九(上)第一章:证明(二)试题
- 格式:doc
- 大小:318.00 KB
- 文档页数:8
北师大版初中九年级数学上册单元测试题第一章 证明〔Ⅱ〕 班级 姓名 学号 成果一、推断题〔每题2分,共10分〕以下各题正确的在括号内画“√〞,错误的在括号内画“×〞.1、两个全等三角形的对应边的比值为1 . 〔 〕2、两个等腰三角形确定是全等的三角形. 〔 〕3、等腰三角形的两条中线确定相等. 〔 〕4、两个三角形假设两角相等,那么两角所对的边也相等. 〔 〕5、在一个直角三角形中,假设一边等于另一边的一半,那么,一个锐角确定等于30°.〔 〕二、选择题〔每题3分,共30分〕每题只有一个正确答案,请将正确答 案的番号填在括号内.1、在△和△中,,,要使△≌△,还须要的条件是〔 〕A 、∠∠DB 、∠∠FC 、∠∠ED 、∠∠D2、以下命题中是假命题的是〔 〕A 、两条中线相等的三角形是等腰三角形B 、两条高相等的三角形是等腰三角形C 、两个内角不相等的三角形不是等腰三角形D 、三角形的一个外角的平分线平行于这个三角形的一边,那么这个三角形是等腰三角形3、如图(一),,,D 是上的一点,那么以下结论不确定成立的是〔 〕A 、∠1=∠2B 、C 、D 、∠∠4、如图〔二〕,和相交于O 点,∥,,过O 〔一〕任作一条直线分别交、于点E 、F ,那么以下结论:①② ③ ④,其中成立的个数是〔 〕A 、1B 、2C 、3D 、45、假设等腰三角形的周长是18,一条边的长是5,那么其他两边的长是〔 〕 〔二〕6、以下长度的线段中,能构成直角三角形的一组是〔 〕A 、543,, ;B 、6, 7, 8;C 、12, 25, 27;D 、245232,,7、如图〔三〕, ,那么以下结果正确的选项是〔 〕 〔三〕A 、∠∠B 、C 、∠∠D 、⊥8、如图〔四〕,△中,∠30°,∠90°的垂直平分线交于D 点,交于E 点,那么以下结论错误的选项是〔 〕A 、B 、C 、D 、 〔四〕9、如图〔五〕,在梯形中,∠90°,M 是的中点,平分∠,∠35°,那么∠是〔 〕A 、35°B 、55°C 、70°D 、20°10、如图〔六〕,在△中,平分∠,, 〔五〕 ∠∠,那么,DCAC 的值为〔 〕A B A 、112∶)(- B 、()112∶+ C 、12∶ D 、 12∶ 〔六〕三、填空题,〔每空2分,共20分〕1、如图〔七〕,, 及相交于O 点,那么图中全等三角形共有 对. 〔七〕2、如图〔八〕,在△和△中,∠∠D ,,假设依据“〞说明△≌△,那么应添加条件 = . 〔八〕或 ∥ .3、一个等腰三角形的底角为15°,腰长为4,那么,该三角形的面积等于 .4、等腰三角形一腰上的高及底边的夹角等于45°,那么这个三角形的顶角等于 .5、命题“假如三角形的一个内角是钝角,那么其余两个内角确定是锐角〞的逆命题是 .6、用反证法证明:“随意三角形中不能有两个内角是钝角〞的第一步:假设 .7、如图〔九〕,一个正方体的棱长为2,一只蚂蚁欲从A 点处沿正方体侧面到B 点处吃食物,那么它须要爬行的最短途径的长是 .8、在△中,∠90°,8, 的垂直平分线交 (九)于D ,那么 .9、如图〔十〕的(1)中,是一张正方形纸片,E ,F 分别为,的中点,沿过点D 的折痕将A 角翻折,使得点A 落在〔2〕中上,折痕交于点G ,那么∠ .四、作图题〔保存作图的痕迹,写出作法〕〔共6分〕 〔十〕如图〔十一〕,在∠内,求作点P ,使P 点到,的 间隔 相等,并且P 点到M ,N 的间隔 也相等.〔十一〕五、解答题〔5分〕如图〔十二〕,一根旗杆的升旗的绳垂直落地后还剩余1米,假设将绳子拉直, 那么绳端离旗杆底端的间隔 ()有5米.求旗杆的高度.〔十二〕六、证明题〔第1,第2两小题各6分,第3小题8分,第4小题9分〕1、:如图〔十三〕,AB ∥CD ,F 是AC 的中点,求证:F 是DE 中点.〔十三〕2、:如图〔十四〕,, ,E ,F 分别是,的中点.求证: .〔十四〕3、如图〔十五〕,△中,是∠的平分线,⊥于E ,⊥于F.求证:〔1〕⊥ ;〔2〕当有一点G 从点D 向A 运动时,⊥于E ,⊥于F ,此时上面结论是否成立?〔十五〕4、如图〔十六〕,△、△均为等边三角形,点M 为线段的中点,点N 为线段的中点,求证:△为等边三角形.〔十六〕九年级 数学 第二章 一元二次方程班级 姓名 学号 成果一、填空题(每题2分,共36分)1.一元二次方程)3(532-=x x 的二次项系数是 ,一次项系数是 , 常数项是 .2.当m 时, 012)1(2=+++-m mx x m 是一元二次方程.3.方程022=-x x 的根是 ,方程036)5(2=--x 的根是 . 4.方程)32(5)32(2-=-x x 的两根为==21,x x .5.a 是实数,且0|82|42=--+-a a a ,那么a 的值是 .6.322--x x 及7+x 的值相等,那么x 的值是 . 7.〔1〕22___)(96+=++x x x ,〔2〕222)2(4___p x p x -=+-. 8.假如-1是方程0422=-+bx x 的一个根,那么方程的另一个根是 ,b 是 .9.假设1x 、2x 为方程0652=-+x x 的两根,那么21x x +的值是,21x x 的值是.10.用22长的铁丝,折成一个面积为228cm 的矩形,这个矩形的长是 .11.甲、乙两人同时从A 地动身,骑自行车去B 地,甲比乙每小时多走3千米,结果比乙早到0.5小时,假设A 、B 两地相距30千米,那么乙每小时 千米. 二、选择题〔每题3分,共18分〕每题只有一个正确答案,请将正确答案的番号填在括号内.1、关于的方程,〔1〕20;〔2〕x 2-482;〔3〕1+(1)(1)=0;〔4〕〔k 2+1〕x 2 + + 1= 0中,一元二次方程的个数为〔 〕个A 、1B 、2C 、3D 、42、假如01)3(2=+-+mx x m 是一元二次方程,那么 ( )A 、3-≠mB 、3≠mC 、0≠mD 、 03≠-≠m m 且3、方程()031222=+--m x m x 的两个根是互为相反数,那么m 的值是 〔 〕A 、1±=mB 、1-=mC 、1=mD 、0=m4、将方程0982=++x x 左边变成完全平方式后,方程是〔 〕A 、7)4(2=+xB 、25)4(2=+xC 、9)4(2-=+xD 、7)4(2-=+x5、假如022=--m x x 有两个相等的实数根,那么022=--mx x 的两根和是 〔 〕A 、 -2B 、 1C 、 -1D 、 26、一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是 〔 〕A 、 5%B 、 10%C 、15%D 、 20% 三、按指定的方法解方程〔每题3分,共12分〕1.02522=-+)(x 〔干脆开平方法〕 2. 0542=-+x x 〔配方法〕 3.025)2(10)2(2=++-+x x 〔因式分解法〕 4. 03722=+-x x 〔公式法〕 四、适当的方法解方程〔每题4分,共8分〕1.036252=-x 2. 0)4()52(22=+--x x 五、完成以下各题〔每题5分,共15分〕1、函数222a ax x y --=,当1=x 时,0=y , 求a 的值. 2、假设分式1|3|432----x x x 的值为零,求x 的值. 3、关于x 的方程021)1(2)21(2=-+--k x k x k 有实根. (1)假设方程只有一个实根,求出这个根; (2)假设方程有两个不相等的实根1x ,2x ,且61121-=+x x ,求k 的值. 六、应用问题(第1小题5分,第2小题6分,共11分)1、恳求解我国古算经?九章算术?中的一个题:在一个方形池,每边长一丈,池中央长了一颗芦苇,露出水面恰好一尺,把芦苇的顶端收到岸边,芦苇顶端和岸边水面恰好相齐,问水深和芦苇的长度各是多少?〔1丈=10尺〕2、某科技公司研制胜利一种新产品,确定向银行贷款200万元资金用于消费这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元;假设该公司在消费期间每年比上一年资金增长的百分数一样,试求这个百分数.九年级 数学 第三章 证明〔Ⅲ〕班级 姓名 学号 成果一、选择题〔每题4分,共40案的番号填在括号内. 1、如图1那么图中共有相等的角〔 〕A 、4对B 、5对C 、6对D 、8对 2、如图2,E 、F 分别为 连接、所形成的四边形的面 〕A 、1:1B 、1:2C 、1:3D 、1:43、过四边形的顶点A 、B 、C 、D 作、的平行线围成四边形,假设 是菱形,那么四边形确定是( ) A 、平行四边形 B 、菱形C 、矩形D 、对角线相等的四边形4、在菱形中,,,CD AF BC AE ⊥⊥ 且E 、F 分别是、的中点,那么=∠EAF 〔 〕A 、075B 、055C 、450D 、0605、矩形的一条长边的中点及另一条长边构成等腰直角三角形,矩形的周长是36,那么矩形一条对角线长是〔 〕A 、56B 、55C 、54D 、356、矩形的内角平分线可以组成一个〔 〕A 、矩形B 、菱形C 、正方形D 、平行四边形7、以正方形的一组邻边、向形外作等边三角形、,那么以下结论中错误的选项是〔 〕A 、平分EBF ∠B 、030=∠DEFC 、EF ⊥D 、045=∠BFD8、正方形的边长是10,APQ ∆是等边三角形,点P 在上,点Q 在上,那么的边长是〔 〕A 、55B 、3320 C 、)31020(- D 、)31020(+ 9、假设两个三角形的两条中位线对应相等且两条中位线及一对应边的夹角相等,那么这两个三角形的关系是〔 〕A 、全等B 、周长相等C 、不全等D 、不确定10、正方形具有而菱形不具有的性质是〔 〕A 、四个角都是直角B 、两组对边分别相等C 、内角和为0360 D 、对角线平分对角 二、填空题〔每空1分,共11分〕1、平行四边形两邻边上的高分别为32和33,这两条高的夹角为060,此平行四边形的周长为 ,面积为 .2、等腰梯形的腰及上底相等且等于下底的一半,那么该梯形的腰及下底的夹角为 .3、三角形三条中位线围成的三角形的周长为19,那么原三角形的周长为 .4、在ABC ∆中,D 为的中点,E 为上一点,AC CE 31=,、交于点O ,cm BE 5=,那么=OE .5、顺次连接随意四边形各边中点的连线所成的四边形是 .6、将长为12,宽为5的矩形纸片沿对角线对折后,及交于点E ,那么的长度为 .7、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,那么矩形的两条对角线夹角为 .8、菱形两条对角线长度比为1:3,那么菱形较小的内角的度数为 .9、正方形的一条对角线和一边所成的角是 度.10、四边形是菱形,AEF ∆是正三角形,E 、F 分别在、上,且CD EF =,那么=∠BAD .三、解答题〔第1、2小题各10分,第3、4小题各5分,共30分〕1、如图3,,090=∠ACB ,E 是的中点, ,和相交于点F.求证:〔1〕AC DE ⊥; 〔2〕ACE ACD ∠=∠.2、如图4,为平行四边形,和为正方形.求证: 34四、〔第1、2小题各6分,第3小题7分,共1、如图5,正方形纸片的边上有一点E ,8么纸片折痕的长是多少?2、如图6,在矩形中,E 是上一点且,又DF ⊥3、如图7,P 是矩形的内的一点.求证:2PC PA +九年级 数学 半期检测题〔总分120分,100分钟完卷〕 班级 姓名 学号 成果一、选择题〔每题3分,共36番号填在括号内.1、以下数据为长度的三条线段可以构成直角三角形的是〔〔A 〕3、5、6 〔B 〕2、3、4〔C 〕 6、7、9 〔D 〕9、12、15 2、如图(一):,D 、E 、F 分别是三边中点,那么图中全等三角形共有〔 〕〔A 〕 5对 〔B 〕 6对 〔C 〕 7对 〔D 〕 8对 3、△中,∠150º,10,18,那么△的面积是〔 〕〔A 〕45 〔B 〕90 〔C 〕180 〔D 〕不能确定4、△中,∠90º,∠30º,平分∠B 交于点D ,那么点D 〔 〕〔A 〕是的中点 〔B 〕在的垂直平分线上〔C 〕在的中点 〔D 〕不能确定5、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,那么a 的值是〔 〕〔A 〕1 〔B 〕 -1 〔C 〕 1或-1 〔D 〕21 6、方程x x 52=的根是〔 〕〔A 〕5=x 〔B 〕0=x 〔C 〕 5,021==x x 〔D 〕 0,521=-=x x7、用配方法将二次三项式9642-+x x 变形,结果为〔 〕〔A 〕100)2(2++x 〔B 〕100)2(2--x 〔C 〕100)2(2-+x 〔D 〕 100)2(2+-x8、两个连续奇数的乘积是483,那么这两个奇数分别是〔 〕〔A 〕 19和21 〔B 〕 21和23 〔C 〕 23和25 〔D 〕 20和229、依据以下条件,能断定一个四边形是平行四边形的是〔 〕〔A 〕两条对角线相等 〔B 〕一组对边平行,另一组对边相等 〔C 〕一组对角相等,一组邻角互补 〔D 〕一组对角互补,一组对边相等10、能断定一个四边形是矩形的条件是〔 〕〔A 〕对角线相等 〔B 〕对角线相互平分且相等〔C 〕一组对边平行且对角线相等 〔D 〕一组对边相等且有一个角是直角11、假如一个四边形要成为一个正方形,那么要增加的条件是〔 〕 〔A 〕对角线相互垂直且平分 〔B 〕对角互补〔C 〕对角线相互垂直、平分且相等 〔D 〕对角线相等12、矩形的四个内角平分线围成的四边形〔 〕〔A 〕确定是正方形 〔B 〕是矩形 〔C 〕菱形 〔D 〕只能是平行四边形 二、填空题〔每空2分,共38分〕1、直角三角形两直角边分别是5和12,那么斜边长是 ,斜边上的高 是 .2、命题“对顶角相等〞的逆命题是 ,这个逆命题是 命题.3、有一个角是304、如图( 二),△中,,∠120º, ⊥,8,那么 .5、:如图(三),△中,,∠40º,A BC D 的中垂线交于点D ,交于点E ,那么∠ ,∠ . 〔二〕6、假设关于x 的方程42322-=+x x kx 是一元二次方程,那么k 的取值范围是 . 〔三〕7、关于x 的方程124322+-=-a ax x x ,假设常数项为0,那么a = .8、假如m x x ++32是一个完全平方式,那么m = .9、9)2(222=++y x ,那么=+22y x .10、方程012=--x x 的根是 .11、04322=--y xy x ,那么yx 的值是 . 12、如图(四),平行四边形中,6 9,平分∠,那么 . (四)13、矩形的周长是24 ,点M 是中点,∠90°,那么 ,.14、菱形周长为52,一条对角线长是24,那么这个菱形的面积是 .15、等腰梯形上底长及腰长相等,而一条对角线及一腰垂直,那么梯形上底角的度数是 .三、解方程〔每题4分,共16分〕1、0862=--x x 〔用配方法〕.2、23142-=--x x x 〔用公式法〕.3、04)5(=+-x x x 〔用因式分解法〕.4、02)12(2=++-x x .四、解答题〔每题5分,共15分〕1、为响应国家“退耕还林〞的号召,变更我省水土流失严峻的状况,2002年我省退耕还林1600亩,方案2004年退耕还林1936亩,问这两年平均每年退耕还林的增长率是多少?2、学校打算在图书管后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建较相宜?3、如图(五),Δ中,20,12,是中线,且8,求的长.〔五〕 五、证明〔计算〕〔每题5分,共15分〕1、:如图〔六〕,点C 、D 在上,,∥,∥.求证:.(六) 2、如图〔七〕,正方形中,E 为上一点,F 为延长线上一点,. 〔1〕求证:△≌△;〔2〕假设∠600,求∠的度数.〔七〕3、:如图〔八〕,在直角梯形中,∥,⊥, 又⊥于E.求证:.A B C D E F〔八〕九年级数学第四章视图及投影一、选择题〔每题4分,共32分〕以下每题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题的括号内.1、一个几何体的主视图和左视图都是一样的长方形,府视图为圆,那么这个几何体为〔〕A、圆柱B、圆锥C、圆台D、球2、从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变更规律是〔〕A、先变长,后变短B、先变短,后变长C、方向变更,长短不变D、以上都不正确.5米人测竿的影长为米,那么影长为30米的旗杆的高是〔〕A、20米B、16米C、18米D、15米4、以下说法正确的选项是〔〕A、物体在阳光下的投影只及物体的高度有关B、小明的个子比小亮高,我们可以确定,不管什么状况,小明的影子确定比小亮的影子长.C、物体在阳光照耀下,不同时刻,影长可能发生变更,方向也可能发生变更.D、物体在阳光照耀下,影子的长度和方向都是固定不变的.5、关于盲区的说法正确的有〔〕〔1〕我们把视线看不到的地方称为盲区〔2〕我们上山及下山时视野盲区是一样的〔3〕我们坐车向前行驶,有时会发觉一些高大的建筑物会被比矮的建筑物拦住〔4〕人们常说“站得高,看得远〞,说明在高处视野盲区要小,视野范围大A、1 个B、2个C、3个D、4个6、如图1是空心圆柱体在指定方向上的视图,正确的选项是〔〕图17、如图2所示,这是圆桌正上方的灯泡〔看作一个点〕发出的光线照耀桌面后,在地面上形成阴影〔圆形〕的示意图.桌面的直径为,桌面间隔地面1m,假设灯泡间隔地面3m,那么地面上阴影部分的面积为〔〕图 2A、πm2B、πm2C、2πm2D、πm28、如图〔三〕是小明一天上学、放学时看到的一根电线杆的影子的府视图,按时间先后依次进展排列正确的选项是〔〕〔三〕A、〔1〕〔2〕〔3〕〔4〕B、〔4〕〔3〕〔1〕〔2〕C、〔4〕〔3〕〔2〕〔1〕D、〔2〕〔3〕〔4〕〔1〕二、填空题〔每题3分,共21分〕1、主视图、左视图、府视图都一样的几何体为〔写出两个〕.2、太阳光线形成的投影称为,手电筒、路灯、台灯的光线形成的投影称为 .3、我们把大型会场、体育看台、电影院建为阶梯形态,是为了 .4、为了测量一根电线杆的高度,取一根2米长的竹竿竖直放在阳光下,2米长的竹竿的影长为1米,并且在同一时刻测得电线杆的影长为米,那么电线杆的高为米.5、假如一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我们可以确定这个几何体是 .6、将一个三角板放在太阳光下,它所形成的投影是,也可能是 .7、身高一样的小明和小华站在灯光下的不同位置,假如小明离灯较远,那么小明的投影比小华的投影 .三、解答题〔此题7个小题,共47分〕1、某糖果厂为儿童设计一种新型的装糖果的不倒翁〔如图4所示〕请你为包装厂设计出它的主视图、左视图和府视图.图 42、画出图5中三棱柱的主视图、左视图、俯视图.图 53、画出图6中空心圆柱的主视图、左视图、俯视图.图 64、如图7所示,屋顶上有一只小猫,院子里有一只小老鼠,假设小猫看见了小老鼠,那么小老鼠就会有危急,试画出小老鼠在墙的左端的平安区.图 75、如图8为住宅区内的两幢楼,它们的高30m,两楼间的间隔 30m,现需理解甲楼对乙楼的采光的影响状况,〔1〕当太阳光及程度线的夹角为30°角时,求甲楼的影子在乙楼3〕;〔2〕假设要甲楼的影子刚好不落在乙楼的墙上,此时太阳及上有多高〔精确到,程度线的夹角为多少度?图 86、阳光通过窗口照到教室内,竖直窗框在地面上留下长的影子[如图〔9〕所示],窗框的影子到窗下墙脚的间隔,窗口底边离地面的间隔,试求窗口的高度〔即的值〕图 97、一位同学想利用有关学问测旗杆的高度,他在某一时刻测得高为0.5m的小木棒的影长为,但当他立刻测量旗杆的影长时,因旗杆靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影子,又测地面部分的影长,你能依据上述数据帮他测出旗杆的高度吗?图 10九年级 数学 第五章 反比例函数一、填空题〔每题3分,共30分〕1、近视眼镜的度数y 〔度〕及镜片焦距x 米,那么眼镜度数y 及镜片焦距x 之间的函数关系式是 .2、假如反比例函数xk y =的图象过点〔2,-3〕,那么k = . 3、y 及x 成反比例,并且当2时,1,那么当3时,x 的值是 .4、y 及〔21〕成反比例,且当1时,2,那么当0,y 的值是 .5、假设点A 〔6,y 1〕和B 〔5,y 2〕在反比例函数xy 4-=的图象上,那么y 1及y 2的大小关系是 . 6、函数xy 3=,当x <0时,函数图象在第 象限,y 随x 的增大而 . 7、假设函数12)1(---=m m x m y 是反比例函数,那么m 的值是 .8、直线5及双曲线x y 2-=相交于 点P 〔-2,m 〕,那么 .9、如图1,点A 在反比例函数图象上,过点A 作垂直于x 轴,垂足为B ,假设S △2,那么这个反比例函数的解析式为. 图 110、如图2,函数(k≠0)及xy 4-=的图 象交于点A 、B ,过点A 作垂直于y 轴,垂足为C ,那么△的面积为 . 图 2二、选择题〔每题3分,共30分〕以下每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、假如反比例函数的图象经过点P 〔-2,-1〕,那么这个反比例函数的表达式为〔 〕A 、x y 21=B 、x y 21-=C 、x y 2=D 、xy 2-= 2、y 及x 成反比例,当3时,4,那么当3时,x 的值等于〔 〕A 、4B 、-4C 、3D 、-33、假设点A 〔-1,y 1〕(22),C 〔3,y 3〕都在反比例函数xy 5=的图象上,那么以下关系式正确的选项是〔 〕A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 2<y 1D 、y 1<y 3<y 24、反比例函数xm y 5-=的图象的两个分支分别在第二、四象限内,那么m 的取值范围是〔 〕A 、m <0B 、m >0C 、m <5D 、m >55、反比例函数的图象经过点〔1,2〕,那么它的图象也确定经过〔 〕A 、〔-1,-2〕B 、〔-1,2〕C 、〔1,-2〕D 、〔-2,1〕6、假设一次函数b kx y +=及反比例函数x k y =的图象都经过点〔-2,1〕,那么b 的值是〔 〕A 、3B 、-3C 、5D 、-57、假设直线1x(k 1≠0)和双曲线xk y 2=〔k 2≠0〕在同一坐标系内的图象无交点,那么k 1、k 2的关系是〔 〕A 、k 1及k 2异号B 、k 1及k 2同号C 、k 1及k 2互为倒数D 、k 1及k 2的值相等8、点A 是反比例函数图象上一点,它到原点的间隔 为5,到x 轴的间隔 为3,假设点A 在第二象限内,那么这个反比例函数的表达式为〔 〕A 、x y 12=B 、x y 12-=C 、x y 121=D 、xy 121-= 9、假如点P 为反比例函数x y 6=的图像上的一点,垂直于x 轴,垂足为Q ,那么 △的面积为〔 〕A 、12B 、6C 、3D 、1.510、反比例函数xk y =(k≠0),当x >0时,y 随x 的增大而增大,那么一次函数的图象经过〔 〕A 、第一、第二、三象限B 、第一、二、三象限C 、第一、三、四象限D 、第二、三、四象限三、解答题〔此题6个小题,共40分〕1、〔6分〕矩形的面积为6,求它的长y 及宽x 之间的函数关系式,并在直角坐标系中作出这个函数的图象.2、〔6分〕确定质量的氧气,它的密度ρ〔3〕是它的体积v (m 3)的反比例函数,当v =10m3时,ρ3. 〔1〕求ρ及v 的函数关系式;〔2〕求当v =2m 3时,氧气的密度ρ.3、〔7分〕某蓄水池的排水管每时排水8m 3,6小时〔h 〕可将满水池全部排空.〔1〕蓄水池的容积是多少?〔2〕假如增加排水管,使每时的排水量到达Q 〔m 3〕,那么将满池水排空所需的时间t(h)将如何变更?〔3〕写出t 及Q之间的关系式〔4〕假如打算在5h 内将满池水排空,那么每时的排水量至少为多少?〔5〕排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?4、〔7分〕某商场出售一批进价为2元的贺卡,在市场营销中发觉此商品的日销售单价x 〔元〕及日销售量y 〔个〕之间有如下关系:日销售单价x 〔元〕3 4 5 6 日销售量y(个) 20 15 12 10〔1〕依据表中数据,在直角坐标系中描出实数对〔x ,y 〕的对应点;〔2〕猜测并确定y 及x 之间的函数关系式,并画出图象;〔3〕设经营此贺卡的销售利润为W元,求出W及x 之间的函数关系式.假设物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?5、〔7分〕如图3,点A是双曲线xk y =及直线(1)在第二象限内的交点,AB⊥x 轴于B ,且S△=23. 〔1〕求这两个函数的解析式;〔2〕求直线及双曲线的两个交点A、C的坐标和△的面积.图 36、〔7分〕反比例函数xk y 2 和一次函数21,其中一次函数的图象经过〔〕,〔1,〕两点.〔1〕求反比例函数的解析式;〔2〕如图4,点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标;〔3〕利用〔2〕的结果,请问:在x 轴上是否存在点P ,使△为等腰三角形?假设存在,把符合条件的P 点坐标都求出来;假设不存在,请说明理由.图 4九年级 数学 第六章 频率及概率一、选择题〔每题4分,共40分〕以下每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、一个事务发生的概率不行能是〔 〕A 、0B 、1C 、21D 、23 2、以下说法正确的选项是〔 〕 A 、投掷一枚图钉,钉尖朝上、朝下的概率一样 B 、统一发票有“中奖〞和“不中奖〞两种情形,所以中奖的概率是21 C 、投掷一枚匀称的硬币,正面朝上的概率是21 D 、投掷一枚匀称的骰子,每一种点数出现的概率都是61,所以每投6次,确定会出现一次“1点〞.3、关于频率和概率的关系,以下说法正确的选项是〔 〕A 、频率等于概率B 、当试验次数很大时,频率稳定在概率旁边C 、当试验次数很大时,概率稳定在频率旁边D 、试验得到的频率及概率不行能相等4、小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的概率是〔 〕A 、38%B 、60%C 、约63%D 、无法确定5、随机掷一枚匀称的硬币两次,两次都是正面的概率是〔 〕A 、21B 、31C 、41 D 、无法确定 6、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,口袋中有黑球10个和假设干个白球.由此估计口袋中大约有多少个白球〔 〕A 、10个B 、20个C 、30个D 、无法确定7、某商场举办有奖销售活动,方法如下:凡购物满100元者得奖券一张,多购多得.每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是〔 〕A 、100001B 、1000050C 、10000100D 、10000151 8、柜子里有2双鞋,随机取出两只刚好配成一双鞋的概率是〔 〕A 、21B 、31C 、41D 、61 9、某校九年级一班共有学生50人,如今对他们的生日〔可以不同年〕进展统计,那么正确的说法是〔 〕A 、至少有两名学生生日一样B 、不行能有两名学生生日一样C 、可能有两名学生生日一样,但可能性不大D 、可能有两名学生生日一样,且可能性很大10、某城市有10000辆自行车,其牌照编号为00001到10000,那么某人偶尔遇到一辆自行车,其牌照编号大于9000的概率是〔 〕A 、101 B 、109 C 、1001 D 、1009 二、填空题〔每题3分,共24分〕 1、在装有6个红球、4个白球的袋中摸出一个球,是红球的概率是 .“幸运观众〞10名,张华同学打通了一次热线 ,那么他成为“幸运观众〞的概率是 .3、袋中装有一个红球和一个黄球,它们除了颜色外都一样.随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是 .4、小明和小华在玩纸牌嬉戏,有两组牌,每组各有2张,分别都是1、2,每人每次从每组牌中抽出一张,两张牌的和为3的概率为 .5、一个口袋中有15个黑球和假设干个白球,从口袋中一次摸出10个球,求出黑球数及10的比值,不断重复上述过程,总共摸了10次,黑球数及10的比值的平均数为1/5,因此可估计口袋中大约有 个白球.6、转盘甲被分成完全相等的三个扇形,颜色分别是红、蓝、绿,转盘乙被分成完全相等的两个扇形,颜色分别是红、蓝,随意转动这两个转盘,一个转盘转出蓝色,一个转盘转出红色〔即配成紫色〕的概率是 .7、一个密码锁的密码由四个数字组成,每个数字都是0~9这十个数字中的一个,只有当四个数字及所设定的密码一样时,才能将锁翻开.小亮忘了密码的前面两个数字,他随意按下前两个数字,那么他一次就能翻开锁的概率是 .8、某市民政部门今年元宵节期间实行了“即开式社会福利彩票〞销售活动,设置彩票3000是 .三、解答题〔此题有5个小题,共36分〕1、〔7分〕有30张牌,牌面朝下,每次抽出一张登记花色再放回,洗牌后再抽,抽到红桃、黑桃、梅花、方块的频率依次为20%、32%、45%、3%,试估计四种花色的牌各有多少张?2、〔7分〕一那么广告称:本次抽奖活动的中奖率为50%,其中一等奖的中奖率为10%,小明看到这那么广告后,想:“5021,那么我抽二张就会有一张中奖,抽10张就会有1张中一等奖〞.你认为小明的想法对吗?请说明理由.3、〔7分〕桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做嬉戏,嬉戏规那么是:随机取2张牌并把它们翻开,假设2张牌中没有老K,那么红方胜,否那么蓝方胜.你情愿充当红方还是蓝方?请说明理由.4、〔7分〕为了估计鱼塘中有多少条鱼,先从鱼塘捕捞100条鱼做上标记,然后放回。
2012—2013学年度第一学期九年级(上)数学单元测试卷第一章 《证明(二)》(说明:本试题满分150分,考试时间90分钟)一、选择题:(每小题3分,共45分)1、等腰三角形的一边为4,另一边为9,则这个三角形的周长为( )A 、17B 、22C 、13D 、17或222、如图,在△ABC 中,∠A=50°,AB=AC ,AB 的垂直平分线DE 交AC 于D ,则∠DBC 的度数是( )A 、15°B 、20°C 、30°D 、25°3、如图,给出下列四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,;③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( )A 、1组B 、2组C 、3组D 、4组4、如图,△ABC 中,AB=AC ,点D 在AC 边上, 且BD=BC=AD ,则∠A 的度数为( )A 、30°B 、36°C 、45°D 、70°5、如图所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米, AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心, 要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( )A 、AB 中点 B 、BC 中点C 、AC 中点D 、∠C 的平分线与AB 的交点6、具有下列条件的两个等腰三角形,不能判断它们全等的是( )A 、顶角、一腰对应相等B 、底边、一腰对应相等C 、两腰对应相等D 、一底角、底边对应相等7、在平面直角坐标系xoy 中,已知A (2,–2),在y 轴上确定点P ,使△AOP 为等到腰三角形,则符合条件的点P 共有( )A 、2个B 、3个C 、4个D 、5个A B DE (第3题) 第4题第5题8、三角形的三个内角中,锐角的个数不少于 ( )A 、1 个B 、2 个C 、3个D 、不确定9、如图,在△ABC 中,∠A :∠B :∠C = 1 :2 :3,CD ⊥AB ,AB =a ,则DB =( )A 、4a B 、3a C 、2a D 、43a10、已知Rt △ABC 中,∠C =90°,若cm c cm b a 1014==+,,则S Rt △ABC =( )A 、24cm 2B 、36cm 2C 、48cm 2D 、50cm 211、如图,在△ABC 中,AB =AC ,AB 的垂直平分线交BC 的延长线于E ,交AC 于F ,∠A =50,AB +BC =16cm ,则如图,△BCF 的周长和∠EFC 分别为( )A 、16cm ,40°B 、8cm ,50°C 、16cm ,50°D 、8cm ,40°12、以下命题中,真命题的是 ( )A 、两条直线相交只有一个交点B 、同位角相等C 、两边和一角对应相等的两个三角形全等D 、等腰三角形底边中点到两腰相等13、有两个角和其中一个角的对边对应相等的两个三角形 ( )A 、必定全等B 、必定不全等C 、不一定全等D 、以上答案都不对14、如图,⊿ABC ≅⊿FED ,那么下列结论正确的是 ( )A EC = BDB EF ∥ABC DE = BD D AC ∥ED15、适合条件∠A =∠B =31∠C 的三角形一定是 ( )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、任意三角形一、填空题:(每小题5分,共25分)16、等腰三角形的底边长为2,面积等于1,则它的顶角的度数为 。
初三上册数学第一章图形与证明(二)单元试卷以下是查字典数学网为您举荐的九年级上册数学第一章图形与证明(二)单元试题,期望本篇文章对您学习有所关心。
九年级上册数学第一章图形与证明(二)单元试题时刻:100分钟满分:150分一、选择题(3分8=24分)1.已知等腰三角形的一个内角为40,则那个等腰三角形的顶角为【】A.40B.100C. 40或100D. 70或502.使两个直角三角形全等的条件【】A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等3.下面判定四边形是平行四边形的方法中,错误的是【】A.一组对边平行,另一组对边也平行B.一组对角相等,另一组对角也相等C.一组对边平行,一组对角相等D.一组对边平行,另一组对边相等4.已知四边形ABCD是平行四边形,下列结论中不正确的是【】A.当AB=BC时,它是菱形B.当ACBD时,它是菱形C.当ABC=90时,它是矩形D.当AC=BD时,它是正方形5.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE 交AB于点D,交AC于点E,则△BEC的周长为【】6.顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是【】A.平行四边形.B.对角线相等的四边形.C.矩形.D.对角线互相垂直的四边形.7.如图,在□ABCD中,E是BC的中点,且AEC=DCE,则下列结论不正确的是A. B. DF=2BFC.四边形AECD是等腰梯形D.△ABE是等腰三角形8.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB= 3,则BC的长为二、填空题(3分8=24分)9.如图,在△ABC中,C=90,AD平分CAB,BC=8cm,BD=5cm,,那么D点到直线AB的距离是cm.10.等腰梯形ABCD中,AD//BC,AD=3cm,BC=5cm,C=60,则梯形的腰长是cm.11.如图,矩形ABCD的对角线AC,BD相交于点O,AB=2,BOC=1 20,则AC的长是__________.12.如图,菱形ABCD中,AE垂直平分BC,垂足为E,AB=4.则菱形ABCD的面积是,对角线BD的长是.13.在梯形ABCD中,AD//BC,对角线ACBD,且AC=5cm,BD=12c m,则梯形中位线的长等于______cm.14.如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC 上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_____________.15.如图,若将边长为1的正方形ABCD绕点A逆时针旋转30到正方形ABCD,则图中阴影部分的面积为.16.如图,有一张面积为1的正方形纸片ABCD,M,N分别是AD,B C边的中点,将C点折叠至MN上,落在P点的位置,折痕为BQ,连结P Q,则PQ= .三、解答题(共102分)17.(本题8分)在等腰△ABC中,AB=AC=8,BAC=100,AD是BAC 的平分线,交BC于D,点E是AB的中点,连接DE.求:(1)求BAD的度数;(2)求B的度数;(3)求线段DE的长.18.(本题8分)如图,已知ACBC,BDAD,AC 与BD 交于O,AC = BD.求证:(1)BC=AD; (2)△OAB是等腰三角形.19.(本题8分)我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,依次连接各边中点得到中点四边形EFGH.(1)那个中点四边形EFGH的形状是_________;(2)请证明你的结论.20.(本题10分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.(1)求证:BD=EC;(2)若E=50 ,求BAO的大小.21.(本题10分)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)22.(本题10分)如图,在梯形ABCD中,AB∥DC,DB平分ADC,过点A作AE∥BD,交CD的延长线于点E,且C=2E.(1)求证:梯形ABCD是等腰梯形;(2)若BDC=30,AD=5,求CD的长.23.(本题10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)假如AB=AC,试推测四边形ADCF的形状,并证明你的结论.24.(本题12分)如图,等腰梯形ABCD中,AD∥BC,点E是线段AD 上的一个动点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.(1)试探究四边形EGFH的形状,并说明理由;(2)当点E运动到什么位置时,四边形EGFH是菱形?并加以证明;(3)若(2)中的菱形EGFH是正方形,请探究线段EF与线段BC的关系,并证明你的结论.25.(本题12分)我们给出如下定义:若一个四边形的两条对角线相等,则称那个四边形为等对角线四边形.请解答下列问题:(1)写出你所学过的专门四边形中是等对角线四边形的两种图形的名称;(2)探究:当等对角线四边形中两条对角线所夹锐角为60时,这对60角所对的两边之和与其中一条对角线的大小关系,并说明你的结论.26.(本题14分) 如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:不管点P运动到AB上何处时,都有△ADQ≌△ABQ ;(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD 面积的;(3)若点P从点A运动到点B,再连续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。
九年级(上)数学单元测试卷 第一章 证明(二)(试卷满分为120分,考试时间为120分钟.)一、选择题(本大题共10小题,每小题3分,共30分)1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是( ) A .7㎝ B .9㎝ C .12㎝或者9㎝ D .12㎝2.如图,加条件能满足AAS 来判断⊿ACD ≌⊿ABE 的条件是( ) A .∠AEB = ∠ADC ,∠C = ∠D B .∠AEB = ∠ADC , CD = BE C .AC = AB , AD = AE D .AC = AB , ∠C =∠B3.已知△ABC 的三边长分别是6cm 、8cm 、10cm ,则△ABC 的面积是 ( ) A.24cm 2 B.30cm 2 C.40cm 2 D.48cm 24.到△ABC 的三个顶点距离相等的点是△ABC 的( )A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边的垂直平分线的交点 5.△ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,若BC=2,则AB 等于( )A.1B. 2C.4D.326、在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶2∶3,③∠A=90°-∠B , ④∠A=∠B=12∠C 中,能确定△ABC 是直角三角形的条件有( )A 、1个B 、2个C 、3个D 、4个7.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( )A.30°B.36°C.45°D.70°8.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF .②∠FAB =∠EAB ,③EF=BC ,④∠EAB =∠FAC ,其中正确结论的个数是( )A.1个 B.2个 C.3个 D.4个9.如图,等边△ABC 中,BD=CE ,AD 与BE 相交于点P ,则∠APE 的度数是( )A.45°B.55°C.60°D.75° 10.已知:如图,AB=AC,∠A=36°,AB的垂直平分线交AC于D,则下列结论:①∠C=72°;②BD是∠ABC的平分线;③△ABD是等腰三角形;④△BCD是等腰三角形,其中正确的有( )A.1个 B.2个 C.3个 D.4个7题图 8题图 9题图 10题图 二、填空题(本大题共8小题,每小题3分,共24分) 11.“等边对等角”的逆命题是______________________________. 12.已知⊿ABC 中,∠A = 090,角平分线BE 、CF 交于点O ,则∠BOC = 13.在△ABC 中,∠A=40°,AB=AC ,AB 的垂直平分线交AC 与D ,则∠DBC 的度数为 . 14.在△ABC 中,AB=5cm ,BC=6cm ,BC 边上的中线AD=4cm ,则∠ADC 的度数是 度. 15.⊿ABC 中,∠C= 090,∠A = 030,AC=32,则AB 边上的中线CD= 。
九年级(上)单元测试卷第一章证明(二)(时间90分钟满分120分)一、选择题(每小题3分;共30分)1、两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条边对应相等2、如图;由∠1=∠2;BC=DC;AC=EC;得△ABC≌△EDC的根据是()A、SASB、ASAC、AASD、SSS3、等腰三角形底边长为7;一腰上的中线把其周长分成两部分的差为3;则腰长是()A、4B、10C、4或10D、以上答案都不对4、如图;EA⊥AB;BC⊥AB;EA=AB=2BC;D为AB中点;有以下结论:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。
其中结论正确的是()A、(1);(3)B、(2);(3)C、(3);(4)D、(1);(2);(4)5、如图;△ABC中;∠ACB=90°;BA的垂直平分线交CB边于D;若AB=10;AC=5;则图中等于60°的角的个数为()A、2B、3C、4D、5(第2题图) (第4题图) (第5题图)6、设M表示直角三角形;N表示等腰三角形;P表示等边三角形;Q表示等腰直角三角形;则下列四个图中;能表示他们之间关系的是()7、如图;△ABC中;∠C=90°;AC=BC;AD平分∠CAB交BC于点D;DE⊥AB;垂足为E;且AB=6cm;则△DEB的周长为()A、4cmB、6cmC、8 cmD、10cm8、如图;△ABC中;AB=AC;点D在AC边上;且BD=BC=AD;则∠A的度数为()A、30°B、36°C、45°D、70°9、如图;已知AC平分∠PAQ;点B;B′分别在边AP;AQ上;如果添加一个条件;即可推出AB=AB′;那么该条件不可以是()A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACB′D、∠ABC=∠AB′C(第7题图) (第8题图) (第9题图) (第10题图) 10、如图;△ABC中;AD⊥BC于D;BE⊥AC于E;AD与BE相交于F;若BF=AC;则ABC的大小是()A、40°B、45°C、50°D、60°二、填空题(每小题3分;共15分)11、如果等腰三角形的一个底角是80°;那么顶角是度.12、如图;点F、C在线段BE上;且∠1=∠2;BC=EF;若要使△ABC≌△DEF;则还须补充一个条件.(第12题图) (第13题图) (第15题图)13、如图;点D在AB上;点E在AC上;CD与BE相交于点O;且AD=AE;AB=AC。
轧东卡州北占业市传业学校证明〔二〕练习题一、选择题1①等腰三角形的角平分线、中线和高重合; ②等腰三角形两腰上的高相等; ③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形〔 〕〔A 〕1个 〔B 〕2个 〔C 〕3个 〔D 〕4个2、如图5,等边△ABC 中,BD=CE ,AD 与BE 相交于点P ,那么∠APE 的度数是〔 〕〔A 〕45°〔B 〕55° 〔C 〕60°〔 D 〕75°3、如下左图,在△ABC 中,∠B =∠C =40°,D ,E 是BC 上两点,且∠ADE =∠AED =80°,那么图中共有等腰三角形〔 〕A.6个B.5个C.4个D.3个4、如上右图,△ABC 中,CD 平分∠ACB 交AB 于D ,又DE ∥BC ,交AC 于E ,假设DE =4 cm ,AE =5 cm ,那么AC 等于〔 〕A.5 cmB.4 cmC.9 cmD.1 cm5、在Rt △ABC 中,如右图所示,∠C =90°,∠CAB =60°,AD 平分∠CAB ,点D 到AB 的距离DE =3.8 cm ,那么BC 等于A.3.8 cmB. cmC.1 cmD.1 cm 二、填空题6、等腰三角形的两边分别是7 cm 和3 cm ,那么周长为_________;7、如图,∠AOB 是一钢架,且∠AOB=10°,为了使钢架更加牢固,需在其内部添加一些钢管EF 、FG 、GH ……添加的钢管长度都与OE相等,那么最多能添加这样的钢管 根。
.8、如右图,在△ABC 中,AB =AC ,∠A =120°,D 是BC 的中点,DE ⊥AC ,那么∠C =__________°; E C DACE∶EA=__________.9、如左图,△ABC是等边三角形,AD∥BC,CD⊥AD,垂足为D,E为AC的中点,AD=DE=6cm那么∠ACD=_____°,AC=______cm, ∠DAC=_______°,△ADE是______三角形.10、如右图,△ABC是等边三角形,AD⊥BC,DE⊥AB,垂足分别为D,E,如果AB=8 cm,那么BD=_______cm,∠BDE=_____°,BE=______cm.三、解答题11、,如左以下图,△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,AE=6,求四边形AFDE的周长.12、.如右图所示△ABC中,∠ACB=90°,CD⊥AB,垂足是D,∠A=60°.求证:BD=3AD.13、如右图,△ABC和△BDE都是等边三角形,求证:AE=CD.14、如以下图,在△ABC中,∠B=90°,M是AC上任意一点〔M与A不重合〕MD⊥BC,交∠ABC的平分线于点D,求证:MD=MA.证明〔二〕练习题答案一、选择题二.填空题6、17㎝7、8 0 3∶15 0 12 60 等边10.4 30 2三.解答题11.解:∵AD平分∠BAC,∴∠EAD=∠FAD,且DF∥AE∴∠EAD=∠ADF,∴∠FAD=∠ADF∴AF =FD .同理,可得AE =ED ,∠EAD =∠EDA ∴在△ADE 和△ADF 中,∴△ADE ≌△ADF 〔ASA 〕∴AE =AF ,DE =DF综上,AE =ED =DF =AF =6∴四边形AFDE 的周长为4AE =4×6=24.12.证明:∵CD ⊥AB ,∴∠ADC =90°, 又∵∠A =60°,∴∠ACD =30° ∴在Rt △ACD 中,AD =21AC , 又∵∠ACB =90°,在Rt △ACB 中, ∴∠B =30°,∴AC =21AB ∴AD =4AB , 那么AD =31BD ,即BD =3AD . 13.证明:∵MD ⊥BC ,且∠B =90°, ∴AB ∥MD ,∴∠BAD =∠D又∵AD 为∠BAC 的平分线∴∠BAD =∠MAD ,∴∠D =∠MAD , ∴M A=MD14.解:∵AD =DC ,且∠A =20°, ∴∠A =∠ACD =20°,又∵∠ACD ∶∠BCD =2∶3∴∠BCD =30°,∴∠ACB =50°∴∠ABC=180°-∠A-∠ACB =180°-20°-50°=110°。
九年级上册第一章《证明二》期末复习练习题一、选择题1. 如图1, 在Rt ΔABC 中, ∠ACB =90°BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E, 则CE 的长为( )A. B. C. D. 2图1 图2 图3 2. (2009年广西钦州)如图2, AC =AD, BC =BD, 则有( )A. AB 垂直平分CDB. CD 垂直平分ABC. AB 与CD 互相垂直平分D. CD 平分∠ACB3.(2009年济宁市)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图3, 是一“赵爽弦图”飞镖板, 其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是A. B. C. D.5.(2009恩施市)如图4, 长方体的长为15, 宽为10, 高为20, 点 离点 的距离为5, 一只蚂蚁如果要沿着长方体的表面从点 爬到点 , 需要爬行的最短距离是( )A. B. 25 C. D.6. (2009年宁波市)等腰直角三角形的一个底角的度数是( )A. 30°B. 45°C. 60°D. 90°7. (2009重庆綦江)如图5, 点A 的坐标是(2,2), 若点P 在x 轴上, 且△APO 是等腰三角形,则点P 的坐标不可能是( )A .(4, 0)B .(1.0)C .(-2 , 0)D .(2, 0) 图7图5图88. (2009威海)如图6, AB =AC,BD =BC, 若∠A =40°, 则∠ABD 的度数是( )A. B. C. D.9.(2009年温州)如图7, △ABC 中, AB =AC =6, BC =8, AE 平分∠BAC 交BC 于点E, 点D为AB 的中点, 连结DE, 则△BDE 的周长是( )A. 7+B. 10C. 4+2D. 1210.(2009年云南省)如图11, 等腰△ABC 的周长为21, 底边BC = 5, AB 的垂直平分线DE 交AB 于点D, 交AC 于点E, 则△BEC 的周长为( )A. 13B. 14C. 15D. 1611.(2009呼和浩特)在等腰 中, , 一边上的中线 将这个三角形的周长分为15和12两个部分, 则这个等腰三角形的底边长为( )A. 7B. 11C. 7或11D. 7或10ADB E C12.已知在 中, , 则 的值为( )A. B. C. D.13.观察下列图形, 则第 个图形中三角形的个数是( )A. B. C. D. 二、填空题1. (2009年重庆市江津区)等腰三角形一腰上的高与另一腰的夹角为30º,腰长为4 cm, 则其腰上的高为 cm.2. (2009年滨州)某楼梯的侧面视图如图2所示, 其中 米, , , 因某种活动要求铺设红色地毯, 则在AB 段楼梯所铺地毯的长度应为 .3. (2009年漳州)如图, 在菱形 中, , 、 分别是 、 的中点, 若 , 则菱形 的边长是_____________.4.如图, OP 平分 , , , 垂足分别为A, B .下列结论中不一定成立的是( )A. B. 平分 C. D. 垂直平分5. (2009年广州市)已知命题“如果一个平行四边形的两条对角线互相垂直, 那么这个平行四边形是菱形”, 写出它的逆命题: ________________________________三、解答题1. (2009年崇左)如图, 在等腰梯形ABCD 中, 已知AD//BC, AB =DC,AD =2,BC =4, 延长BC 到E, 使CE =AD.(1)证明: ΔBAD ≌ΔDCE ;(2)如果AC ⊥BD, 求等腰梯形ABCD 的高DF 的值.2. (2009年浙江省绍兴市)如图, 在 中, , 分别以 为边作两个等腰直角三角形 和 , 使.(1)求DBC 的度数;……第1个第2个 第3个 D AB EC F(2)求证: .3. 如图, 已知△ABC 为等边三角形, 点D.E 分别在BC.AC 边上, 且AE=CD,AD 与BE 相交于点F.(1)求证: ≌△CAD ;(2)求∠BFD 的度数.4.(2009年衡阳市)如图, △ABC 中, AB =AC, AD.AE 分别是∠BAC 和∠BAC 和外角的平分线, BE ⊥AE. (1)求证: DA ⊥AE ;(2)试判断AB 与DE 是否相等?并证明你的结论.5. 在△ABC 中, AB=AC, D 是BC 的中点, 连结AD, 在AD 的延长线上取一点E, 连结BE, CE.(1)求证: △ABE ≌△ACE(2)当AE 与AD 满足什么数量关系时, 四边形ABEC 是菱形? 并说明理由.A BC D E F。
九年级(上)数学形成性评价(一)(第一章证明(二)(§1~§2) 90分钟完卷)学校班级姓名学号分数一、选择题(每小题3分,满分24分) 1.如图1所示,等腰三角形A B C 中,ABAC=,44A ∠=︒,C D AB⊥于D ,则D C B ∠等于()A .44︒B .68︒C .46︒D .22︒ 2.如图2所示,15AO PBO P ∠=∠=︒,//PC O A ,PDO A⊥,若4O C =,则PD 等于() A .4 B .3 C .2D .13.如图3所示,在正方形网格中,每个小正方形的边长都为1,则网格上的三角形A B C 中,边长为无理数的有() A .0条 B .1条 C .2条D .3条4.下列命题的逆命题是真命题的是() A .等边三角形是锐角三角形B .全等三角形的对应边相等C .等边三角形是等腰三角形D .全等三角形的对应角相等5.若等腰三角形一腰上的高等于腰长的一半,则这个三角形的底角为()A .75︒或15︒B .30︒或60︒C .75︒D .30︒6.如图4所示,在ABC ∆中,3AB=,AD BC ⊥,且2DB =,1D C =,则A C的长是()ABC .4条D .6条7.某市在旧城改造中,计划在市内一块如图5所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少要()A .450a 元B .225a 元C .150a 元D .300a 元8.若直角三角形的三边长分别为2,4,x ,则x 的可能值有() A .1个B .2个C .3个D .4个二、填空题(每小题3分,满分24分) 1.R t A B C ∆中,90C∠=︒,30BAC ∠=︒,10AB =,那么BC=.2.等腰三角形有一个角是50︒ 3.如图6所示,等腰三角形A B C 的顶角为120︒,腰长为10,则底边上的高AD = .4.如图7所示,在ABC ∆中,已知A B C ∠和A C B ∠的平分线相交于点F ,过点F 作//D E BC ,交AB 于点D ,交A C 于点E ,若9BDC E +=,则线段DE 的长为.5.如图8所示,在ABC ∆中,AB =4A C=,60A ∠=︒,则ABC ∆的面积是.6.如图9所示的是一种“羊头”图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②',依此类推,若正方形①的边长为64cm ,则正方形⑦的边长为cm . 7.如图10所示,一个顶角为40︒的等腰三角形纸片,剪去顶角后,得到一个四边形,则12∠+∠= 度. 8.如图11所示,在R t A B C ∆中,90AC B∠=︒,A B ∠<∠,C M是斜边AB 的中线,将A C M ∆沿直线C M 折叠,点A落在点D 处,如果C D 恰好与AB 垂直,那么A ∠等于度.三、解答题(第1、2、3题每小题10分,第4、5题每小题11分,满分52分) 1.在ABC ∆中,ABAC=,在AB 上取一点D ,在A C 延长线上取一点E ,使B DC E=,连接D E 交B C 于F 点,求证DF EF =.2.如图12所示,已知AD 和B C 相交于点O ,且O AB ∆和O C D ∆均为等边三角形,以O D 和O B 为边作平行四边形O D E B ,连接A C ,AE 和C E ,C E 和AD 交于点F ,求证ACE ∆为等边三角形.3.如图13所示,在ABC ∆中,O 是ABC ∆内一点,且O BO C=,12∠=∠,34∠=∠,求证O A BC⊥.4.如图14所示,在四边形ABC D 中,ADC D=,180BAD C ∠+∠= ,求证BD 平分A B C∠.5.如图15所示,在R t A B C ∆中,AB AC=,90A ∠=︒,点D 为B C 上任意一点,DF AB⊥于F ,D EAC⊥于E ,M 为B C 的中点,试判断MEF ∆是什么形状的三角形,并证明你的结论.。
滕西中学九年级数学?第一章 证明?检测题班级 姓名 考号 一.选择题〔每一小题4分〕1.如图,△ABC 为直角三角形,∠C =90°,假设沿图中虚线剪去∠C ,那么∠1+∠2等于( )A .270°B .135°C .90°D . 315° 2.如图,将一个等腰直角三角形按图示方式依次翻折,假设DE =a ,那么下 列说法正确的个数有〔 〕①DC ′平分∠BDE ;②BC 长为a )22( ;③△B C ′D 是等腰三角形;④△CED 的周长等于BC 的长。
A . 1个; B .2个; C .3个; D .4个。
3.如图,△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB=6cm ,那么△DEB 的周长为〔 〕A .4cm B .6cm C .8 cm D .10cm 4.如图,EA ⊥AB ,BC ⊥AB ,EA=AB=2BC ,D 为AB 中点,有以下结论:(1)DE=AC ;(2)DE ⊥AC ;(3)∠CAB=30°;(4)∠EAF=∠ADE 。
其中结论正确的选项是〔 〕 A .(1),(3) B .(2),(3) C .(3),(4) D .(1),(2),(4)〔3〕 〔4〕 〔7〕 〔8〕 〔10〕 5、直角三角形的周长是4+26,斜边上中线长为2,那么这个三角形的面积为〔 〕 A.5B.2C.45ABC ABCB C DECE6等腰三角形底边长为7,一腰上的中线把其周长分成两局部的差为3,那么腰长是〔 〕 A .4 B .10 C .4或者10 D .以上答案都不对7.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,那么∠A 的度数为〔 〕 A .30° B .36° C .45° D .70°8.如图,在Rt △ABC 中,∠ACB=90°,AB=2BC ,在直线BC 或者AC 上取一点P ,使得△PAB 为等腰三角形,那么符合条件的点P 一共有〔 〕 A .1个 B .2个 C .3个 D .4个9.边长为2的等边三角形的内有一点0,那么0到三角形各边的间隔 之和为 ( ) A .3 B .23 C .2 D .4310.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,假设BF=AC ,那么∠ABC 的大小是〔 〕A .40°B .45°C .50°D .60° 二.填空题〔每一小题4分〕 1.在△ABC 中,∠A =∠B =21∠C ,那么△ABC 是__________三角形。
九年级上册第一章证明(二)经典习题1一、知识要点:1、证明两个钝角或锐角三角形全等的方法有:2、只用于证明两个直角三角形全等的方法是:3、等腰三角形的两个底角。
(简称:)4、有两个角相等的三角形是三角形。
(简称:)5、等腰三角形顶角的、底边上的、底边上的互相重合。
(简称:)6、三个角都相等的三角形是三角形;三条边都相等的三角形是三角形。
7、有一个角等于°的等腰三角形是等边三角形。
8、等边三角形的三个角都相等,并且每个角都等于°9、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于10、勾股定理:直角三角形两条直角边的平方和等于11、如果三角形两边的等于第三边的,那么这个三角形是直角三角形。
12、线段垂直平分线上的点到这条线段13、到一条线段两个端点距离相等的点,在这条线段的14、角平分线上的点到这个角的15、在一个角的内部,且到角的两边距离相等的点,在这个角的16、三角形三条边的垂直平分线相交于一点,并且这一点到的距离相等。
17、三角形三个角的平分线相交于一点,并且这一点到的距离相等。
18、先假设命题的不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为19、在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为,其中一个命题称为另一个命题的逆命题。
20、如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为,其中一个定理称为另一个定理的逆定理。
二、填空题:1.等腰三角形的一个角100°,它的另外两个角的度数分别为。
2.在方格纸上有一个△ABC,它的顶点都在格点上,位置如图所示,则这个三角形是三角形.3. 如图,已知,在△ABC和△DCB中,AC=DB,若不增加任何字母与辅助线,要使△ABC≌△DCB,则还需增加一个条件是____________.4.如图,在等腰ABC∆中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若B C E∆的周长为50,则底边BC的长为_________.5.如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,点B 与点A重合,折痕为DE,则CD的长为________.第(2)题第(3)题第(4)题第(5)题6.如图,在Rt△ABC中,∠C=90°,∠B=15°,DE是AB的中垂线,垂足为D,交BC 于点E,若4BE=,则AC=_______ .7.如图,有一块边长为12m的长方形绿地,在绿地旁边B处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?8.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为.第(6)题第(7)题第(8)题12m5m绿地ABC三、选择题:1.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )去配.A . ①B . ②C . ③D . ①和②2.使两个直角三角形全等的条件( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条边对应相等3.下列说法中,正确的是( ).A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等4.如图,在ABC ∆中,AB=AC ,036A ∠=,BD 和CE 分别是ABC ∠和ACB ∠的平分线,且相交于点P. 在图4中,等腰三角形(不再添加线段和字母)的个数为( ).A .9个B .8个C .7个D .6个5.如图,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( ).A .1处B .2处C .3处D .4处6.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在同一条直线上(如图7),可以证明ABC ∆≌EDC ∆,得ED=AB. 因此,测得DE 的长就是AB 的长,在这里判定ABC ∆≌EDC ∆的条件是( ).A .ASAB .SASC .SSSD .HL第(1)题 第(4)题 第(5)题 第(6)题。
章节测试题1.【答题】反比例函数y=的图象在第二、四象限,则n的取值范围为______,,为图象上两点,则______用“<”或“>”填空.【答案】n<1 <【分析】根据反比例函数的性质再结合反比例函数图象上点的坐标特征即可求解.【解答】因为反比例函数y=的图象在第二、四象限,所以n-1<0,所以n<1.又因为A(2,y1),B(3,y2)在第四象限,所以y1<y2.故答案为:n<1,<.2.【题文】反比例函数的图象经过A(-2,1)、B(1,m)、C(2,n)两点,试比较m、n大小.【答案】m<n【分析】将点A代入反比例函数解出k值,再将B、C的坐标分别代入已知反比例函数解析式,分别求得m、n的值,然后再来比较它们的大小即可【解答】反比例函数,它的图象经过A(-2,1),,k=-2,,将B,C两点代入反比例函数得,,,∴m<n.3.【答题】下列函数中是反比例函数的是()A. y=x﹣1B. y=C. y=D. =1【答案】C【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】A、y=x-1是一次函数,不符合题意;B、y=不是反比例函数,不符合题意;C、y=是反比例函数,符合题意;D、=1不是反比例函数,不符合题意;选C.4.【答题】已知函数是反比例函数,则m的值为()A. 2B. ﹣2C. 2或﹣2D. 任意实数【答案】B【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】解:∵函数是反比例函数,∴,解得:m=﹣2.选B.5.【答题】下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系【答案】C【分析】分别利用反比例函数、正比例函数以及二次函数关系分别分析得出答案.【解答】A、一个人的体重与他的年龄成正比例关系,错误;B、正方形的面积和它的边长是二次函数关系,故此选项错误;C、车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系,正确;D、水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成正比例关系,故此选项错误;选C.6.【答题】下列函数中,表示y是x的反比例函数的是()A. y=B. y=C. y=2xD. y=【答案】B【分析】根据反比例函数的定义判断各选项即可.【解答】根据反比例函数的定义,可判断出只有y=表示y是x的反比例函数.选B.7.【答题】下列函数中,y既不是x的正比例函数,也不是反比例函数的是()A. B. C. D.【答案】C【分析】根据正比例函数y=kx,反比例函数y=kx-1或y=,可得答案.【解答】A、是反比例函数,故A错误;B、是正比例函数,故B错误;C、既不是正比例函数也不是反比例函数,故C正确;D、是反比例函数,故D错误;选C.8.【答题】将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A. 2B.C.D. 6【答案】A【分析】分别计算出y1,y2,y3,y4,可得到每三个一循环,而2012=670…2,即可得到y2012=y2.【解答】y1=-=-,把x=+1=-代入y=-中得y2=-,把x=2+1=3代入反比例函数y=-中得y3=-,把x=-+1=代入反比例函数y=-得y4=,如此继续下去每三个一循环,2012=670…2,∴y2012=2.选A.9.【答题】下列关系中,两个量之间为反比例函数关系的是()A.正方形的面积S与边长a的关系B.正方形的周长l与边长a的关系C.矩形的长为a,宽为20,其面积S与a的关系D.矩形的面积为40,长a与宽b之间的关系【答案】D【分析】此题应根据反比例函数的定义进行判断.【解答】A、根据题意,得,所以正方形的面积S与边长a的关系是二次函数关系;故本选项错误;B、根据题意,得,所以正方形的周长l与边长a的关系是正比例函数关系;故本选项错误;C、根据题意,得,所以正方形的面积S与边长a的关系是正比例函数关系;故本选项错误;D、根据题意,得,所以正方形的面积S与边长a的关系是反比例函数关系;故本选项正确.选D.10.【答题】反比例函数中常数k为()A. ﹣3B. 2C.D.【答案】D【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是(k≠0).【解答】反比例函数中常数k为.选D.11.【答题】函数是y关于x的反比例函数,则m=______.【答案】3【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】由题意得,解得m=3.12.【答题】若函数y=(m+2)x|m|﹣3是反比例函数,则m的值为______.【答案】2【分析】由于函数y=(m+2)x|m|﹣3是反比例函数,根据反比例函数的定义得到m+2≠0且|m|﹣3=﹣1,然后去绝对值和解不等式即可得到m的值.【解答】∵函数y=(m+2)x|m|﹣3是反比例函数,∴m+2≠0且|m|﹣3=﹣1,∴m=2.故答案为2.13.【答题】若函数是反比例函数,则m=______.【答案】±1【分析】根据反比例函数的定义先求出m的值,再根据系数不为0进行取舍.【解答】∵是反比例函数,∴m2-2=-1,∴m2=1,∴m=±1.故答案为±1.14.【答题】若反比例函数的图象在第二、四象限,m的值为______.【答案】-2【分析】由反比例函数的定义可知3-m2=-1,由反比例函数图象在第二、四象限可知m+1<0.【解答】∵是反比例函数,∴3-m2=-1.解得:m=±2.∵函数图象在第二、四象限,∴m+1<0,解得:m<-1.∴m=-2.故答案为:-2.15.【题文】列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.【答案】见解答【分析】(1)由平均数,得x=,即y=是反比例函数,(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数,(3)由路程与时间的关系,得t=,即t=是反比例函数.【解答】解:(1)由平均数,得x=,即y=是反比例函数,(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数,(3)由路程与时间的关系,得t=,即t=是反比例函数.16.【题文】函数是反比例函数,则m的值是多少?【答案】-2【分析】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的定义去判断.【解答】∵是反比例函数,∴3-m2=-1,m-2≠0,解得:m=-2.故m的值为-2.17.【题文】若反比例函数的图象经过第二、四象限,求函数的解析式.【答案】y=﹣【分析】根据反比例函数的定义,可以得到m2-24=1,而图象经过第二、四象限,则比例系数是负数,据此即可求解.【解答】根据题意得:解得:m=﹣5.则函数的解析式是:y=﹣.18.【题文】给出下列四个关于是否成反比例的命题,判断它们的真假.(1)面积一定的等腰三角形的底边长和底边上的高成反比例;(2)面积一定的菱形的两条对角线长成反比例;(3)面积一定的矩形的两条对角线长成反比例;(4)面积一定的直角三角形的两直角边长成比例.【答案】见解答【分析】根据反比例函数的定义及形式y=(k≠0)可判断各个命题的真假.【解答】解:(1)∵等腰三角形的面积一定,∴底边长和底边上的高的乘积为非零常数.∴命题(1)正确;(2)∵菱形的面积是它的对角线长的乘积的一半,∴当菱形的面积一定时,对角线长的乘积也一定.∴它们成反比例.故正确.(3)∵矩形的面积一定时,它的对角线长的乘积并不一定,∴两对角线长不成反比例,∴命题(3)为假命题;(4)∵直角三角形的面积为直角边乘积的一半,∴当它的面积一定时,其直角边长的乘积也一定.∴两直角边长成反比例,∴命题(4)正确.19.【答题】下列函数中,不是反比例函数的是()A. B. C. D.【答案】D【分析】本题考查了反比例函数的定义。
DECBA苏科版九年级(上)第一章《图形与证明(二)》单元测试题(满分150分,测试时间为100分钟)温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!祝你有好成绩!一、选择题(本大题共8题,每小题4分,共32分。
每小题只有唯一答案,请将你认为正确的答案填入下面的表格中) 1、等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( )A .9cmB .12cmC .15cmD .12cm 或15cm2、如图,在等腰梯形ABCD 中,AB =2,BC =4,∠B =45º,则该梯形的面积是( )A 、122-B 、24-C 、428-D 、224-3、如图,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .12cmB .10cmC . 8cmD . 6cm4、如图,在平面直角坐标系中,□ABCD 的顶点A 、B 、D 的坐标分别是 (0,0),(5,0),(2,3),则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)(第2题图) (第3题图) (第4题图) (第8题图)5、已知菱形的两条对角线长分别为10、24,则它的周长等于( )A .34B .240C .52D .120 6、正方形具有而菱形不具有的性质是( )A .对角线互相平分;B .对角线相等;C .对角线互相垂直;D .对角线平分对角。
7、顺次连结等腰梯形ABCD 各边的中点,所得的四边形一定是( )A .等腰梯形B .矩形C .菱形D .平行四边形8、如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 边中点E 处,点A 落在点F 处,折A BDCCB痕为MN ,则线段CN 的长是( ). A .3cm B .4cm C . 5cmD .6cm二、填空题(本大题共10小题,每小题4分,共40分.请将你认为正确的答案直接填入题中的横线上) (第10题图) (第11题图) (第14题图) 9、已知□ABCD 中,∠A 比∠B 小20°,那么∠C 的度数是________。
第一章《证明(二)》单元测试题一、精心选一选(每小题4分,共32分)1. 不能确定两个三角形全等的条件是( )A.三条边对应相等B.两角和一条边对应相等C.两条边及其夹角对应相等D.两条边和一条边所对的角对应相等 2. 等腰三角形的一边为4,另一边为9,则这个三角形的周长为( ) A.7 B.22 C.13 D.17或223.已知等腰三角形一腰上的高等于腰长的一半,则该等腰三角形的底角为( )A.75º或15ºB.30º或60ºC.75ºD.30º4.在R t △ABC 中,已知∠C =90º,∠A =30º,BD 是∠B 的平分线,AC =18,则BD 的值为( )A.33B.9C.12D.65.如图,△ABC 中,∠ACB =090,BE 平分∠ABC ,DE ⊥AB ,垂足为D ,如果AC = 3cm ,那么AE + DE 的值为( )A.2cmB.3 cmC.4 cmD.5 cm6.如图,在△ABC 中,∠A =50°,AB =AC ,AB 的垂直平分线DE 交AC 于D ,则∠DBC 的度数是( )D.25°7.如图,△ABC 中,AD ⊥BC 于D ,BE⊥AC 于E ,AD 与BE 相 交于F ,若BF=AC ,则∠ABC 的大小是( )A.40°B.45°C.50°D.60° 8.如图,小明从A 地沿北偏东30°方向走100m ,到B 地再从B 地向西走200m 到C 地,这时小明离A 地( )A.150mB.1003 mC.100mD.503 m二、细心填一填(第小题4分,共32分)9. 如果等腰三角形的一个底角是80°,那么顶角是 度.10. 如图3,P 是∠AOB 的角平分线上的一点,PC ⊥OA 于点C ,PD ⊥OB 于点D.11.命题“等腰三角形的两个底角相等”的逆命题是___________ ____________ _ .12. 在△ABC 中,边AB ,BC ,AC 的垂直平分线相交于P ,则PA ,PB ,PC 的大小关系是 .13.已知, 在△ABC 中,AB =AC =5㎝,AD 平分∠BAC ,若BD =3㎝,则AD = ㎝. 14.已知,在R t △ABC 中,∠C =90º,∠A =30°,AB +BC =12 cm ,则AB =__________cm.15.如图,在△ABC 中,AD ⊥BC 于D ,若AB =13,AC =8,则BD 2-DC 2= ; 16.如图,A B C △和D C E △都是边长为2的等边三角形,点B C E ,,在同一条直线上,连接B D ,则B D 的长为 .三、用心做一做(共56分)17.(8分) 如图已知∠AOB 内有两点,M ,N .求作一点P ,使点P 在∠AOB 两边距离相等,且到点M ,N 的距离也相等,保留作图痕迹并完成填空.解:(1)连结 ;作 垂直平分线CD . (2)作∠AOB 的 OE与CD 交于点 , 所以点 就是要找的点.ADBE18.(8分) 已知:如图,P 、Q 是△ABC 边BC 上两点,且BP=PQ=QC=AP=AQ ,求∠BAC 的度数;19(8分)已知,如图,AD 是△ABC 的角平分线,DE ,DF 分别是△ABD 和△ACD 的高.求证:AD 垂直平分EF .20.(10分) 如图,在ΔABC 中,AC =BC ,∠C =90º,AD 是ΔABC 的角平分线,DE ⊥AB ,垂足为E .(1)已知CD =4cm ,求AC 的长; (2)求证:AB =AC +CD .a b c n n na = ,b = ,c = .(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形?并证明你的猜想.22.(12分)如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB =5,DE =1,BD =8,设CD =x.(1)用含x 的代数式表示AC +CE 的长;(2)请问点C 满足什么条件时,AC +CE 的值最小? (3)根据(2)中的规律和结论,请构图求出代数式9)12(422+-++x x 的最小值..参考答案一、1~4.DBAC; 3.提示:分高在三角形内和三角形外两种情况;4.提示:AD =BD =2CD ; 5~8.BABB; 7.提示:证△BDF ≌△ADC .得BD =AD ; 8.提示:连接AC ,作AD ⊥BC 于D .二、9.20º; 10.PD =PC 或OD =OC ;11.有两个内角相等的三角形是等腰三角形; 12.PA =PB =PC ; 13.4; 14.8 15.105; 提示:2222222)()(AC ABAD ACAD ABDCBD -=---=-; 16.32;提示:可证∠BDE =90º,∠DBE =30º.三、17.解(1)MN ,MN ;(2)平分线,P ,P .18.解:∵PQ =AP =AQ ,∴△APQ 是等边三角形,∴∠PAQ =∠APQ =∠AQP =60º. ∵PA =PB ,∴∠BAP =21∠APQ =30º,同理∠CAQ =30º.∴∠BAC =120º.19.证明:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF .∵AD =AD , ∴Rt △ ADE ≌Rt △ADF .∴AE =AF .又∠EAD =∠F AD ,∴AD 垂直平分EF . 20.(1)解:∵AD 平分∠CAB ,∠C =∠DEA =90º,∴CD =DE =4.∵AC =BC , ∴∠B =45º,∴△DBE 为等腰三角形.DB =24.∴244+=BC . ∴cm AC )244(+=.(2)证明:∵AD =AD ,CD =ED ,∴Rt △ ACD ≌Rt △AED .∴AC =AE .又CD =ED =BE , ∴AB =AE +BE =AC +CD .21.解: (1)由题意有:12-n ,n 2,12+n ;(2)猜想为以a ,b ,c 为边的三角形是直角三角形。
证明(二)§1、8线段垂直平分线○2一、回顾与思考:1、判断题(1)如图-1,OC=OD直线AB是线段CD的垂直平分线。
()(2)如图-1,射成OE为线段CD的垂直平分线。
()(3)如图-2,直线AB的垂直平分线是直线CD。
()(4)如图-3,PA=PB,P′A=P′B,则直线PP′是线段AB的垂直平分线。
()图-1 图-2 图-3 图-42、如上图-4,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长是12 cm,AC=5cm,则AB+BD+AD= cm;AB+BD+DC= cm;△ABC的周长是cm。
3、如下图,在Rt△ABC中,∠C=90°,∠B=15°,DE是AB的中垂线,垂足为D,交BC于E,BE=5,则AE=__________,∠AEC=__________,AC=__________ 。
二、探索与研究:1、如右图,在△ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F。
∵点P是AB边垂直平线上的一点,∴= ().同理可得,PB= .∴= (等量代换).∴(到一条线段两个端点距离相等的点,在这条线段的)∴AB、BC、AC的垂直平分线。
三、例题讲解:例1、作图题:已知底边及底边上的高,求作等腰三角形。
已知:线段a,h(如右上图所示).求作:△ABC,使AB=AC,且BC=a,高AD=h。
作法:○1作线BC= (如右下图)。
○2作作线BC的,交BC于点。
○3在MN上作线段,使。
EFBACPMNB Cahl公路村庄村庄○4连接 、 。
所以△ABC 是所求的三角形。
〖思考〗已知底边及底边上的高,能作三角形吗?唯一吗? 四、分层练习:【A 组基础训练】1、如右图,两个盛产水果的村庄A 、B 位于公路的同侧, 交通条件极为方便,他们想因地地制宜,在公路旁建一个 现代化的食品加工厂,使它到两个村庄的距离相等, 请画出符合条件的食品加工厂的位置。
北师大版数学九年级上册 第一章 证明二(一)选择题:1. 设M 表示直角三角形,N 表示等腰三角形,P 表示等边三角形,Q 表示等腰直角三角形,则下列四个图中,能表示他们之间关系的是( )2. 具有下列条件的两个等腰三角形,不能判断它们全等的是( ) A. 顶角、一腰对应相等 B. 底边、一腰对应相等 C. 两腰对应相等 D. 一底角、底边对应相等3. △ABC 中,∠A :∠B :∠C=1:2:3,CD ⊥AB 于点D ,若BC=a ,则AD 等于( )A aB aC aD a....12323234. 下列命题的逆命题是真命题的是( )A. 对顶角相等B. 若a=b ,则|a|=|b|C. 末位是零的整数能被5整除D. 直角三角形的两个锐角互余 5. 如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( )A. 30°B. 36°C. 45°D. 70° 6. 下列说法错误的是( )A. 任何命题都有逆命题B. 定理都有逆定理C. 命题的逆命题不一定是正确的D. 定理的逆定理一定是正确的 (二)填空题:1. 如果等腰三角形的一个角是80°,那么另外两个角是____________度。
2. 等腰三角形底角15°,则等腰三角形的顶角、腰上的高与底边的夹角分别是__________。
3. 在△ABC 和△ADC 中,下列论断:①AB=AD ;②∠BAC=∠DAC ;③BC=DC ,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:____________。
4. 如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知:AB=8cm ,BC=10cm ,则△EFC 的周长=____________cm 。
(三)作图题:已知:如图,△ABC 中,AB=AC 。
(1)按照下列要求画出图形:①作∠BAC 的平分线交BC 于点D ; ②过D 作DE ⊥AB ,垂足为点E ; ③过D 作DF ⊥AC ,垂足为点F 。
- 1 -九 年 级 数 学 试 题(图形与证明(二))NO:002班级 学号 姓名 自我评价1.若等腰三角形的一个底角为50°,则顶角为 ( ) A .50° B .100° C .80° D .65°2.下列条件中,能判断两个直角三角形全等的是 ( ) A .两条直角边对应相等 B .有两条边对应相等 C .一条边和一个锐角对应相等 D .一条边和一个角对应相等3.如图,□ABCD 的周长是28㎝,△ABC 的周长是22㎝,则AC 的长为 ( )A .14㎝B .12㎝C .10㎝D .8㎝4.下列命题中,真命题是 ( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形 C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形5.已知菱形的两条对角线长分别为6和8,则菱形的周长为( ) A .20 B .30 C .40 D .10 6.如图,在菱形ABCD 中,不一定成立的 ( ) A .四边形ABCD 是平行四边形B .AC ⊥BDC .△ABD 是等边三角形 D .∠CAB =∠CAD7.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是 ( ) A.四边形AEDF 是平行四边形 B.如果90BAC ∠=,那么四边形AEDF 是矩形 C.如果AD 平分BAC ∠,那么四边形AEDF 是菱形D.如果AD BC ⊥且AB AC =,那么四边形AEDF 是正方形8.如上图,AD 是△ABC 的中线,E 是AD 的中点,BE 的延长线交AC 于点F ,若FC=12 AF 的长为: A.4 B. 6 C. 10 D.8 ( ) 9如上图,在矩形ABCD 中,AB=2AD ,点E 是CD 上一点,且AE=AB ,则∠CBE 等于 A .65° B .15° C .22.5° D .30° ( )DBADCB AA FCDBEF ECBA- 2 -10.在梯形ABCD 中,AD//BC ,对角线AC ⊥BD ,且cm AC 5=,BD=12c m ,则梯形中位线的长等于 ( ) A. 7.5cmB. 7cmC. 6.5cmD. 6cm11.如图,正方形ABCD 的边长为2,点E 在AB 边上,四边形EFGB 也为正方形, 设△AFC 的面积为S ,则 ( ) A .S=2 B .S=4 C .S=2.4 D .S 与BE 长度有关12.如图直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =3,BC =5,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE 、CE ,则△ADE 的面积是 ( ) A .1 B .2 C .3 D .不能确定 二.填空题(本大题共6小题,每小题3分,共18分)13.如图(1),在平面四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A =∠,则BCE =∠14.在四边形ABCD 中,已知AB ∥CD ,请补充一个条件: ,使得四边形ABCD 是平行四边形。
北师大版九年级上册数学第一章测试题(附答案)北师大版九年级上册数学第一章测试题(附答案)一、单选题(共12题;共24分)1.已知四边形ABCD中,对角线AC,BD相交于点O。
下列结论一定成立的是()A.对角线相等B.四边形是矩形C.四边形是平行四边形D.对角线互相平分2.矩形、菱形、正方形都一定具有的性质是()A.邻边相等B.四个角都是直角C.对角线相等D.对角线互相平分3.如图,CD于E,F,PD.点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,连接PB,若AE=2,PF=8,则图中阴影部分的面积为()A.10B.12C.16D.184.如图,将两根相同的矩形木条沿虚线剪开得到四根完全一样的木条,然后重新围城一个矩形画,则围城的矩形画框的内框的面积为()A.48B.64C.72D.965.如图,在矩形ABCD中,E为BC边的中点,∠AEC的平分线交AD边于点F,若AB=3,AD=8,则FD的长度为()A.1B.2C.3D.46.在四张边长都是10厘米的正方形纸板上,分别剪下一个长5厘米,宽3厘米的长方形,剩下图形周长最长的是()A.一个等腰直角三角形B.一个等腰非直角三角形C.一个矩形D.一个等边三角形7.在直角坐标系中,A,B,C,D四个点的坐标依次为(-1,y),(x,y),(-1,5),(-5,z),若这四个点构成的四边形是菱形,则满足条件的z的值有()A.1个B.3个C.4个D.5个8.下列命题正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.两组对角线分别相等的四边形是平行四边形9.四边形ABCD的对角线AC=BD,AC⊥BD,分别过A、B、C、D作对角线的平行线,所成的四边形EFMN是()A.正方形B.菱形C.矩形D.任意四边形10.若正方形的周长为40,则其对角线长为()A.20B.25C.30D.35答案:1.A2.C3.B4.C5.B6.C7.B8.B9.B 10.DA。
北师大版数学九年级上册课本答案【篇一:北师版九年级数学上册第一章测试卷(含答案)】卷满分120分考试时间120分钟)一、选择题(共10小题,每小题3分,计30分)1、下列各组图形中,是全等三角形的一组是()a.底边长都为15cm的两个等腰三角形b.腰长都为15cm的两个等腰三角形d.边长为12cm的两个等边三角形2、等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为()a.7b.3c.7或3d.53、一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是()a.等腰三角形b.等边三角形c.直角三角形d.等腰直角三角形4、用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中()a.有两个角是直角b.有两个角是钝角c.有两个角是锐角d.一个角是钝角,一个角是直角6、如图1-2,在一次强台风中一棵大树在离地面5m处折断倒下,倒a.10mb.15mc.25md.30mcba d 图1-1图1-27、下列命题①对顶角相等②如果三角形中有一个角是钝角,那么另外两个角是锐角③若两直线平行,则内错角相等④三边都相等的三角形是等边三角形。
其中逆命题正确的有()a.①③b.②④c.①②d.③④8、如图1-3(1)在△abc中,d、e分别是ab,ac的中点,将△ade沿线段de向下折叠,得到图形1-3(2),下列关于图(2)的四个结论中,一定不成立的是()c.△dba是等腰三角形d.de∥bce c 图1-3 b c (2)(1) aa.1b.2c.3d.4be aa c图1-4图1-5二、填空题(共6小题,每小题3分,计18分)11、已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果③如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c 其中属于真命题的是(填写所有真命题的序号)12、一个三角形三边之比为2:5:3,这个三角形的形状是13、把“同角的余交相等”改写成“如果??,那么??”的形式为cd=3,则ab的长度为15、如图1-7,p是正方形abcd内一点,将△abp绕点b顺时针方向旋转能与△cbp?重合,若pb=3,则pp?的长度为a p dbd b cc n c a b ?图1-6 图1-7图1-8三、解答题(共6小题,计72分,解答应写过程)ad图1-918、(10分)已知:如图1-10,de为△abc的边ab的垂直平分线,m d cd为△abc的外角平分线,与de交于点d,dm⊥bc的延长线于点m,dn⊥ac于点n,求证:an=bm。
第一部分:基础复习九年级数学(上)第一章:证明(二)一、中考要求:1.经历探索、猜测、证明的过程,进一步体会证明的必要性,发展学生初步的演绎推理能力.2.进一步掌握综合法的证明方法,结合实例体会反证法的含义.3.了解作为证明基础的几条公理的内容,能够证明与三角形、线段垂直平分线、角平分线等有关的性质、定理及判定定理.4.结合具体例子了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立.5.能够利用尺规作已知线段的垂直平分线和已知角的平分线;已知底边及底边上的高,能用尺规作出等腰三角形二、中考卷研究(一)中考对知识点的考查:2012、2013年部分省市课标中考涉及的知识点如下表:(二)中考热点:新课标对本章的要求不高,但比较简单的几何证明题仍是2014年中考的热点题型三、中考命题趋势及复习对策本章主要考查对命题、定理等概念的理解及运用定义、定理证明问题的过程,在中考题中以证明题的形式出现,一般占5~7分,因此同学们在复习时应注意认真理解概念,分清题目的条件和结论,正确地写出证明过程。
★★★(I)考点突破★★★考点1:利用定理证明一、考点讲解:公理1、一直线截两条平行线所得的同位角相等,公理2.两条直线被第三条直线所截,若同位角相等,那么这两条直线平行.公理3.若两个三角形的两边及其夹角(或两角及其夹边,或三边)分别相等,则这两个三角形全等.公理4.全等三角形的对应边相等,对应角相等.定理1.平行线的性质定理:两直线平行,同位角、内错角相等,同旁内角互补.定理2.平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补两直线平行.定理3.三角形的内角和定理及推论:三角形的内角和等于180°,三角形的外角等于不相邻的两个内角的和,三角形的外角大于任何一个和它不相邻的内角.定理4.直角三角形全等的判断定理:有一条直角边和斜边对应相等的两个直角三角形全等.定理5.角平分线性质定理及逆定理:角平分线上的点到角的两边的距离相等;到角的两边的距离相等的点在这个角的平分线上;三角形的三条角平分线相交于一点(内心)定理6.垂直平分线性质定理及逆定理:线段垂直平分线上的点到两个端点的距离相等;到线段两端点的距离相等的点在这条线段的垂直平分线上;三角形的三边的垂直平分线相交于一点(外心)定理7.三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.定理8、等腰三角形,等边三角形,直角三角形的性质和判定定理.二、经典考题剖析:【考题1-1】(深圳南山)如图l-l-1,AB、CD交于点E,AD=AE,CB=CE,F、G、H分别是DE、BE、AC的中点.(1)求证:AF⊥DE;(2)求证:FH= GH.证明:【考题1-2】(湛江) 在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时, 求证:①△ADC ≌△CEB ;②DE=AD+BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明..三、针对性训练:1.如图1-1-4,Rt △ABC 中,AC ≠AB ,AD 是斜边上的高;DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,则图中与∠C (除∠C 外)相等的角的个数是( ) A .2 B .3 C .4 D .5 2.如图1-1-5,△ABC 中,△ABC 和△ACB 的外角平分线交于点O ,设∠BOC=α,则∠A 等于().90-2 B.90-2.180-2 .180-2A C D αααα3.如图1-1-6,△ABC 是不等边三角形,DE=BC ,以D 、E 为两个顶点作位置不同的三角形,使所作三角形与△ABC 全等,这样的三角形最多可作出( )A .2个B .4个C .6个D .8个4.如图1-1-7,△ABC 是直角三角形,BC 是斜边, △ABP 绕点A 逆时针旋转后,能与△ACP 重合, 如果AP=3,那么PP ′的长等于( ) A .3 B .2 3 C .3 2 D .45.如图1-1-8,在Rt △ABC 中,∠BCA=90°,点D 、E 、F 分别是三边的中点,且CF=2 cm ,则DE= _________cm .6、如图1-1-9,在△ABC 和△DEF 中,已知AB=DE ,要使△ABC ≌△DEF ,根据三角形全等的判定定理,还需添加条件______________(填上你认为正确的一种).7.在方格纸上有一个△ABC ,它的顶点位置如图1-1-10所示,则这个三角形是________三角形.8.如图1-1-1 所示,把△ABC 绕点C 顺时针旋转 35°,得ΔA ′B ′C ′交AC 于点D ,若∠A ′DC=90o,则∠A=__________.9.如图1-l-12,△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB长为______________.10 如图1-1-13,在△ABC中,∠BAC=90 在,延长BA 到D,使AD=12AB,点E、F分别为边BC、AC的中点.(1)求证:DF=BE;(2)过点A作AG∥BC,交DF于点G,求证:AG=DG.考点2:命题一、考点讲解:1.命题的组成:命题由条件和结论两部分组成.2.命题的形式:命题的形式通常写成“如果……,那么……”的形式.3.真命题与假命题:正确的命题称为真命题,错误的命题称为假命题(注意:一个命题是真命题,它的逆命题不一定是真命题〕二、经典考题剖析:【考题2-1】(湖南长沙)请用“如果…,那么……”的形式写一个命题:_________________.【考题2-2】(南宁)如图1-1-14,下面四个条件中,请你以其中两个为已知条件,第三个为结论,推出一个正确的命题(只需写出一种情况)①AE=AD ②AB=AC③OB=OC ④∠B=∠C【考题2-3】(江苏盐城)下列命题中,假命题是()A.平行四边形的对角线互相平分B.矩形的对角线相等C.等腰梯形的对角线相等D.菱形的对角线相等且互相平分三、针对性训练:1.下列命题中,真命题是()A.面积相等的两个三角形是全等三角形B.有两边及一组对应角相等的两个三角形全等C.全等三角形的周长相等D.有一条直角边对应相等的两个三角形全等2.下列命题中正确的是()A.实数是有理数B.无限小数是无理数C.数轴上的点与有理数一一对应D.数轴上的点与实数一一对应3.下列命题为假命题的是()A.等腰三角形的两腰相等B.等腰三角形的两底角相等C.等腰三角形底边上的中线与底边上的高重合D.等腰三角形是中心对称图形4.下列的真命题中,它的逆命题也是真命题的是()A.全等三角形的对应角相等B.两个图形关于轴对称,则两个图形是全等形C.等边三角形是锐角三角形D.直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.5.如图1-1-15,在△ABC中,CD⊥AB,请你添加一个条件,写出一个正确的结论(不在图中添加辅助线)条件:_____________________________________ 结论:_____________________________________6.将命题“同角的余角相等”改写成“如果…,那么…”的形式是__________________________. 7.如图1-1-16,在△ABC中,点D、E分别在边AB、AC上,给出5个论断:①CD⊥AB;②BE⊥AC;③AE=CE;④∠ABE=30°;⑤CD=BE⑴如果论断①、②、③、④都成立,那么论断⑤一定成立吗?答:________________________.⑵从论断①、②、③、④中选取3个作为条件,将论断⑤作为结论,组成一个真命题,那么你选的3个论断是________________.(只需填论断的序号)⑶用⑵中你选的3个论断作为条件,论断⑤作为结论,组成一道证明题,画出图形,写出已知、求证,并加以证明.考点3:尺规作图一、考点讲解:1.五种基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线;作三角形.2.尺规作图要求:了解尺规作图的步骤,会写已知、求作和作法(不要求证明).二、经典考题剖析:【考题3-1】(湖北宜昌)如图1-l-17,已知△ABC,(1)作∠B的角平分线(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)若∠C=90○,∠B=60○,BC=4,∠B的平分线交AC于点D,请求出线段BD的长.三、针对性训练:1.利用基本作图,不能作出唯一三角形的是()A.已知三边B.已知两边及夹角C.已知两角及夹边D.已知两边及其中一边的对角2.用尺规作图,不能作出唯一直角三角形的是()A.已知两条直角边B.已知两个锐角C.已知一直角边和一锐角D已知斜边和一直角边3.作线段的垂直平分线的理论,根据是_______和两点确定一条直线.4.请根据图1-l-19所示的作图痕迹,填写画线段AB的垂直平分线的步骤.第一步:分别以_______、________为圆心,以大于_________半的长度为半径画弧,两弧在AB的两侧分别相交于点_____和_______;第二步:经过点_______和______画______,直线CD就是线段AB的垂直平分线.5、∠AOB如图1-l-20所示,请用直尺和圆规作出∠AOB的平分线.要求保留作图痕迹,不写作法)6.如图1-l -20是由1个圆1个半圆和1个三角形组成的图形.请你以直线AB 为对称轴,把原图形补成轴对称图形.(用尺规作图,不要求写做法和证明,但要保留作图痕迹)★★★(II)新课标中考题一网打尽★★★ 【回顾1】(杭州)如图1-1-22,在等腰Rt ABC 中,AC=BC,以斜边AB 为一边作等边ABD ,使点C,D 在AB 的同侧;再以CD 为一边作等边CDE ,使点C,E 落在AD 的异侧.若AE=1,则CD 的长为()(A)1【回顾2】(安徽)下面是数学课堂的一个学习片断.阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC 的角A 等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手讲“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°”.还有一些同学也提出了不同的看法 .(1)假如你也在课堂中,你的意见如何?为什么? (2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)【回顾3】(温州)如图,在Rt △ABC 中,已知AB =BC =CA =4cm ,AD ⊥BC 于D ,点P 、Q 分别从B 、C 两点同时出发,其中点P 沿BC 向终点C 运动,速度为1cm/s ;点P 沿CA 、AB 向终点B 运动,速度为2cm/s ,设它们运动的时间为x(s)。