七年级数学作业5
- 格式:doc
- 大小:166.50 KB
- 文档页数:4
第5章 分式5.1 分式课堂笔记1. 表示两个整式相除,且除式中含有 .像这样的代数式就叫做分式.2. 分式中字母的取值不能使分母为 . 当分母的值为零时,分式就 意义. 分层训练A 组 基础训练1. 在代数式①x 2,②5y x +,③a -21,④1-πx 中,是分式的有( ) A. ①② B. ③④ C. ①③D. ①②③④ 2. 当a=1,b=-1时,分式222b a --的值为( ) A. 1 B. 0C. -1D. 4 3. (温州中考)若分式32+-x x 的值为0,则x 的值是( ) A. -3 B. -2 C. 0D. 2 4. 下列各式中,无论x 取何值,分式都有意义的是( )A . 121+xB . 12+x xC . 213xx + D . 1222+x x 5. 要使分式3-x x 无意义,则x 的值是( ) A. 0 B. 3 C. ±3 D. -36. 一箱水果售价a 元,水果的总质量为b 千克,则每千克水果售价是 元.7. 写出一个分式,使当x=2时,分式的值是3,这个分式可以是: .8. 已知11-x =1,则11-x +x-1的值为 . 9. 当x=5时,分式232-+x m x 的值为零,则m= . 10. 已知甲工人每小时能加工零件a 个,现总共有零件A 个.(1)甲工人加工t (h )能完成 个零件,若全部完成这批零件,则需要 h ;(2)已知乙工人每小时能加工零件b 个,若乙工人也来加工这批零件,则两人同时开始加工零件,需要 h 才能完成,比甲独做提前 h.11. 一项工程,甲组与乙组合作施工需要a 天完成,若甲组单独施工需要b 天完成,则乙组单独施工每天可以完成总工程量的 .12. 若分式xb a x 2-+在x=2时无意义,在x=-3时值为0,则a+b= . 13. 已知分式392--x x . (1)当x 取什么值时,分式有意义?(2)当x 取什么值时,分式的值为零?(3)当x =-1时,分式的值是多少?14. 要使分式有意义,求x 的取值范围.(1)21++x x ; (2)4412+-x x ; (3)222+-x x .15. 给定下面一列分式:y x 3,-25y x ,37y x ,-49yx (其中x ≠0). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.B 组 自主提高16. 甲种糖果的单价为10元/千克,乙种糖果的单价为16元/千克,现在a (kg )甲种糖果和b (kg )乙种糖果混合成什锦糖,则混合后的什锦糖的单价应定为多少元?当a=10,b=15时,求混合后什锦糖的单价.17. 若2015~2017年某地的森林面积(单位:公顷)分别是S1,S2,S3,则2017年与2016年相比,森林面积增长率提高了多少?(用式子表示)C 组 综合运用18. (1)当x 取哪些整数时,分式13-x 的值为整数? (2)当x 取哪些整数时,分式12-+x x 的值为整数?参考答案5.1 分式【课堂笔记】1. 字母2. 零 没有【分层训练】1—5. CCDDC 6. ba 7. 答案不唯一,如21 8. 29. -1010. (1)ata A (2)b a A + (a A -b a A +) 11. a 1-b1 12. 713. (1)当x -3≠0,即x ≠3时,分式有意义.(2)由题意,得x2-9=0且x -3≠0,∴x =-3.(3)当x =-1时,392--x x =319)1(2----=48--=2. 14. (1)x ≠-2 (2)x ≠2 (3)x 取任何实数15. (1)规律是任意一个分式除以前面一个分式恒等于-yx 2 (2)第7个分式是715y x 16. ba b a ++1610元/千克,13.6元/千克. 【点拨】用分式表示实际问题中的量,主要根据问题中原有的数量关系来表示,本题中什锦糖的单价=混合后的总价/混合后的总质量. 混合后的什锦糖的单价应定为b a b a ++1610元/千克. 当a=10,b=15时,b a b a ++1610=151015161010+⨯+⨯=13.6(元/千克). 17. 依题意可知2015—2016年的增长率为112S S S -,2016—2017年的增长率为223S S S -,所以2017年与2016年相比,森林面积增长率提高了223S S S --112S S S -. 18. (1)0或2或-2或4.(2)∵12-+x x =13)1(-+-x x =1+13-x ,∴13-x 是整数,∴x -1是3的约数,∴x -1=±1或±3,∴x =0或2或-2或4.。
第五章相交线与平行线5.1.2 垂线分层作业1.如图,图中直角的个数有()A.个B.个C.个D.个【答案】D【分析】根据直角的定义进行求解即可.【详解】解:由题意得,图中的直角有一共五个,故选D.【点睛】本题主要考查了垂线的定义,熟知垂线的定义是解题的关键.2.如图,,,若,则的度数是()A.B.C.D.【答案】C【分析】先求出,即可求出.【详解】解:,,.,.故选:C.【点睛】本题主要考查直角的概念以及角度的计算,比较简单.3.如图,在纸片上有一直线l,点A在直线l上,过点A作直线l的垂线、嘉嘉使用了量角器,过90°刻度线的直线a即为所求;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【分析】根据垂直的定义即可解答.【详解】解:嘉嘉利用量角器画90°角,可以画垂线,方法正确;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.【点睛】本题主要考查了作图、垂线的定义,掌握垂直的定义是解答本题的关键.4.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】C【分析】根据垂直定义得到∠AOF+∠BOD=,求出∠AOF的度数,利用角平分线的定义求出∠EOF即可.【详解】解:∵∠DOF=,∴∠AOF+∠BOD=,∵∠BOD=,∴∠AOF=,∵OF平分∠AOE,∴∠EOF=∠AOF=,故选:C.【点睛】此题考查了垂直的定义,几何图形中角度的计算,正确理解图形中各角度的关系是解题的关键.5.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为( )A.35°B.45°C.55°D.65°【答案】C【分析】根据角平分线的定义,得出∠MOC=35°,再根据题意,得出∠MON=90°,然后再根据角的关系,计算即可得出∠CON的度数.【详解】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C【点睛】本题主要考查了角平分线的定义和垂线的定义,解决本题的关键在正确找出角的关系.6.如图,为了解决村民饮水困难,需要在河边建立取水点,下面四个点中哪个最方便作为取水点()A.A点B.B点C.C点D.D点【答案】B【分析】根据“垂线段最短”可得结论.【详解】解:根据“垂线段最短”可知要在河边建立取水点,点B作为取水点最方便,故选:B【点睛】此题主要考查了垂线段最短,正确掌握垂线段的性质是解题关键.7.如图,,垂足是点,,,,点是线段上的一个动点包括端点,连接,那么的长为整数值的线段有()A.条B.条C.条D.条【答案】D【分析】根据垂线段最短解答即可.【详解】解:∵,,,,且点是线段上的一个动点包括端点,∴长的范围是,∴的长为整数值的线段有、、、,,共条,故选:D.【点睛】本题考查垂线段最短.理解和掌握垂线段最短是解题的关键.8.如图,直线AB,CD相交于点O,EO⊥CD,垂足为O,若∠1=50°,则∠2的度数为()A.B.C.D.【答案】B【分析】应用垂线性质可得∠EOD=90°,由∠1+∠BOD=90°,即可算出∠BOD的度数,再根据对顶角的性质即可得出答案.【详解】解:∵EO⊥CD,∴∠EOD=90°,∵∠1+∠BOD=90°,∴∠BOD=∠EOD-∠1=90°-50°=40°,∴∠2=∠BOD=40°.故选:B.【点睛】本题主要考查了垂线及对顶角,熟练掌握垂线及对顶角的性质进行求解是解决本题的关键.9.已知,与的度数之比为,则等于___.【答案】或【分析】根据垂直定义知,由,可求,根据与的位置关系,分类求解.【详解】解:,,,即∠AOB:90°=3:5,.分两种情况:①当OB在内时,如图,∴;②当OB在外时,如图,∴.故答案是:或.【点睛】本题考查垂直定义,角的和差运算,解题的关键是利用分类讨论的思想进行求解.10.如图,点,在直线上,且,的面积为.若是直线上任意一点,连接AP,则线段AP的最小长度为_____cm.【答案】8【分析】根据点到直线的垂线段最短,再由面积求出高,即为AP的最小值,由题知,过点A作BC的垂线,即为所求,此时,该垂线也是三角形的高.【详解】解:过点A作BC的垂线AP,根据点到直线的所有线段中,垂线段最短,∴垂线段即为AP的最小值,∵BC=5cm,ΔABC的面积为20,∴,∴AP=8,故答案为:8.【点睛】本题考查三角形的面积公式,垂线段最短的性质,属于基础题.11.已知的两边与的两边分别垂直,且比的倍少,则______【答案】80°或92°【分析】因为两个角的两边分别垂直,则这两个角相等或互补,又因∠A比∠B的倍少40°,设∠B是x 度,利用方程即可解决问题.【详解】解:设∠B是x度,根据题意,得①两个角相等时,如图1:∠B=∠A=x°,x=x-40,解得,x=80,故∠A=80°,②两个角互补时,如图2:x+x-40=180,所以x=88,×88°-40°=92°综上所述:∠A的度数为:80°或92°.故答案为:80°或92°.【点睛】本题考查垂线,本题需仔细分析题意,利用方程即可解决问题.关键是得到∠A与∠B的关系.12.如图,直线AB,CD相交于点O,若,且,则的度数是______.【答案】54°##54度【分析】设,则,可得,再由,可得,可求出x,即可求解.【详解】解:设,则,∴,∵,∴∠AOE=∠BOE=90°,∴,即,∴.故答案为:54°【点睛】本题主要考查了垂直的性质,对顶角的性质,熟练掌握垂直的性质,对顶角的性质进行求解是解决本题的关键.13.如图,直线与直线相交于点,,垂足为,,则的度数为______.【答案】60°##60度【分析】根据对顶角相等可得,由,可得,由,即可求解.【详解】解:∵,∴,∵,,,解得.故答案为:60°.【点睛】本题考查了垂直的定义,对顶角相等,几何图形角度的计算,数形结合是解题的关键.14.如图,点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,连接,若,则的长可能是___________(写出一个即可).【答案】4【分析】直接利用垂线段最短即可得出答案.【详解】解∶∵点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,∴3≤AP,∴PA可以为4,故答案为4(答案不唯一).【点睛】此题主要考查了垂线段最短,正确得出A P的取值范围是解题的关键.15.如图,直线和相交于点,,,,求的度数.【答案】【分析】根据,得出,根据,可得,根据角的倍分关系,可得∠的度数,根据是邻补角,可得答案.【详解】解:∵,∴,∵,∴,∵,∴,∴,∵,∴.∴.【点睛】本题考查垂直的性质、角的和差、角的倍分关系、邻补角的性质等知识,是基础考点,掌握相关知识是解题关键.16.如图,是直线上一点,,平分(1)求的度数.(2)试猜想与的位置关系,并说明理由.【答案】(1)的度数为(2)OD⊥AB,理由见解析【分析】(1)设=x,根据题意得,再根据平角的定义进而求解即可;(2)根据角平分线的定义即可得到解答.【详解】(1)解:设=x,∵,∴,∵直线,∴x+3x=180°,解得,∴的度数为;(2)解:OD⊥AB,理由如下,∵OC平分∠AOD,∴∠COD=∠AOC=45°.∴∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.【点睛】此题考查了垂线,平角的定义以及角平分线的定义,对定义的熟练掌握是解题的关键.平角:等于180°的角叫做平角;角平分线:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线.17.如图,两直线、相交于点,平分,如果::.(1)求;(2)若,,求.【答案】(1)145°(2)125°【分析】(1)根据邻补角的性质和已知求出和的度数,根据对顶角相等求出和的度数,根据角平分线的定义求出的度数,可以得到的度数;(2)根据垂直的定义得到,根据互余的性质求出的度数,计算得到答案.(1)解:,::,,,,,平分,,.(2)解:,,平分,,,.【点睛】本题考查的是邻补角的性质、对顶角的性质和角平分线的定义,掌握邻补角互补、对顶角相等和垂直的定义是解题的关键.18.如图,已知直线AB、CD相交于点O,OE⊥AB,点O为垂足,OF平分∠AOC.(1)若∠COE=54°,求∠DOF的度数;(2)若∠COE∶∠EOF=2∶1,求∠DOF的度数.【答案】(1)∠DOF=108°;(2)∠DOF=112.5°.【分析】(1)先由OE⊥AB得出∠AOE=∠BOE=90°,再根据角平分线定义求出∠COF=72°,然后由∠DOF=180°-∠COF即可求解;(2)设∠EOF=x°,则∠COE=2x°,则∠COF=3x°,再根据角平分线定义求出∠AOF=∠COF=3x°,所以∠AOE=4x°,由垂直的定义可知∠AOE=90°,则4x=90,解之,求出x即可.(1)解:∵OE⊥AB,∴∠AOE=90°;∵∠COE=54°,∴∠AOC=∠AOE+∠COE=144°,∵OF平分∠AOC,∴∠COF=∠AOC=72°,∴∠DOF=180°-∠COF=108°;(2)解:设∠EOF=x°,则∠COE=2x°,∴∠COF=3x°,∵OF平分∠AOC,∴∠AOF=∠COF=3x°,∴∠AOE=4x°,∵OE⊥AB,∴∠AOE=90°,∴4x=90,解得x=22.5,∴∠COF=3x°=67.5°,∴∠DOF=180°-∠COF=112.5°.【点睛】本题考查了角的计算,根据垂直的定义、角的和差关系列方程进行求解,即可计算出答案,难度适中.1.如图,直线AB,CD相交于点O,OE⊥CD,OF平分∠BOD,∠AOE=24°,∠COF的度数是()A.146°B.147°C.157°D.136°【答案】B【分析】欲求∠COF,需求∠DOF.由OE⊥CD,得∠EOD=90°,故求得∠BOD=66°.由OF平分∠BOD,故∠DOF==33°.【详解】解:∵OE⊥CD,∴∠EOD=90°.∴∠BOD=180°﹣∠AOE﹣∠DOE=66°.又∵OF平分∠BOD,∴∠DOF==33°.∴∠COF=180°﹣∠DOF=180°﹣33°=147°.故选:B.【点睛】本题主要考查垂直的定义、角平分线的定义以及邻补角的性质,熟练掌握垂直的定义、角平分线的定义以及邻补角的性质是解决本题的关键.2.如图,,,平分,则的度数为()A.45°B.46°C.50°D.60°【答案】A【分析】先根据垂直的定义得,由已知,相当于把四等分,可得的度数,根据角平分线可得,从而得结论.【详解】解:,,,,,平分,,.故选:.【点睛】本题考查了角平分线的定义,垂直的定义及有关角的计算,解题的关键是确定.3.如图所示,直线AB,CD相交于点O,于点O,OF平分,,则下列结论中不正确的是()A.B.C.与互为补角D.的余角等于【答案】D【分析】根据垂直的定义及角平分线的性质判断A,利用对顶角的性质判断B,利用邻补角的性质判断C,根据余角的定义判断D.【详解】∵于点O,∴∠AOE=,∵OF平分,∴∠2=,故A正确;∵直线AB,CD相交于点O,∴∠1与∠3是对顶角,∴∠1=∠3,故B正确,∵,∴与互为补角,故C正确;∵,∴的余角=,故D错误,故选:D.【点睛】此题考查垂直的定义,角平分线的性质,对顶角的性质,余角的定理,邻补角的性质,几何图形中角度的计算,熟记各定义及性质是解题的关键.4.已知点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离为()A.4 cm B.5 cm C.小于2 cm D.不大于2 cm【答案】D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.5.如图,若直线与相交于点,平分,且,则的度数为()A.B.C.D.【答案】C【分析】根据角平分线的定义得到,根据垂线的定义得到,利用邻补角的定义即可求解.【详解】解:∵,平分,∴,∵,∴,∴,故答案为:C.【点睛】本题考查邻补角的定义、角平分线的定义、垂直的定义等内容,运用几何知识进行角的和差运算是解题的关键.6.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为()A.35°B.45°C.55°D.25°【答案】A【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.【详解】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=55°,∴∠COM=90°-55°=35°,∵射线OM平分∠AOC,∴∠AOM=∠COM=35°,故选:A.【点睛】本题考查了垂直定义,角平分线定义等知识点,解题的关键是能求出∠COM的度数和求出∠AOM=∠COM.7.已知,如图,直线,相交于点,⊥于点,∠=35°.则∠的度数为().A.35°B.55°C.65°D.70°【答案】B【分析】直接利用垂线的定义结合已知角得出∠COE的度数即可.【详解】∵OE⊥AB于点O(已知),∴∠AOE=90°(垂直定义).∵直线AB,CD相交于点O,∠BOD=35°(已知),∴∠AOC=35°(对顶角相等).∴∠COE=∠AOE−∠AOC=90°−35°=55°.∴∠COE=55°.故选B.【点睛】此题考查垂线的定义,对顶角,解题关键在于得出∠AOC=35°.8.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】B【分析】由垂直得∠COE=90°,从而知∠AOC=64°,则∠BOD也得64°,由角平分线和平角定义得∠COF 的度数.【详解】∵OE⊥CD,∴∠COE=90°,∴∠AOC=∠COE-∠AOE=90°-26°=64°,∵∠AOC=∠BOD,∴∠BOD=64°,又∵OF平分∠BOD,∴∠DOF=∠BOD=×64°=32°,∴∠COF=180°-∠DOF=180°-32°=148°.故选B.【点睛】本题考查了垂线的定义、邻补角、对顶角定义、角平分线定义等知识点.本题属于基础题,推理过程的书写是关键,从垂直入手与已知相结合得出∠AOC的度数,使问题得以解决;同时要注意对顶角和平角性质的运用.9.如图,直线,,相交于点,,,射线,则的度数为___________.【答案】20°或160°【分析】先求出∠EOD=70°,再分射线OG在直线EF的两侧进行讨论求解即可.【详解】解:∵,,∠2=∠AOE,∴∠EOD=180°-50°-60°=70°,分两种情况:①如图,∵,∴∠EOG=90°,∴∠DOG=∠EOG-∠EOD=90°-70°=20°;②如图,∵∠EOG=90°,∠EOD=70°,∴∠DOG=∠EOD+∠EOG=70°+90°=160°,综上,的度数为20°或160°,故答案为:20°或160°.【点睛】本题考查邻补角、对顶角、垂线性质、角的运算,熟练掌握对顶角相等、邻补角互补,分情况讨论是解答的关键.10.如图,点C,O,D在一条直线上,,OE平分比大,的度数为________.【答案】##72.5度【分析】根据比大,和互补,即可求出,进而由垂直性质可求出,再由角平分线性质即可得出答案.【详解】解:∵比大,∴设,则,∵,∴,∴,∴,∵,∴,∴,∴,∵OE平分,∴.故答案为:.【点睛】本题考查了垂直的性质,角平分线的性质以及角的运算,掌握以上知识是解题的关键.11.如图,直线AB,CD交于点O,OC平分∠BOE,OE⊥OF,若∠DOF=15°,则∠EOA=_________.【答案】30°##30度【分析】根据垂直定义可得∠EOF=90°,从而利用平角定义求出∠COE=75°,然后利用角平分线的定义求出∠BOE=2∠COE=150°,最后利用平角定义求出∠EOA,即可解答.【详解】解:∵OE⊥OF,∴∠EOF=90°,∵∠DOF=15°,∴∠COE=180°﹣∠EOF﹣∠DOF=75°,∵OC平分∠BOE,∴∠BOE=2∠COE=150°,∴∠AOE=180°﹣∠∠BOE=30°,故答案为:30°.【点睛】本题考查了垂线,角平分线的定义,根据题目的已知条件并结合图形分析是解题的关键.12.如图,直线AB、CD相交于点O,,O为垂足,如果,则________°.【答案】57.5【分析】根据垂线的定义,可得,根据角的和差,可得的度数,根据邻补角的定义,可得答案.【详解】解:∵∴∴∵,∴,∴,∴,故答案为:.【点睛】本题考查了垂线的定义,邻补角的和等于180°,角与分的转化等知识.解题的关键在于领会由垂直得直角.13.如图,直线AB和CD交于O点,OD平分∠BOF,OE⊥CD于点O,∠AOC=40 ,则∠EOF=_______.【答案】130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE ⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.14.如图所示,已知,若,,,则点到的距离是______,点到的距离是______.【答案】 4 2.4【分析】根据点到直线的距离概念可得点到的距离为垂线段AC的长,设点到的距离为,依据三角形面积,即可得到点到的距离.【详解】解:∵,∴,∴点到的距离为垂线段AC的长,又∵,∴点到的距离为4cm;设点到的距离为,,,,∵,,,,,故答案为:4;2.4.【点睛】本题考查了点到直线的距离,利用三角形的面积得出是解题关键.15.如图,直线,相交于点,平分.(1)若,,求的度数;(2)若平分,,求的度数.【答案】(1)70°(2)50°【分析】(1)根据角平分线的性质可得,根据垂线的定义以及已知条件求得,继而求得,根据对顶角相等即可求解;(2)根据角平分线的性质可得,,设,则,根据平角的定义建立方程,解方程即可求解.(1)解:平分,,,,,,∴;(2)平分,,,设,则,,解得:,故的度数为:.【点睛】本题考查了几何图形中角度的计算,角平分线的定义,垂线的定义,一元一次方程的应用,数形结合是解题的关键.16.如图,直线相交于点O,平分,求:(1)的度数;(2)写出图中互余的角;(3)的度数.【答案】(1)70°(2)∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余(3)55°【分析】(1)根据对顶角相等即可得到;(2)根据余角的定义求解即可;(3)先根据角平分线的定义求出∠DOE=35°,则∠EOF=∠DOF-∠DOE=55°.(1)解:由题意得;(2)解:∵∠COF=90°,∴∠DOF=180°-∠COF=90°,∴∠BOF+∠BOD=90°,∠EOF+∠EOD=90°,∵OE平分∠BOD,∴∠BOE=∠DOE,∴∠EOF+∠BOE=90°,∵∠AOC=∠BOD,∴∠BOF+∠AOC=90°,∴∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余;(3)解:∵∠BOD=70°,OE平分∠BOD,∴∠DOE=35°,∴∠EOF=∠DOF-∠DOE=55°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,对顶角相等,余角的定义,熟知相关知识是解题的关键.17.如图,已知,,是内三条射线,平分,平分.(1)若,,求的度数.(2)若,,求的度数.(3)若,,求的度数.【答案】(1)(2)(3)【分析】对于(1),由角平分线的定义求出和,再根据即可求解;对于(2),先求出,再根据角平分线的定义求出和,然后根据即可求解;对于(3),由角平分线的定义得,结合已知条件可得,,即,进而得出,可得答案.【详解】(1)∵平分,平分,∴,,∴;(2)∵,∴.∵,∴.∵平分,平分,∴,,∴;(3)∵平分,∴.∵,∴.∵,∴,∴,∴,∴.【点睛】本题主要考查了角的和差,关键是由角平分线定义得出相关等式.18.点O为直线l上一点,射线均与直线l重合,如图1所示,过点O作射线和射线,使得,,作的平分线.(1)求与的度数;(2)作射线,使得,请在图2中画出图形,并求出的度数;(3)如图3,将射线从图1位置开始,绕点O以每秒的速度逆时针旋转一周,作的平分线,当时,求旋转的时间.【答案】(1),(2)或(3)6秒或秒【分析】(1)根据,,即可得出的度数,根据角平分线的定义得出,然后根据得出的度数;(2)根据题意得出的度数,然后分两种情况进行讨论:①当射线在内部时;②当射线在外部时;分别进行计算即可;(3)根据平分得出,根据题意画出图形,计算的角度,然后计算时间即可.【详解】(1)解:由题意可知,,∵,∴,∵平分,∴,∴;(2)由(1)知,,∴,①当射线在内部时,如图2(1),;②当射线在外部时,如图2(2),,综上所述,的度数为或;(3)∵平分,∴,①如图3,,∵平分,∴,∴,∴旋转的时间(秒);②如图3(1),此时,,∵平分,∴,∴,∴,∴旋转的时间(秒);综上所述,旋转的时间为6秒或秒.【点睛】本题主要考查角度的计算,角平分线的定义等内容;第(2)问进行合适的分类讨论是解题的关键;第(3)问,搞清楚在射线旋转的过程中,和的相对位置在不断的变化,以此进行分类画图.1.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A.【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.2.(2022·河南·中考真题)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【答案】B【分析】根据垂直的定义可得,根据平角的定义即可求解.【详解】解:EO⊥CD,,,.故选:B .【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.3.(2021·北京·中考真题)如图,点在直线上,.若,则的大小为()A.B.C.D.【答案】A【分析】由题意易得,,进而问题可求解.【详解】解:∵点在直线上,,∴,,∵,∴,∴;故选A.【点睛】本题主要考查垂直的定义及邻补角的定义,熟练掌握垂直的定义及邻补角的定义是解题的关键.4.(2021·浙江杭州·中考真题)如图,设点是直线外一点,,垂足为点,点是直线上的一个动点,连接,则()A.B.C.D.【答案】C【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点是直线外一点,,垂足为点,是垂线段,即连接直线外的点与直线上各点的所有线段中距离最短,当点与点重合时有,综上所述:,故选:C.【点睛】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.5.(2020·湖北孝感·中考真题)如图,直线,相交于点,,垂足为点.若,则的度数为()A.B.C.D.【答案】B【分析】已知,,根据邻补角定义即可求出的度数.【详解】∵∴∵∴故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.6.(2020·河北·中考真题)如图,在平面内作已知直线的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【答案】D【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D.【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.7.(2020·吉林·中考真题)如图,某单位要在河岸上建一个水泵房引水到处,他们的做法是:过点作于点,将水泵房建在了处.这样做最节省水管长度,其数学道理是_______.【答案】垂线段最短【分析】直线外一点与直线上各点连结的所有线段中,垂线段最短.【详解】通过比较发现:直线外一点与直线上各点连结的所有线段中,垂线段最短.故答案为:垂线段最短.【点睛】此题主要考查点到直线的距离,动手比较、发现结论是解题关键.。
南沙初中七年级数学作业(8)(2.3 绝对值与相反数 2.4 有理数的加法)班级_________姓名___________一、选择题1、|-2|的相反数是( )A.-12B.12C.2 D.-22、在0,-1,-2,-3,5,3.8,215,16中,非负整数的个数是( )A、1个B、2个C、3个D、4个3、下列说法中,正确..的是( )A、没有最大的正数,但有最大的负数;B、最大的负整数是-1;C、有理数包括正有理数和负有理数;D、一个有理数的平方总是正数;4、在数轴上与-3的距离等于4的点表示的数是( )A、1B、-7C、1或-7D、无数个5、设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,则a+b+c= ( )A、1B、0C、1或0D、2或06、下列判断错误..的是( )A、若a为正数,则a>0B、若a为负数,则-a>0C、若-a为正数,则a>0D、若-a为负数,则a>07、下列各数中互为相反数的是( )A 、12-与0.2B 、13与-0.33C 、-2.25与124D 、5与-(-5)8、下列说法正确..的是( )A 、两个不同的有理数可以对应数轴上同一个点;B 、数轴上的点只能表示整数;C 、任何有理数的绝对值一定不是负数;D 、互为相反数的两个数一定不相等;9.如图所示,根据有理数a 、b 、c 在数轴上的位置,下列关系正确的是 ( )A.a b c >>>0B.c b a >>>0C.0>>>b a cD.0>>>b c a 10.一个点在数轴上移动时,它所对应的数,也会有相应的变化.若点A 先从原点开始,先向右移动3个单位长度,在向左移动5个单位长度,这时该点所对应的数的相反数是 ( )A.2B.-2C.8D.-8 二、填空题1、在数轴上点A 表示-7,点B 、C 表示的数的绝对值相等,符号相反,且点B 与点A 之间的距离是2,则点C 表示的数是___________________.2、数轴上离开原点132个单位长度的点所表示的数是___________________.3、用“<”“=”或“>”号填空+|-5|___________-|-4| -(+5) _____________-[-|-5|]4、某水文观测站的记录员将高于平均水位1.5m 的水位记了下+1.5m ,若该站的平均水位为51.3m ,那么记录上-1.12m 的实际水位为__________________ 5、12的相反数的绝对值是 ______ ,|-12|的倒数的相反数是______ ,-12的绝对值的相反数是 . 6、一个数的绝对值是6,那么这个数是 . 7、在32-的绝对值与23-的相反数之间的整数是 . 8、绝对值等于本身的数是 .相反数等于本身的数是 ,绝对值最小的负整数是 , 绝对值最小的有理数是 .9、.下面四个三角形内的数有共同的规律,请找出这个规律,确定A 为_______________10、若a+1与-5互为相反数,则a=__________________.11、若|a|=4,|b|=2,且a<b,则a+b= ________________________.12、绝对值不大于4.5的所有整数的和为________________________.13、观察1+3=22,1+3+5=32,1+3+5+7=42,1+3+5+7+9=52……,则猜想:1+3+5+…+(2n+1)= ____________ .(n为正整数)14、某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,-8),(-5,6),(-3,2),(1,-7),则车上还有_________________人.三、计算题1、152()( 2.5)(5)( 2.5)1717++-+-+++2、1255()()()6767+-+-++3、3557()()()212212-+-++-4、(+3)(-21)+(-19)+(+12)+(+5)四、解答题1、已知| a+2 | + (b-3)2 =0,求a+b的值.2、(1)试用“<”“>”或“=”填空:①|(+4)+(+5)|________ |+4|+|+5|;②|(-4)+(-5)|_____ |-4|+|-5|;③|(+4)+(-5)|________ |+4|+|-5|;④|(-4)+(+5)|_____ |-4|+|+5|;(2)根据(1)的结果,请你总结任意两个有理数a、b的和的绝对值与它们的绝对值的和的大小关系为|a+b|______|a|+|b|.3、高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为aL/km,则这次养护共耗油多少升?4、在某校“第二十届校园文化艺术节”活动中,七年级组织各班级进行足球比赛,如果七(1)班足球队共需比赛15场,现已比赛了8场(其中平了3场),共得15分(胜一场得3分,平一场得1分,输一场得0分),请问:(8分)(1)前8场比赛中,七(1)班足球队共胜了多少场?(2)七(1)班足球队打满15场比赛,最高得分得多少分?(3)通过对比赛情况分析,这支球队打满15场比赛后,得分不低于28分,就可以进入下一轮比赛,请你分析一下,在后面的7场比赛中,这支球队至少要胜几场,才能进入下一轮比赛?5、如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动。
江苏省南京市2015-2016学年七年级数学上学期寒假作业(5)(含解析) 新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省南京市2015-2016学年七年级数学上学期寒假作业(5)(含解析)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省南京市2015-2016学年七年级数学上学期寒假作业(5)(含解析)新人教版的全部内容。
2015—2016学年江苏省南京市七年级(上)数学寒假作业(5)一、选择题1.如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离2.如图,已知ON⊥L,OM⊥L,所以OM与ON重合,其理由是( )A.两点确定一条直线B.在同一平面内,经过一点有且只有一条直线与已知直线垂直C.在同一平面内,过一点只能作一条垂线D.垂线段最短3.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°;另一个是30°,60°,90°)可以画出大于0°且小于等于150°的不同角度的角共有( )种.A.8ﻩB.9C.10ﻩD.114.如果∠α与∠β是邻补角,且∠α>∠β,那么∠β的余角是()A.ﻩB. C.ﻩD.不能确定5.已知α与β是钝角,甲、乙、丙、丁四个人计算(α+β)的结果依次为28°,48°,60°,88°其中只有一个结果正确,那么并得到正确的结果的是( )A.甲 B.乙C.丙ﻩD.丁6.下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.2个ﻩB.3个 C.4个D.5个7.如图,AC⊥BC,AD⊥CD,AB=a,CD=b,则AC的取值范围( )A.大于b B.小于aﻩC.大于b且小于aD.无法确定8.如图,B是线段AD的中点,C是BD上一点,则下列结论中错误的是()A.BC=AB﹣CD B.BC=(AD﹣CD)ﻩC.BC=(AD﹣CD)ﻩD.BC=AC﹣BD9.观察图形,下列说法正确的个数是( )(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个ﻩB.2个C.3个D.4个10.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3 B.∠1=180°﹣∠3 C.∠1=90°+∠3D.以上都不对二、填空题11.线段AB=10cm,BC=5cm,A、B、C三点在同一条直线上,则AC=.12.已知线段AB=1996cm,P、Q是线段AB上的两个点,线段AQ=1200cm,线段BP =1050cm,则线段PQ= .13.如图,OM平分∠AOB,ON平分∠COD.若∠MON=50°,∠BOC=10°,则∠AOD=度.14.如图,线段AB=BC=CD=DE=1厘米,那么图中所有线段的长度之和等于厘米.15.一条直线上立有10根距离相等的标杆,一名学生匀速地从第1杆向第10杆行走,当他走到第6杆时用了6。
2021-2022学年数学暑假作业第5次(人教版七年级下期)一、选择题1.下列各式中,是一元一次不等式的是( )A. x2≥0B. 2x−1C. 2y≤8D. 1x−3x>02.已知a<b,下列式子不一定成立的是( )A. a−1<b−1B. −2a>−2bC. 12a+1<12b+1 D. ma>mb3.不等式2x−1≤3的解集在数轴上表示正确的是( )A. B.C. D.4.如果关于x的不等式组{x+1<4x>a有解,则a的取值范围是( )A. a≤3B. a≥3C. a>3D. a<35.不等式组{x+1≥2x−14x+5>2(x+1)的整数解有( )A. 1个B. 2个C. 3个D. 4个6.某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( )A. 8B. 6C. 7D. 97.不等式组{a−1<x<a+23<x<5的解集是3<x<a+2,则a的取值范围是.( )A. a>1B. a≤3C. a<1或a>3D. 1<a≤38.若关于x的不等式组{2x+3>12x−a≤0恰有3个整数解,则实数a的取值范围是( )A. 7<a<8B. 7<a≤8C. 7≤a<8D. 7≤a≤8二、填空题9.x的35与12的差小于6,用不等式表示为____________.10.不等式组{x−2<02x+3>1的解集是______.11.已知关于x的不等式组{x≥mx≤n的解集为−1≤x≤2,则n+m=______.12.已知x=4是关于的方程kx+b=0(k≠0、b>0)的解,则关于x的不等式k(x−3)+b>0的解集是______.13.已知关于x的3k−5x=−9的解是非负数,则k的取值范围是______.14.世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有______人进公园,买40张门票反而合算.三、解答题15.解不等式23x+12≥12x,并在数轴上表示其解集.16.解不等式组{2x+5≤3(x+2)①2x−1+3x2<1②并写出不等式组的非负整数解.17.学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?18. 已知关于x ,y 的方程组 {2x +y =1+3m x +2y =1−m的解满足x +y <0,求m 的取值范围.19. 定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”,例如:方程2x −6=0的解为x =3,不等式组{x −2>0x <5的解集为2<x <5.因为2<3<5,所以称方程2x −6=0为不等式组{x −2>0x <5,的“相伴方程”. (1)下列方程是不等式组{x +1>0x <2的“相伴方程”的是______;(填序号) ①x −1=0②2x +1=0③−2x −2=0(2)若关于x 的方程2x −k =2是不等式组{3x −6>4−x x −1≥4x −10的“相伴方程”,求k 的取值范围;(3)若方程2x +4=0,3=−1都是关于x 的不等式组{(m −2)x <m −2x +5≥m的“相伴方程”,其中m ≠2,求m 的取值范围.20.为了迎接2022年北京冬奥会,某校开展“冰雪结缘”滑雪体验课程.先后两次在某商场购买滑雪护具和防护头盔,第一次买6套滑雪护具和5个防护头盔共花费1900元;第二次买2套滑雪护具和7个防护头盔共花费1700元.(1)求每套滑雪护具和每个防护头盔各多少元?(2)如果现在商场均以标价的8折对滑雪护具和防护头盔进行促销,学校决定从该商场一次性购买滑雪护具和防护头盔共20个,且总费用不能超过2900元,那么最多可以购买多少个防护头盔.参考答案1.C2.D3.C4.D5.D6.B7.D8.Cx−12<69.3510.−1<x<211.112.x<713.k≥−314.3315.解:去分母得4x+3≥3x,移项、合并得x≥−3,所以不等式的解集为x≥−3,在数轴上表示为:16.解:解不等式①,得x≥−1,解不等式②,得x<3,∴不等式组的解集为−1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.17.解:设还能买词典x本,根据题意得:20×65+40x≤2000,40x≤700,x≤700,40x ≤1712, 答:最多还能买词典17本. 18.解:{2x +y =1+3m ①x +2y =1−m ②, ①+②,得3x +3y =2+2m ,∴x +y =2+2m 3,∵x +y <0,∴2+2m 3<0,解得,m <−1,即m 的取值范围是m <−1.19.①②20.解:(1)设每套滑雪护具x 元,每个防护头盔y 元,根据题意,得:{6x +5y =19002x +7y =1700, 解得{x =150y =200, 答:每套滑雪护具150元,每个防护头盔200元;(2)设可以购买m 个防护头盔,则滑雪护具需购买(20−m)个, 根据题意,得:200×0.8m +150×0.8(20−m)≤2900, 解得:m ≤12.5,∵m 是正整数,∴m =12,答:最多可以购买12个防护头盔.。
七年级寒假作业5
一、基础知识:
1.下列各数中,在-2和0之间的数是( )
A .-1 B.1 C.-3 D.3
2.某洗衣粉包装袋上标有“净重(800±5)克”,则下列质量中合格的是( )
A .793克 B.797克 C.807克 D.808克
3.已知2是关于x 的方程3x+a=0的一个解,则a 的值是( )
A .-3 B.-4 C.-5 D.-6
4.数轴上表示-3的点到原点的距离是( )
A .13 B. -13 C.3 D.-3
5、方程212=
-x 的解是( )A 、14x =- B 、4x =- C 、14
x = D 、 4x =-
6、将一个正方体沿某些棱展开后,能够得到的平面图形是
( )
7、下列说法错误的是( )
A. 若a
y a x =,则y x = B. 若22y x =,则2244ay ax -=- C .若64
1-=-x ,则5.1=x D. 若1=x ,则1=x 8、某测绘装置上一枚指针原来指向南偏西500(如图),把这枚指针按逆时针方向旋转41周,则结果指针的指向( ). (A )南偏东50º (B )西偏北50º (C )南偏东
40º (D )东南方向
9.211
-的相反数是 。
10.大连市的面积约为13238平方千米,用科学记数法表示(结果保留三个有效数字)为 平方千米。
11、若与的和仍为单项式,则= .
12、若x=4是关于x的方程5x-3m=2的解,则m=
南
东 北
13、代数式2345x x --的值为7,则2453
x x --的值为_________. 14、某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,
售货员最低可以打___________折出售此商品
15、计算:25°18′÷3=__________
16、如图,将一副三角板叠放在一起,使直角顶点重合于O 点,则
AOC DOB ∠+∠= .
17.计算:(1)()7726483÷-⨯- (2)()32142522211
⎛⎫---⨯+-÷ ⎪⎝⎭
18、化简求值:
211(428)(1)42x x x -+---,其中12
x =-
19、如图并:已知A 、B 、C 三点。
①连接BC ;
②画射线AB ;
③一只小虫从点A 出发,沿南偏西30°方向爬到线段BC 上的D 处,请画图确定点D 的位
置。
20. 解方程: (1)2(x+8)=3(x-1) (2)123123
x x ---=
二、综合知识:
※ 21、小虫从某点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程(单位:厘米)依次为:
+ 5、– 3、+ 10、– 8、– 6、+ 12、– 10.
(1)通过计算说明小虫是否回到起点;
(2)如果小虫爬行的速度为0.5厘米/秒,小虫共爬行了多少时间?
※22. 如图,线段AB = 5
(1) 若点O在线段AB上,AO = 1,点C是线段OB 的中点,则线段AC= .
(2)若P为射线AB上的一点(点P不与A、B两点重合,M为PA的中点,N为PB的中点,当点P在射线AB上运动时,MN的长度是否发生改变?请说明理由.
※23.七年一班同学承担学校的种树任务,如果每小组种10棵,则剩6棵未种;如果每小组种12棵,是缺6棵,求共有多少棵树?
※24. 连续的奇数排成如图所示的数表中,请回答下列问题:
(1)十字框中的五个数字的和与中间的27有什么关系?
(2)若中间的数字为a,用含有a的式子表示十字框中五个数的和。
(3)十字框中五个数的和能等于295吗?若能,写出这五个数;若不能,请说明理由
三、拓展提高:
※※25、“十一”期间,小明跟父亲一起去杭州旅游,出发前小明从网上了解到杭州市出
(1)若甲、乙两地相距10千米,乘出租车从甲地到乙地需要付款多少元?
(2)小明和父亲从火车站乘出租车到旅馆,下车时计费表显示18元,请你帮小明算一算从火车站到旅馆的距离有多远?
(3)小明的母亲乘飞机来到杭州,小明和父亲从旅馆乘出租车到机场去接母亲,到达机场时计费表显示72元,接完母亲,立即沿原路返回旅馆(接人时间忽略不计),请帮小明算一下乘原车返回和换乘另外的出租车相比哪个省钱?
※※26.将一副三角板中的含有60°角的三角板的顶点和另一块的45°角的顶点重合于一点O,绕着点O旋转60°的三角板,拼成下面的情况,请回答问题:
(1)如图1放置,将含有60°角的一边与45°角的一边重合,求出此时∠AOD的度数是(2)绕着点O,转动三角板AOB,恰好是OB平分∠COD,此时∠AOD的度数应该是多少?(3)是否存在这种情况,∠AOC的度数恰好等于∠BOD度数的3倍。
如果存在,请求出∠AOD的度数,如果不存在请说明理由。
(4)若∠AOD=m°,用含有m的式子表示∠AOC为。