC≌△DEF.20.(2022秋•桐柏县期末)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.以下是课外兴趣小组研究函数的图象、性质及其应用的部分过程,请按要求完成下列各题:(1)下表是函数y与自变量x的几组对应值,则a= ,m= ;x…﹣5﹣4﹣3﹣2﹣1﹣0.500.512345…y…﹣0.8﹣0.7﹣0.50 1.5343m0﹣0.5﹣0.7﹣0.8…(2)如图在平面直角坐标系中,已经描出了该函数图象的部分点并绘制了部分图象,请把图象补充完整;(3)观察函数的图象,判断下列命题的真假.(在题后括号内正确的打“√”,错误的打“×”)①该函数图象是轴对称图形,它的对称轴为直线x=0; ;②该函数在自变量的取值范围内有最大值,当x=0时取最大值4; ;③若当x<h时,函数y的值随x的增大而增大,则h的值是0; ;④该函数图象与直线y=﹣1没有公共点. ;(4)结合相关函数的图象,直接写出不等式的解集(近似值保留一位小数,误差不超过0.2);(5)若函数的图象与直线y=k有两个公共点,则常数k的取值范围是 .2023年中考数学二轮复习之命题与证明参考答案与试题解析一.选择题(共10小题)1.(2022秋•鸡泽县期末)下列命题中是真命题的有( )个.①作线段AB∥CD;②正数大于负数;③钝角和锐角之和为180°;④今天的天气好吗?⑤等腰三角形是轴对称图形;⑥若a、b满足a2=b2,则a=b.A.2B.3C.4D.5【考点】命题与定理;轴对称图形;等腰三角形的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】根据真命题的概念以及等腰三角形的性质、平方的特点的知识即可判断.【解答】解:①作线段AB∥CD,不是命题;②正数大于负数;是真命题;③钝角和锐角之和为180°,是假命题;④今天的天气好吗?不是命题;⑤等腰三角形是轴对称图形,是真命题;⑥若a、b满足a2=b2,则a=b,是假命题.故选:A.【点评】本题考查命题的知识,解题的关键是了解有关定义及性质.2.(2022秋•沧州期末)下列众题中,其逆命题是假命题的是( )A.等腰三角的两个底角相等B.直角三角形中两个锐角互余C.全等三角形的对应角相等D.如果,那么a=b【考点】命题与定理;全等三角形的性质.【专题】等腰三角形与直角三角形;推理能力.【分析】写出各命题的逆命题,再根据等腰三角形的判定,三角形内角和定理,全等三角形的判定,逐项判断即可求解.【解答】解:A、逆命题为:有两个角相等的三角形是等腰三角形,是真命题,故本选项不符合题意;B、逆命题为:有两个角互余的三角形是直角三角形,是真命题,故本选项不符合题意;C、逆命题为:对应角相等的三角形全等,是假命题,故本选项符合题意;D、逆命题为:如果a=b,那么,是真命题,故本选项不符合题意.故选:C.【点评】本题考查的是命题与定理,涉及到等腰三角形的判定,三角形内角和定理,全等三角形的判定,判断命题的真假,逆命题等知识,熟练掌握相关知识点是解题的关键.3.(2022秋•未央区期末)下列命题是真命题的是( )A.对角线相等的四边形是矩形B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的矩形是正方形【考点】命题与定理;平行四边形的判定;菱形的判定;矩形的判定与性质;正方形的判定.【专题】矩形菱形正方形;推理能力.【分析】根据特殊平行四边形的判定定理即可一一判定.【解答】解:A.对角线相等的平行四边形是矩形,故该命题错误,是假命题,不符合题意;B.一组对边平行,另一组对边也平行的四边形是平行四边形,故该命题错误,是假命题,不符合题意;C.对角线互相垂直平分的四边形是菱形,故该命题错误,是假命题,不符合题意;D.对角线互相垂直的矩形是正方形,故该命题正确,是真命题,符合题意.故选:D.【点评】本题考查的是命题与定理及特殊四边形的判定,熟练掌握和运用各特殊四边形的判定方法是解决本题的关键.4.(2022秋•抚州期末)下列命题中,是真命题的有( )个①同旁内角互补;②两条边及一个内角分别对应相等的两个三角形是全等三角形;③的算术平方根是3;④若ab>0,则点(a,b)在第一象限或第三象限.A.1B.2C.3D.4【考点】命题与定理;坐标与图形性质;同位角、内错角、同旁内角;全等三角形的判定.【专题】线段、角、相交线与平行线;推理能力.【分析】依据平行线的性质,全等三角形的判定,算术平方根的定义及象限点的坐标特征分别判断即可.【解答】解:由两直线平行,同旁内角互补,故①错误;依据两边及夹角对应相等的两三角形全等,故②错误;的算术平方根是,故③错误;若ab>0,则点(a,b)在第一象限或第三象限,故④正确,真命题有1个.故选:A.【点评】本题考查了命题与定理,解题的关键是了解有关的定义及性质,难度不大.5.(2022秋•屯留区期末)下列命题中,为真命题的是( )A.﹣9的平方根为±3B.一个数的平方根等于它的算术平方根C.的相反数为D.没有倒数【考点】命题与定理;平方根;算术平方根;实数的性质.【专题】实数;推理能力.【分析】根据平方根,算术平方根,实数的性质进行求解即可.【解答】解:A、9的平方根为±3,﹣9没有平方根,是假命题,不符合题意;B、一个数的平方根不等于它的算术平方根,是假命题,不符合题意;C、的相反数为,是真命题,符合题意;D、有倒数,是假命题,不符合题意.故选:C.【点评】本题主要考查的是命题与定理,平方根,算术平方根,实数的性质,熟知相关知识是解题的关键.6.(2022秋•桥西区期末)下列命题的逆命题是真命题的是( )A.若a>0,b>0,则a+b>0B.若a=b,则|a|=|b|C.对顶角相等D.两直线平行,同位角相等【考点】命题与定理;绝对值;有理数的加法;对顶角、邻补角;平行线的性质.【专题】实数;线段、角、相交线与平行线;推理能力.【分析】首先明确各个命题的逆命题,再分别分析各逆命题的题设是否能推出结论,可以利用排除法得出答案.【解答】解:A、若a>0,b>0,则a+b>0的逆命题是若a+b>0,则a>0,b>0,逆命题是假命题,不符合题意;B、若a=b,则|a|=|b|的逆命题是若|a|=|b|,则a=b,逆命题是假命题,不符合题意;C、对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题,不符合题意;D、两直线平行,同位角相等的逆命题是同位角相等,两直线平行,逆命题是真命题,符合题意;故选:D.【点评】此题主要考查学生对命题与逆命题的理解及真假命题的判断能力,解题的关键是能够正确的得到原命题的逆命题.7.(2022秋•陕西期末)下列命题的逆命题中,属于真命题的是( )A.如果a=0,b=0,则ab=0B.全等三角形的周长相等C.两直线平行,同位角相等D.若a=b,则a2=b2【考点】命题与定理;全等三角形的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】首先明确各个命题的逆命题,再分别分析各逆命题的题设是否能推出结论,可以利用排除法得出答案.【解答】解:A、如果ab=0,则a=0,b=0,是假命题,应该是如果ab=0,则a=0或b=0,此选项错误,不符合题意;B、周长相等的三角形不一定是全等三角形,此选项错误,不符合题意;C、同位角相等,两直线平行,是真命题,此选项正确,符合题意;D、若a2=b2,则a=b,是假命题,应该是若a2=b2,则a=b或a=﹣b,此选项错误,不符合题意.故选:C.【点评】本题主要考查学生对命题与逆命题的理解及真假命题的判断能力,解题的关键是能够正确的得到原命题的逆命题.8.(2022秋•宝山区期末)下列命题中,假命题是( )A.若点C、D在线段AB的垂直平分线上,则AC=BC,AD=BDB.若AC=BC,AD=BD,则直线CD是线段AB的垂直平分线C.若PA=PB,则点P在线段AB的垂直平分线上D.若PA=PB,则过点P的直线是线段AB的垂直平分线【考点】命题与定理;线段垂直平分线的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】利用线段的垂直平分线的性质分别判断即可.【解答】解:A、若点C、D在线段AB的垂直平分线上,则AC=BC,AD=BD,正确,是真命题,不符合题意;B、若AC=BC,AD=BD,则直线CD是线段AB的垂直平分线,正确,是真命题,不符合题意;C、若PA=PB,则点P在线段AB的垂直平分线上,正确,是真命题,不符合题意;D、若PA=PB,则过点P的直线不一定是线段AB的垂直平分线,故错误,是假命题,符合题意.故选:D.【点评】本题考查了命题与定理的知识,解题的关键是了解线段的垂直平分线的性质及判定方法,难度较小.9.(2022秋•南安市期末)下列命题是假命题的是( )A.有一个角是60°的三角形是等边三角形B.有两个角是60°的三角形是等边三角形C.三个角都相等的三角形是等边三角形D.三边相等的三角形是等边三角形【考点】命题与定理;等边三角形的性质.【专题】等腰三角形与直角三角形;推理能力.【分析】利用等边三角形的判定方法分别判断后即可确定正确的选项.【解答】解:A、有一个角是60°的等腰三角形是等边三角形,故原命题错误,是假命题,符合题意;B、有两个角是60°的三角形是等边三角形,正确,是真命题,不符合题意;C、三个角都相等的三角形是等边三角形,正确,是真命题,不符合题意;D、三边相等的三角形是等边三角形,正确,是真命题,不符合题意.故选:A.【点评】本题考查了命题与定理的知识,解题的关键是了解等边三角形的判定方法,难度较小.10.(2022秋•永安市期末)能说明命题“对于任意实数,.”是假命题,其中a可取的值是( )A.﹣1B.0C.1D.【考点】命题与定理;二次根式的性质与化简.【专题】实数;运算能力.【分析】分别把各选项的值代入即可进行判断.【解答】解:A.当a=﹣1时,,符合题意;B.当a=0时,,不符合题意;C.当a=1时,,不符合题意;D.当时,,不符合题意.故选:A.【点评】本题考查的是命题的真假判断,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二.填空题(共8小题)11.(2022秋•慈溪市期末)能说明命题:“若两个角α,β互补,则这两个角必为一个锐角一个钝角”是假命题的反例是 α=90°,β=90° .【考点】命题与定理;余角和补角.【专题】三角形;推理能力.【分析】举出一个反例即可.【解答】解:若两个角α,β互补,则这两个角不一定一个是锐角一个是钝角,如α=90°,β=90°,故答案为:α=90°,β=90°.【点评】本题考查的是命题与定理,证明一个命题是假命题举出一个反例是解决此类题的关键.12.(2022秋•盐田区期末)用一个k的值推断命题“一次函数y=kx+1(k≠0)中,y随着x 的增大而增大”为假命题,这个值可以是 ﹣1(答案不唯一) .(注:举出一个即可)【考点】命题与定理;一次函数的性质.【专题】一次函数及其应用;应用意识.【分析】根据一次函数的性质:对于一次函数y=kx+b,当k<0时,y随x的增大而减小解答即可.【解答】解:当k=﹣1时,一次函数为y=﹣x+1,y随着x的增大而减小,∴命题“一次函数y=kx+1(k≠0)中,y随着x的增大而增大”.是错误的,故答案为:﹣1(答案不唯一).【点评】本题考查的是命题和定理、一次函数的性质,掌握对于一次函数y=kx+b,当k <0时,y随x的增大而减小是解题的关键.13.(2022秋•青田县期末)命题“如果ab=1,那么a,b互为倒数”的逆命题为 如果a,b互为倒数,那么ab=1 .【考点】命题与定理;倒数.【专题】实数;数感;推理能力.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题“如果ab=1,那么a,b互为倒数”的逆命题为:如果a,b互为倒数,那么ab=1;故答案为:如果a,b互为倒数,那么ab=1.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.(2023•金水区开学)“你的作业做完了吗”这句话 不是 命题.(填“是”或者“不是”)【考点】命题与定理.【专题】推理填空题;推理能力.【分析】根据命题的定义进行判断即可.【解答】解:“你的作业做完了吗”这句话不是命题.故答案为:不是.【点评】本题考查了命题的定义,判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.凡是作图语句与疑问句都不是命题.15.(2022秋•徐汇区校级期末)在平面内,经过点P且半径等于1的圆的圆心的轨迹是 以点P为圆心,1为半径的圆 .【考点】轨迹.【专题】圆的有关概念及性质;几何直观.【分析】经过点P且距离等1的圆的圆心的轨迹是以点P为圆心,1为半径的圆.【解答】解:在平面内,经过点P且半径等于1的圆的圆心的轨迹是以点P为圆心,1为半径的圆.故答案为:以点P为圆心,1为半径的圆.【点评】本题考查的是圆的相关概念、根据几何术语正确作出图形是解决此题的关键.16.(2022秋•常德期末)用反证法证明:在一个三角形中不能有两个角是钝角.应先假设: 这个三角形中有两个角是钝角 .【考点】反证法;三角形内角和定理.【专题】反证法;推理能力.【分析】根据反证法的第一步是从结论的反面出发进而假设得出即可.【解答】解:用反证法证明命题“在一个三角形中不能有两个角是钝角”第一步应假设这个三角形中有两个角是钝角.故答案为:这个三角形中有两个角是钝角.【点评】此题主要考查了反证法,正确掌握反证法的第一步是解题关键.17.(2022秋•莲池区校级期末)用一组a,b的值说明“若a<b,则a2<b2”是假命题,若小明取a=﹣2,则b= ﹣1 .【考点】命题与定理.【专题】实数;数感.【分析】找到满足题设但不满足结论的一对数即可.【解答】解:当a=﹣2,b=﹣1时,满足a<b,但是a2>b2,∴命题“若a<b,则a2<b2”是错误的.故答案为:﹣1(答案不唯一).【点评】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.18.(2022秋•仙居县期末)如图,在△ABC中,∠ABC=115°,AB=BC=6cm,将△ABC 绕点B顺时针旋转得到△DBE,过点C作CF⊥BE于点F,当点E、B、A在同一直线上时停止旋转.在这一旋转过程中,点F所经过的路径长为 cm .【考点】轨迹;旋转的性质;等腰三角形的性质.【专题】等腰三角形与直角三角形;平移、旋转与对称;与圆有关的计算;运算能力;推理能力.【分析】取BC的中点O,连接OF,由∠BFC=90°,得OF=OB=OC=BC,可知点F在以BC为直径的圆上运动,当点E、A、B在同一直线上,则∠EBC=180°﹣∠ABC=65°,所以∠COF=2∠EBC=130°,而OF=BC=3,即可根据弧长公式求得=cm,则点F所经过的路径长为=cm,于是得到问题的答案.【解答】解:如图1,取BC的中点O,连接OF,∵CF⊥BE于点F,∴∠BFC=90°,∴OF=OB=OC=BC,∴点F在以BC为直径的圆上运动,如图2,点E、A、B在同一直线上,∵∠ABC=115°,AB=BC=6cm,∴∠EBC=180°﹣∠ABC=180°﹣115°=65°,∴∠COF=2∠EBC=2×65°=130°,∴OF=BC=×6=3(cm),∴==(cm),∴点F所经过的路径长为=cm,故答案为:cm.【点评】此题重点考查直角三角形斜边上的中线等于斜边的一半、旋转的性质、圆周角定理、弧长公式等知识,正确地作出所需要的辅助线是解题的关键.三.解答题(共2小题)19.(2022秋•卧龙区校级期末)学习了三角形全等的判定方法后可知,有两边及其中一边的对角分别相等的两个三角形不一定全等,那么什么时候全等什么时候不全等呢?小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.并思考要想解决问题,应把∠B分为“直角、锐角、钝角”三种情况进行探究:(1)第一种情况:当∠B是直角时,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.(2)第二种情况:当∠B是锐角时,如图,BC=EF,∠B=∠E<90°,在射线EQ上有点D,使DF=AC,在答题卡的图中画出符合条件的点D,根据作图可以判断△ABC 和△DEF的关系 B .A、不全等B、不一定全等C、全等(3)第三种情况:当∠B是钝角时,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°,求证:△ABC≌△DEF.【考点】命题与定理;全等三角形的性质;全等三角形的判定;直角三角形全等的判定.【专题】分类讨论;图形的全等;几何直观.【分析】(2)按要求画出图形,观察图形可知△ABC和△DEF不一定全等;(3)过点C作AB边的垂线交AB的延长线于点M,过点F作DE边的垂线交DE的延长线于N,由AAS可证△CBM≌△FEN,即得BM=EN,CM=FN,根据HL证明Rt△ACM ≌Rt△DFN,有AM=DN,即得AB=DE,再由SSS可得△ABC≌△DEF.【解答】(2)解:如图:由图可知,满足条件的有D和D',故△ABC和△DEF不一定全等,故答案为:B;(3)证明:过点C作AB边的垂线交AB的延长线于点M,过点F作DE边的垂线交DE 的延长线于N,如图:∵∠ABC=∠DEF,∴∠CBM=∠FEN,∵CM⊥AB,FN⊥DE,∴∠CMB=∠FNE=90°.在△CBM和△FEN中,,∴△CBM≌△FEN(AAS),∴BM=EN,CM=FN,在Rt△ACM和Rt△DFN中,,∴Rt△ACM≌Rt△DFN(HL),∴AM=DN,∴AM﹣BM=DN﹣EN,即AB=DE.又∵BC=EF,AC=DF,∴△ABC≌△DEF(SSS).【点评】本题是三角形综合题,考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.20.(2022秋•桐柏县期末)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.以下是课外兴趣小组研究函数的图象、性质及其应用的部分过程,请按要求完成下列各题:(1)下表是函数y与自变量x的几组对应值,则a= ﹣1 ,m= 1.5 ;x…﹣5﹣4﹣3﹣2﹣1﹣0.500.512345…y…﹣0.8﹣0.7﹣0.50 1.5343m0﹣0.5﹣0.7﹣0.8…(2)如图在平面直角坐标系中,已经描出了该函数图象的部分点并绘制了部分图象,请把图象补充完整;(3)观察函数的图象,判断下列命题的真假.(在题后括号内正确的打“√”,错误的打“×”)①该函数图象是轴对称图形,它的对称轴为直线x=0; √ ;②该函数在自变量的取值范围内有最大值,当x=0时取最大值4; √ ;③若当x<h时,函数y的值随x的增大而增大,则h的值是0; × ;④该函数图象与直线y=﹣1没有公共点. √ ;(4)结合相关函数的图象,直接写出不等式的解集(近似值保留一位小数,误差不超过0.2);(5)若函数的图象与直线y=k有两个公共点,则常数k的取值范围是 ﹣1<k<4 .【考点】命题与定理;轴对称图形;函数值;一次函数与一元一次不等式.【专题】函数及其图象;几何直观.【分析】(1)把(0,4)代入解析式即可求得a,利用函数解析式,求出x=1对应的函数值即可求得m;(2)利用描点法画出图象即可;(3)观察图象即可判断;(4)利用图象即可求得;(5)利用图象即可解决问题.【解答】解:(1)把(0,4)代入得,4=﹣4a,解得a=﹣1,∴y=﹣,当x=1时,m=﹣=1.5,故答案为:﹣1,1.5;(2)函数的图象补充完整如图所示:(3)观察函数y=﹣的图象,①该函数图象是轴对称图形,它的对称轴为直线x=0;√;②该函数在自变量的取值范围内有最大值,当x=0时取最大值4;√;③若当x<h时,函数y的值随x的增大而增大,则h的值是0;×;④该函数图象与直线y=﹣1没有公共点.√;故答案为:①√②√③×④√;(4)由图象可知,∴不等式﹣>﹣x+3的解集为﹣0.3<x<1或x>2;(5)由图象可知,函数y=﹣的图象与直线y=k有两个公共点,则常数k的取值范围是﹣1<k<4.故答案为:﹣1<k<4.【点评】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.考点卡片1.绝对值(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)2.倒数(1)倒数:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.(2)方法指引:①倒数是除法运算与乘法运算转化的“桥梁”和“渡船”.正像减法转化为加法及相反数一样,非常重要.倒数是伴随着除法运算而产生的.②正数的倒数是正数,负数的倒数是负数,而0 没有倒数,这与相反数不同.【规律方法】求相反数、倒数的方法求一个数的相反数时,只需在这个数前面加上“﹣”即可求一个数的相反数求一个数的倒数求一个整数的倒数,就是写成这个整数分之一求一个分数的倒数,就是调换分子和分母的位置注意:0没有倒数.。
F A B C D EG 图2平行线的有关证明复习二1.如图1,AB∥CD,则下列结论成立的是 ( ). A .∠A+∠C=180° B .∠A+∠B=180° C .∠B+∠C=180° D .∠B+∠D=180°2.若两个角的一边在同一条直线上,另一边互相平行,那么这两个角的关系是( ) A .相等 B .互补 C .相等或互补 D .相等且互补3.如图2,E 、F 分别是AB 、AC 上的点,G 是BC 的延长线上一点,且∠B=∠DCG= ∠D,则下列判断错误的是( ).A.∠ADF=∠DCGB.∠A=∠BCFC.∠AEF=∠EBC D .∠BEF+∠EFC=1804.如图3,下列推理正确的是( ).A .∵MA∥NB,∴∠1=∠3B .∵∠2=∠4,∴MC∥NDC .∵∠1=∠3,∴MA∥NBD .∵MC∥ND,∴∠1=∠35.如图4,a∥b,点B 在直线b 上,且AB⊥ BC ,∠1=55°,则∠2的度数为 ( ).A .35°B .45° C.55° D.125°6.如图5,已知AB∥CD,∠1=65°,∠2=45°,则∠ADC=________.7.如图6,已知∠1=∠2,∠BAD =57°,则 ∠B =________.8.如图7,若AB ∥EF ,BC ∥DE ,则∠B +∠E =________. 9.如图8,由A 测B 的方向是________.A BC D4321M N 图3 21 A C ab 图4 231 A BC DA D 21A BC D FABC D E 图710.已知:如图,∠B =∠C.(1)若AD ∥BC,求证:AD 平分∠EAC;(2)若∠B+∠C+∠ABC=180°,AD 平分∠EAC,求证AD ∥BC.11.已知:如图,∠1=∠B ,∠A =32°.求:∠2的度数.12.如图,∠B+∠BCD+∠D=360, 求证:∠1=∠2.13.已知:如图,直线a 、b 被直线c 所截, 若∠1十∠2=180°,求证:a ∥b14. 如图14,已知AB ∥ED ,∠CAB=135°∠ACD=80°,求∠CDE 的度数B D1A BCD 2A BC DE1 32 415. 已知:如图15,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E =∠3。
第7课时 证明二、三【知识回顾】【基础训练】 1.若等腰三角形的一个外角为70°,则它的底角为 度。
2. 某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为A .9cmB .12cmC .15cmD .12cm 或15cm3. 已知梯形的上底长为3cm ,中位线长为5cm ,则此梯形下底长为__________cm .4.如右上图,点P 到∠AOB 两边的距离相等,若∠POB =30°,则 ∠AOB =_____度.5.如图,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD =30米,则AB =______米.6.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )2.直角三角形全等的判定:HL 4.等腰梯形的性质和判定5.中位线 三角形的中位线 梯形的中位线注意:若等边三角形的边长为a ,则:其高为: ,面积为: 。
1.等腰三角形 等边三角形的性质和判定 等腰三角形的性质和判定 线段的垂直平分线的性质和判定角的平分线的性质和判定 3.平行四边形平行四边形的性质和判定:4个判定定理 矩形的性质和判定:3个判定定理 菱形的性质和判定:3个判定定理 正方形的性质和判定:2个判定定理 注注意:(1)中点四边形 ①顺次连接任意四边形各边中点,所得的新四边形是 ; ②顺次连接对角线相等的四边形各边中点,所得的新四边形是 ; ③顺次连接对角线互相垂直的四边形各边中点,所得的新四边形是 ; ④顺次连接对角线互相垂直且相等的四边形各边中点,所得的新四边形是 。
(2)菱形的面积公式:ab S 21=(b a ,是两条对角线的长)注意:(1)解决梯形问题的基本思路:通过分割和拼接转化成三角形和平行四边形进行解决。
即需要掌握常作的辅助线。
(2)梯形的面积公式:()lh hb a S =+=21(l -中位线长)A 、当AB=BC 时,它是菱形B 、当AC ⊥BD 时,它是菱形 C 、当∠ABC=900时,它是矩形 D 、当AC=BD 时,它是正方形 7.下列条件中不能确定四边形ABCD 是平行四边形的是( )A.AB=CD ,AD ∥BCB.AB=CD ,AB ∥CDC.AB ∥CD ,AD ∥BCD.AB=CD ,AD=BC 8.顺次连接等腰梯形四边中点所得四边形是( ). A.菱形 B.正方形 C.矩形 D.等腰梯形9.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是 ( )A .邻边不等的矩形B .等腰梯形级C .有一个角是锐角的菱形D .正方形 10.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为( ) A .1 B .2 C .2 D .311.如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,AC ⊥BD ,AD =6,BC =8,则梯形的高为 。
《第1章证明(二)》2012年单元复习题(3)《第1章证明(二)》2012年单元复习题(3)一、填空题(共10小题,每小题5分,满分50分)1.(5分)(2009•贵港)若等腰三角形的一个底角为50°,则它的顶角为_________度.2.(5分)命题“等腰三角形的两个底角相等”的逆命题是_________.3.(5分)在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是_________.4.(5分)三角形三边长为6,8,10,则这个三角形的面积是_________;直角三角形的两边分别为5,12,则另一边的长为_________.5.(5分)已知线段AB的垂直平分线是l,P是l上的一点,如果PA=7,∠A=60°,那么PB=_________,∠B= _________度,△PAB是_________三角形.6.(5分)如图,已知点A(2,0),B(0,4),△AOB与△BOC全等,则点C的坐标是_________.7.(5分)如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件_________.(只要填一个)9.(5分)已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,∠APQ=_________度,∠B=_________度,∠BAC=_________度.10.(5分)用反证法证明命题“在一个三角形中,至少有一个内角不小于60°”,假设为_________.二、选择题(共5小题,每小题4分,满分20分)∠∠14.(4分)如图,在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是()15.(4分)(2002•湛江)如图,小红从A地向北偏东30°,方向走100米到B地,再从B地向西走200米到C地,这时小红距A地()米三、解答题(共7小题,满分0分)16.如图已知∠AOB内有两点,M、N求作一点P,使点P在∠AOB两边距离相等,且到点M、N的距离也相等,保留作图痕迹并完成填空.解:(1)连接_________;作_________垂直平分线CD;(2)作∠AOB的_________OE与CD交于点_________,所以点_________就是要找的点.17.如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.图(2)是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形(3).18.证明定理:等腰三角形的两个底角相等.(画出图形、写出已知、求证并证明)19.(2006•湖北)如图,点A、E、F、C在同一条直线上,现有下面四个关系:(1)AD=BC,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC,请用其中三个作为条件,余下的一个作为结论编一道数学证明题,写出已知,求证并加以证明.20.等腰三角形的底边长为20,有一个内角为30°,求底边上的高.21.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.“探究性学习”课中,设计了如下数表:(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:a=_________,b=_________,c=_________;(2)猜想:以a,b,c为边的三角形是否为直角三角形并证明你的猜想.《第1章证明(二)》2012年单元复习题(3)参考答案与试题解析一、填空题(共10小题,每小题5分,满分50分)1.(5分)(2009•贵港)若等腰三角形的一个底角为50°,则它的顶角为80度.2.(5分)命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.3.(5分)在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是PA=PB=PC.4.(5分)三角形三边长为6,8,10,则这个三角形的面积是24;直角三角形的两边分别为5,12,则另一边的长为13或.S=ab=×=13当一条为斜边,另一条为直角边时,另一直角边为=或5.(5分)已知线段AB的垂直平分线是l,P是l上的一点,如果PA=7,∠A=60°,那么PB=7,∠B=60度,△PAB是等边三角形.6.(5分)如图,已知点A(2,0),B(0,4),△AOB与△BOC全等,则点C的坐标是(﹣2,0),(2,4),(﹣2,4).在第二象限时,坐标为(﹣,(﹣(﹣7.(5分)如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件AC=DF.(只要填一个)9.(5分)已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,∠APQ=60度,∠B=30度,∠BAC=120度.10.(5分)用反证法证明命题“在一个三角形中,至少有一个内角不小于60°”,假设为三个内角都小于60°.二、选择题(共5小题,每小题4分,满分20分)∠∠(∠(∠14.(4分)如图,在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是()15.(4分)(2002•湛江)如图,小红从A地向北偏东30°,方向走100米到B地,再从B地向西走200米到C地,这时小红距A地()米DA=50DA=50,AC=100三、解答题(共7小题,满分0分)16.如图已知∠AOB内有两点,M、N求作一点P,使点P在∠AOB两边距离相等,且到点M、N的距离也相等,保留作图痕迹并完成填空.解:(1)连接MN;作MN垂直平分线CD;(2)作∠AOB的角平分线OE与CD交于点P,所以点P就是要找的点.17.如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.图(2)是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形(3).(×ab+c18.证明定理:等腰三角形的两个底角相等.(画出图形、写出已知、求证并证明)19.(2006•湖北)如图,点A、E、F、C在同一条直线上,现有下面四个关系:(1)AD=BC,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC,请用其中三个作为条件,余下的一个作为结论编一道数学证明题,写出已知,求证并加以证明.20.等腰三角形的底边长为20,有一个内角为30°,求底边上的高.=10AD=AE+DE=BE+DE=20+10答:底边上的高是20+1021.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.BD=AC=BC=CD+BD=4+“探究性学习”课中,设计了如下数表:c与n之间的关系,并用含自然数n(n>1)的代数式表示:a=n2﹣1,b=2n,c=n2+1;(2)猜想:以a,b,c为边的三角形是否为直角三角形并证明你的猜想.参与本试卷答题和审题的老师有:mmll852;心若在;lanyan;MMCH;fuaisu;lf2-9;csiya;CJX;wdxwzk;星期八;郭静慧;zhangCF;zhjh;py168;ljj;leikun;蓝月梦;hnaylzhyk;wangming;haoyujun;lanchong;117173;ln_86(排名不分先后)菁优网2012年8月31日。
证明(二)复习
一、梳理知识:
1、全等三角形
(1)定义:能够完全的三角形是全等三角形。
(2)性质:全等三角形的、相等。
(3)判定:“SAS”、、、、。
2、等腰三角形
(1)定义:有两条的三角形是等腰三角形。
(2)性质:①等腰三角形的相等。
(“等边对等角”)
②等腰三角形的顶角平分线、、互相重合。
( )
③等腰三角形是图形。
(3)判定:①定义②“”
(4)等边三角形定义:的三角形是等边三角形。
性质:①三角都等于②具有等腰三角形的一切性质。
判定:①定义②有一个角是等边三角形。
3、直角三角形
(1)定义:有一个角是的三角形是直角三角形。
(2)性质:①“勾股定理”。
②直角三角形两锐角。
③直角三角形斜边上的中线等于。
④在直角三角形中,30°角所对直角边等于。
(3)判定:①定义②两锐角的三角形是直角三角形
③“勾股定理逆定理”。
4、角平分线
(1)定义:。
(2)性质:①角平分线上的点相等。
②三角形的三条角平分线,且到相等。
(3)判定:到角的两边的点,在这个角的平分线上。
(4)角平分线的作法:
5、线段的垂直平分线
(1)定义:一条线段的叫线段的垂直平分线。
(2)性质:①线段垂直平分线上一点相等。
②三角形三边的垂直平分线,且到相等。
(3)判定:到一条线段两个端点的点,在这条线段的垂直平分线上。
(4)线段的垂直平分线的作法:
6、命题:判断一件事的句子叫命题。
命题有与两部分。
互逆命题:在两个命题中,如果一个命题的是另一个命题的,那么这两个命题成为互逆命题,其中一个命题称为另一个命题的。
7、逆定理:如果一个定理的逆命题是真命题,那么这个逆命题就叫原定理的逆定理.
二、典型例题:
一、选择题
1、到△ABC的三条边距离相等的点是△ABC的()
A.三边中线的交点
B.三条角平分线的交点
C.三边上高的交点
D.三边中垂线的交点
2、已知等腰三角形的两边长分别为4㎝和2㎝,则其周长是()
A. 6㎝
B. 10㎝
C. 10㎝或8㎝
D. 8㎝
3、如图,从等腰△ABC底边BC上任意一点分别作两腰的平行线DE、DF,分别交AC、于点E、F,则□AFDE的周长等于这个等腰三角形的( )
A. 周长
B. 周长的一半
C. 一条腰长的2倍
D. 一条腰长
B C
D
4、如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF=AC ,则∠ABC 的大小是( )
A.45°
B.50°
C.55°
D.60°
5、如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于( )
A.10cm B.8cm C.5cm D.2.5cm
6、如图,已知在△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=3cm,则AC 的长等于( ) A.22 cm B.32 cm C.23 cm D.33cm
7、下列说法中正确的是 ( )
A .平均数一定在数据中出现
B .众数一定在数据中出现
C .中位数一定在数据中出现
D .以上都正确
8、等边三角形的高为23,则它的边长为( )
A.4
B.3
C.2
D.5
9、下列由线段a 、b 、c 组成的三角形,不是直角三角形的是( )
A.a =3,b =4,c =5
B.a =1,b =34,c =3
5 C.a =9,b =12,c =15 D.a =3,b =2,c =5 10、△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最小边BC =4 cm ,最长边AB 的长是( )
A.5 cm
B.6 cm
C.5 cm
D.8 cm
11、下列定理中逆定理不存在的是( )
A.角平分线上的点到这个角的两边距离相等
B.在一个三角形中,如果两边相等,那么它们所对的角也相等
C.同位角相等,两直线平行
D.全等三角形的对应角相等
12、下列说法正确的是( )
A.真命题的逆命题是真命题
B.每个定理都有逆定理
C .每个命题都有逆命题 D.假命题的逆命题是假命题
二、填空题
1、如果等腰三角形的一个底角是80°,那么顶角是 度.
2、命题:“全等三角形的对应角相等”的逆命题是__________________________。
这条逆命题是______命题(填“真”或“假”)
3、已知,如图,O 是△ABC 的∠ABC 、∠ACB 的角平分线的交点,OD ∥AB 交BC 于D ,OE ∥AC 交
BC 于E ,若BC = 10 cm ,则△ODE 的周长 .
4、如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,
则PD 的长为 .
5、如图所示的图形中,所有的四边形都是正方形,所有的三角
形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形
A 、
B 、
C 、
D 的面积的和是 2cm .
6、等腰三角形的周长是2+3,腰长为1,则其底边上的高为_______.
7、如图,在△ABC 中,AD =DE ,AB =BE ,∠A =80°则∠DEC =
.
8、在联欢晚会上,有A 、B 、C 三名同学站在一个三角形的三个顶点位置上,他们在玩一个游戏,要求在他们中间放一个木凳,使他们抢坐到凳子的机会相等,试想想凳子应放在△ABC 的三
条 线的交点最适当.
9、一个等腰三角形有一角是70°,则其余两角分别为_________.
10、等腰三角形两腰上的高相等,这个命题的逆命题是_______________,这个逆命题是_________命题.
11、已知,ABC ∆中,5,12,13===BC AC AB ,则ABC ∆的面积为_____.
12、等腰三角形的腰长为5cm,底边长为6cm,则它的高是 .
三、解答题
1、已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD.求证:D 在∠BAC 的平分线上.
2、已知:如图,D 是△ABC 中BC 边上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE. 证明:在△AEB 和△AEC 中, ⎪⎩
⎪⎨⎧=∠=∠=AE AE ACE ABE EC EB
∴△AEB ≌△AEC(第一步)
∴∠BAE=∠CAE(第二步)
问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程。
3、已知:如图,AB =AC ,CE ⊥AB 于E ,BD ⊥AC 于D ,求证:BD =CE .
A B C
D E
B C D
A 4、如图,△ABC 是等边三角形中,cm A
B 10=. 求高AD 的长和△AB
C 的面积.(结果用根号表示.)
5、在Rt △ABC 中,∠C=90° ,D 是BC 边上一点,且BD=AD=10, ∠ADC=60°,求△ABC 的面积.
6﹑已知某开发区有一块四边形的空地ABCD ,如图,现计划在空地上种植草皮,经测量∠A =90°,AB =3m ,BC =12m ,CD =13m ,DA =4m ,若每平方米草皮需要200
7、如图,060=∠A
,AB=AD=8,0
150=∠D ,四边形的周长为32,求BC 和CD 的长。
C。