第一章证明题解答
- 格式:doc
- 大小:189.00 KB
- 文档页数:3
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
习 题 1-11.求下列函数的自然定义域:(1)211y x =+- 解:依题意有21020x x ⎧-≠⎨+≥⎩,则函数定义域{}()|2x 1D x x x =≥-≠±且.(2)21arccosx y -= 解:依题意有2211360x x x ⎧-≤⎪⎨⎪-->⎩,则函数定义域()D x =∅.(3)2ln(32)y x x =-+-;解:依题意有2320x x -+->,则函数定义域{}()|12D x x x =<<.(4)312x xy -=;解:依题意有30x x -≠,则函数定义域{}()|x 0,1D x x x =-∞<<+∞≠±且.(5)1sin1,121;x y x x ⎧≠⎪=-⎨⎪=⎩, , 解:依题意有定义域{}()|D x x x =-∞<<+∞.(6)1arctan y x =+解:依题意有030x x ≠⎧⎨-≥⎩,则函数定义域{}()|3x 0D x x x =≤≠且.2.已知()f x 定义域为[0,1],求2(), (sin ), (), ()()f x f x f x a f x a f x a +++-(0a >)的定义域.解:因为()f x 定义域为[0,1],所以当201x ≤≤时,得函数2()f x 的定义域为[1,1]-;当0sin 1x ≤≤时,得函数(sin )f x 定义域为[2π,(21)π]k k +; 当01x a ≤+≤时,得函数()f x a +定义域为[,1]a a --+;当0101x a x a ≤+≤⎧⎨≤-≤⎩时,得函数()()f x a f x a ++-定义域为:(1)若12a <,[],1x a a ∈-;(2)若12a =,12x =;(3)若12a >,x ∈∅.3.设21()1,f x x ⎛⎫= ⎝其中0,a >求函数值(2),(1)f a f .解:因为21()1f x x ⎛⎫= ⎝,则 2211(2)142a f a a a a -⎛⎫=-= ⎪⎝⎭,20 ,>1,11(1)1 2 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭.4.设1||1,()0||1,()21|| 1.x x f x x g x x <⎧⎪===⎨⎪->⎩,求(())f g x 与(())g f x ,并做出函数图形.解:121(())0211 21x x xf g x ⎧<⎪==⎨⎪->⎩,即10(())001 0x f g x x x <⎧⎪==⎨⎪->⎩,1012||1(())2||12||1x g f x x x -⎧<⎪==⎨⎪>⎩,即2||1(())1||11 ||12x g f x x x ⎧⎪<⎪==⎨⎪⎪>⎩,函数图形略.5.设1,0,()1,0,x x f x x +<⎧=⎨≥⎩试证:2,1,[()]1, 1.x x f f x x +<-⎧=⎨≥-⎩证明:1(),()0[()]1,()0f x f x f f x f x +<⎧=⎨≥⎩,即2,1,[()]1,1x x f f x x +<-⎧=⎨≥-⎩,得证. 6.下列各组函数中,()f x 与()g x 是否是同一函数?为什么? (1)))()ln,()ln3f x x g x ==- ;不是,因为定义域和对应法则都不相同. (2)()()f x g x ==; 是.(3)22()2,()sec tan f x g x x x ==-; 不是,因为对应法则不同. (4)2()2lg ,()lg f x x g x x ==; 不是,因为定义域不同.7.确定下列函数在给定区间内的单调性: (1)3ln y x x =+,(0,)x ∈+∞; 解:当(0,)x ∈+∞时,函数13y x =单调递增,2ln y x =也是单调递增,则12y y y =+在(0,)+∞内也是递增的.(2)1xy x-=-,(,1)x ∈-∞. 解:(1)111111x x y x x x ---===+---,当(,1)x ∈-∞时,函数11y x =-单调递增,则21111y y x ==-是单调递减的,故原函数1xy x-=-是单调递减的. 8. 判定下列函数的奇偶性. (1)lg(y x =+;解:因为1()lg(lg(lg(()f x x x x f x --=-+==-+=-,所以lg(y x =+是奇函数.(2)0y =;解:因为()0()f x f x -==,所以0y =是偶函数. (3)22cos sin 1y x x x =++-;解:因为2()2cos sin 1f x x x x -=+--,()()()()f x f x f x f x -≠-≠-且,所以22cos sin 1y x x x =++-既非奇函数,又非偶函数.(4)2x xa a y -+=.解:因为()()2x x a a f x f x -+==,所以函数2x xa a y -+=是偶函数. 9.设()f x 是定义在[,]l l -上的任意函数,证明:(1)()()f x f x +-是偶函数,()()f x f x --是奇函数; (2)()f x 可表示成偶函数与奇函数之和的形式. 证明:(1)令()()(),()()()g x f x f x h x f x f x =+-=--,则()()()(),()()()()g x f x f x g x h x f x f x h x -=-+=-=--=-,所以()()f x f x +-是偶函数,()()f x f x --是奇函数.(2)任意函数()()()()()22f x f x f x f x f x +---=+,由(1)可知()()2f x f x +-是偶函数,()()2f x f x --是奇函数,所以命题得证. 10.证明:函数在区间I 上有界的充分与必要条件是:函数在I 上既有上界又有下界.证明:(必要性)若函数()f x 在区间I 上有界,则存在正数M ,使得x I ∈,都有()f x M ≤成立,显然()M f x M -≤≤,即证得函数()f x 在区间I 上既有上界又有下界(充分性)设函数()f x 在区间I 上既有上界2M ,又有下界1M ,即有12()()f x M f x M ≥≤且,取12max{,}M M M =,则有()f x M ≤,即函数()f x 在区间I 上有界.11.下列函数是否是周期函数?对于周期函数指出其周期: (1)|sin |y x =;周期函数,周期为π. (2)1sin πy x =+; 周期函数,周期为2. (3)tan y x x =; 不是周期函数. (4)2cos y x =.周期函数,周期为π.12.求下列函数的反函数:(1)331xx y =-;解:依题意,31x y y =-,则3log 1yx y =-,所以反函数为13()log ,(,0)(1,)1xf x x x -=∈-∞⋃+∞-.(2)()ax by ad bc cx d+=≠+;解:依题意,b dy x cy a -=-,则反函数1()()b dxf x ad bc cx a--=≠-.(3)(lg y x =+;解:依题意,1(1010)2y y x -=+,所以反函数11()(1010),2x x f x x R --=+∈.(4)ππ3cos 2,44y x x ⎛⎫=-≤≤ ⎪⎝⎭. 解:依题意,arccos 32y x =,所以反函数1arccos3(),[0,3]2x f x x -=∈. 13.在下列各题中,求由所给函数构成的复合函数,并求这函数分别对应于给定自变量值1x 和2x 的函数值:(1)212e ,1,0,2u y u x x x ====+;(2)2121,e 1,1,1,1v y u u v x x x =+=-=+==-. 解:(1)215()e ,(0),(2)x y f x f e f e +====(2)12()(e 1)1x y f x +==-+,42(0)22f e e =-+,(1)1f -=.14.在一圆柱形容器内倒进某种溶液,该容器的底半径为r ,高为H .当倒进溶液后液面的高度为h 时,溶液的体积为V .试把h 表示为V 的函数,并指出其定义区间.解:依题意有2πV r h =,则22,[0,π]πV h V r H r =∈. 解:依题意有0.64,0 4.5() 4.50.64( 4.5) 3.2, 4.5x x f x x x ≤≤⎧=⎨⨯+-⨯>⎩,所以(3.5) 2.24(4.5) 2.88(5.5) 6.08f f f ===元,元,元.习 题 1-21.设21(1,2,3,)31n n a n n +==+, (1) 求110100222||,||,||333a a a ---的值;(2) 求N ,使当n N >时,不等式42||103n a --<成立;(3) 求N ,使当n N >时,不等式2||3n a ε-<成立.解:(1) 12321||||,34312a -=-= 1022121||||,331393a -=-=100220121||||33013903a -=-=. (2) 要使 42||10,3n a --< 即 4113310<(n+1), 则只要9997,9n > 取N=99971110,9⎡⎤=⎢⎥⎣⎦故当n>1110时,不等式42||103n a --<成立. (3)要使2||3n a ε-<成立,13,9n εε-> 取139N εε-⎡⎤=⎢⎥⎣⎦,那么当n N >时, 2||3n a ε-<成立.2.根据数列极限的定义证明:(1)1lim 0!n n →∞=; (2)1n →∞=.解:(1)0ε∀>, 要使111|0|!!n n n ε-<<=, 只要取1N ε⎡⎤=⎢⎥⎣⎦, 所以,对任意0ε>,存在1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,总有1|0|!n ε-<,则1lim 0!n n →∞=.(2) 0ε∀>,要使221|2n ε-=<<, 即n >,只要取N =,所以,对任意的ε>0,存在N =, 当n N >, 总有1|ε-<,则1n →∞=. 3.若lim n n x a →∞=,证明lim ||||n n x a →∞=.并举例说明:如果数列}{||n x 有极限,但数列}{n x 未必有极限.证明: 因为lim n n x a →∞=, 所以0ε∀>, 1N ∃, 当1n N >时, 有||n x a ε-<.不妨假设a>0, 由收敛数列的保号性可知:2N ∃, 当2n N >时, 有0n x >, 取{}12max ,N N N =, 则对0ε∀>, N ∃, 当n N >时, 有||||||||n n x a x a ε-=-<.故lim ||||n n x a →∞=. 同理可证0a <时, lim ||||n n x a →∞=成立.反之,如果数列{}||n x 有极限, 但数列{}||n x 未必有极限.如:数列()1nn x =-,||1n x =, 显然lim ||1n n x →∞=, 但lim n n x →∞不存在.4.设数列{}n x 有界,又lim 0n n y →∞=.证明:lim 0n n n x y →∞=.证明: 依题意,存在M>0, 对一切n 都有||n x M ≤, 又lim 0n n y →∞=, 对0ε∀>,存在N ,当n N >时, |0|n y ε-<, 因为对上述N , 当n N >时, |0|||||n n n n n x y x y M y M ε-=≤<,由ε的任意性, 则lim 0n n n x y →∞=.5.设数列{}n x 的一般项(3)π2n n x +=,求lim n n x →∞.解: 因为0x =, (3)π|cos |12n +≤, 所以 (3)π02x n +=. 6.对于数列{}n x ,若21()k x A k -→→∞,2()k x A k →→∞,证明:()n x A n →→∞.证明: 由于21lim k k x A -→∞=, 所以, 0ε∀>, 10N ∃>, 当1>k N 时,有21||k x A ε--<,同理, 0ε∀>,20N ∃>, 当2k N >时, 有2||k x A ε-<.取N =max {}12,N N , 0ε∀>, 当n N >时, ||n x A ε-<成立, 故()n x A n →→∞.习 题 1-31.当1x →时,234y x =+→.问δ等于多少,使当|1|x δ-<时,|4|0.01y -<?解:令 1|1|2x -<,则35|1|22x <+<,要使225|4||34||1||1||1||1|0.012y x x x x x -=+-=-=-+<-<, 只要|1|0.004x -<,所以取0.004δ=,使当 |1|x δ-< 时,|4|0.01y -<成立.2.当x →∞时,222123x y x +=→-.问X 等于多少,使当||x X >时,|2|0.001y -<? 解:要使222217|2||2|3|3|x y x x +-=-=--2|3|7000x ->, 即237000x ->. 因此,只要||x >,所以取X ≥3.根据函数极限的定义证明:(1)3lim(21)5x x →-=; (2)35lim31x x x →∞+=-;(3)224lim 42x x x →--=-+; (4)lim0x =. 证明:(1) 由于|(21)5|2|3|x x --=-, 任给0ε>,要使|(21)5|x ε--<,只要|3|2x ε-<.因此取2εδ=,则当0|3|x δ<-<时, 总有|(21)5|x ε--<,故3lim(21)5x x →-=.(2) 由于358|3|1|1|x x x +-=--,任给0ε>, 要使35|3|1x x ε+-<-,只要8|1|x ε<-,即81x ε>+或81x ε<-, 因为0ε>,所以88|1||1|εε+>-, 取8|1|M ε=+,则当||x M >时,对0ε∀>,总有35|3|1x x ε+-<-,故有35lim 31x x x →∞+=-.(3)由于24|(4)||2|2x x x ---=++,任给0ε>,,要使24|(4)|2x x ε---<+,只要|2|x ε+<,因此取δε=,则当0|(2)|x δ<--<时,总有24|(4)|2x x ε---<+,故224lim 42x x x →--=-+. (4) 由于0|-<,任给0ε>,要使|0|ε<,ε<,即21x ε>,因此取21M ε=,则当x>M 时,总有0|ε-<,故lim 0x =. 4.用X ε-或εδ-语言,写出下列各函数极限的定义: (1)lim ()1x f x →-∞=; (2)lim ()x f x a →∞=;(3)lim ()x a f x b +→=; (4)3lim ()8x f x -→=-.解: (1) 0,ε∀> 0M ∃>, 当x<-M 时, 总有|()1|f x ε-<;(2) 0,ε∀> 0M ∃>, 当||x M >, 总有|()|f x a ε-<;(3) 0,ε∀> 0δ∃>, 当a x a δ<<+时, 总有|()|f x b ε-<; (4) 0,ε∀> 0δ∃> 当33x δ-<<时, 总有|()8|f x ε+<. 5.证明:0lim ||0x x →=.证明: 由于00lim ||lim 0x x x x ++→→==, 00lim ||lim()0x x x x --→→=-=,所以0lim ||0x x →=.6.证明:若x →+∞及x →-∞时,函数()f x 的极限都存在且都等于A ,则lim ()x f x A →∞=.证明: 由于lim ()x f x A →+∞=,则对0ε∀>,10M ∃>,当1x M >时,有|()|f x A ε-<.又lim ()x f x A →-∞=,则20M ∃>,当2x M <-,有|()|f x A ε-<.取{}12max ,M M M =那么对0ε∀>,当||x M >时,总有|()|f x A ε-<,故有lim ()x f x A →∞=.习 题 1-41.根据定义证明:(1)211x y x -=+为当1x →时的无穷小;(2)1sin y x x =为当x →∞时的无穷小;(3)13xy x+=为当0x →时的无穷大.证明:(1) 0ε∀>,因为21|0||1|1x x x --=-+,取δε=,则当0|1|x δ<-<时, 总有0x ≠,故211lim 01x x x →-=+. (2) 0ε∀>,因为111|sin 0||sin |||||x x x x x -=≤,取1M ε=, 则当||x M >时, 总有1|sin |1|sin 0|||||x x x x x ε-=≤<, 故1lim sin 0x x x →∞=.(3) 0M ∀>, 13M δ∃=+,当0||x δ<<时,总有1311|||3|3||x M x x x +=+>->,所以013lim x x x→+=∞. 2.函数sin y x x =在(0,)+∞内是否有界?该函数是否为x →+∞时的无穷大?解答: 取2πn x n =,则0n y =,因此当2πn x n =()n →∞时, ()0n n y x →→+∞故函数sin y x x = 当x →+∞时,不是无穷大量.下证该函数在()0,+∞内是无界的. 0M ∀>,π2π2n x n ∃=+ 且()n x n →+∞→∞,πππ2πsin 2π2π222n y n n n ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,取[]01N M =+, 00π2π(0,)2x N ∃=+∈+∞,有0π2π2n y N M =+≥,所以sin y x x =是无界的.3.证明:函数11cos y x x=在区间(0,1]上无界,但这函数不是0x +→时的无穷大.证明: 令1t x=,类似第2题可得.习 题 1-51.求下列极限:(1)23231lim 41n n n n n →∞+++-;(2)111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦;(3)22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭; (4)1132lim 32n nn n n ++→∞+-;(5)2211lim 54x x x x →--+;(6)3221lim 53x x x x →+-+;(7)limx →+∞;(8)2221lim 53x x x x →∞+++;(9)330()lim h x h x h→+-;(10)22131lim 41x x x x →+-+;(11)3131lim 11x x x →⎛⎫- ⎪--⎝⎭; (12)23lim 531x x xx x →∞+-+;(13)x →(14)3lim 21x x x →∞+;(15)3lim(236)x x x →∞-+; (16)323327lim 3x x x x x →+++-.解:(1) 23231lim 41n n n n n →∞+++- = 233311lim 0411n n n n n n→∞++=+-. (2) 111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦= 111111lim ()()()12231n n n →∞⎡⎤-+-++-⎢⎥+⎣⎦= 1lim(1)11n n →∞-=+. (3) 22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭=21(1)12lim 2n n n n →∞+=. (4) 1132lim 32n nn n n ++→∞+-=21()13lim 2332()3n n n →∞+=-⋅.(5) 2211lim 54x x x x →--+=1(1)(1)lim (1)(4)x x x x x →-+--=112lim 43x x x →+=--. (6) 3221lim 53xx x x →+-+=322132523+=--⨯+.(7) limx →+∞=limx=limx =111lim 2x -=. (8) 2221lim53x x x x →∞+++=2212lim 2531x x x x→∞+=++. (9) 330()lim h x h x h →+-=322330(33)lim h x x h xh h x h→+++-=3220lim(33)3h x xh h x →++=.(10) 3131lim 11x x x →⎛⎫- ⎪--⎝⎭=2313(1)lim 1x x x x →⎛⎫-++ ⎪-⎝⎭=21(1)(2)lim (1)(1)x x x x x x →-+-++ =212lim11x xx x →+=++.(11) 23lim 531x x x x x →∞+-+=22311lim 0315x x x x x→∞+=-+.(12) x →=x →=x →(13) 3lim 21x x x →∞+=2lim12x x x→∞=+∞+. (14) 3lim(236)x x x →∞-+=32336lim (2)x x x x→∞-+=∞.(15) 323327lim 3x x x x x →+++-=32331lim(327)lim 3x x x x x x →→+++⨯=∞-.2.设,0,()2,0.x e x f x x a x ⎧<=⎨+≥⎩问当a 为何值时,极限0lim ()x f x →存在.解:因为0000lim ()lim 1,lim ()lim(2)x x x x x f x e f x x a a --++→→→→===+=,所以,当00lim ()lim ()x x f x f x -+→→=,即1a =时,0lim ()x f x →存在. 3.求当x 1→时,函数12111x x e x ---的极限.解:因为11211111lim lim(1)0,1x x x x x e x e x ----→→-=+=-所以12111lim 1x x x e x -→--不存在。
第一章习题解答1-1 速度为v 的非相对论α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角为104- rad 。
证:α粒子在实验系及在质心系下的关系有:ααc c v v v +=由此可得:⎩⎨⎧+=+=c c c L c c c L v v v v v v θθθθααααcos cos cos cos ①由②解得:uC CL +=θθθcos sin tan 其中u=αc c v v ②()c e v m m v m +=αα0 0v m m m v ec +=∴αα③∵ ce c c e v v v v v -=-=ααα,与坐标系的选择无关∴ce c v v v -=α0 ④又 ∵ 0=+ce e v m v m αα∴0v m m v ece α-= 代入④式,可得:0v m m m v e ec αα+=由此可以得到:ec m m v v αα=代入②式中,可以得到: rad m m m m ec ec L 410cos sin tan -≈≤+=ααθθθ 证毕。
1-2 (1)动能为5.00Mev 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0µm ,则上述入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射例子的百分之几? 解:(1)由库仑散射公式可得:b =2a cot 2θ=21E e Z Z 02214πεcot 2θ=21⨯E Z Z 21⨯24πεe cot 4π =21⨯5792⨯⨯1.44⨯1=22.752 fm(2)在大于90°的情况下,相对粒子数为:⎰N dN '=nt(E Z Z 421⨯24πεe )2⎰Ω2sin4θd =t N M A A ρ(E Z Z 421⨯024πεe )2θθθπππd ⎰242sinsin 2=9.4⨯105-1-3 试问:4.5Mev 的α粒子与金核对心碰撞的最小距离是多少?若把金核改为7Li 核,则结果如何?解:α粒子与金核对心碰撞时金核可看作静止,由此可得到最小距离为:r m =a=E e Z Z 02214πε=E Z Z 21⨯24πεe =1.44⨯105-⨯5792⨯≈50.56 fmα粒子与7Li 核对心碰撞时,我们可以在质心系下考虑,此时α粒子与金核相对于质心的和动量为零,质心系能量为各粒子相对于质心的动能之和,因此有:221v E C μ==mr e Z Z 02214πε+0=L Li Li E m m m +α其中L E =21mv 2为入射粒子实验室动能,由此可以得到m r =024πεe LE Z Z 21Li Lim m m +α=3.02 fm1-4 (1)假定金核的半径为7.0fm 试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm. 解:仍然在质心系下考虑粒子的运动,由1-3题可知:EC =mr e Z Z 02214πε(1)对金核可视为静止,实验系动能与质心系动能相等,由此得到 E=16.25Mev(2)对铝核,E=1.44⨯Al Al p m m m +⨯413=4.85Mev1-5 动能为1.0Mev 的窄质子束垂直地射在质量厚度为1.5mg/cm 2的金箔上,计数器纪录以60°角散射的质子,计数器圆形输入孔的面积为1.5cm ²,离金箔散射区的距离为10cm ,输入孔对着且垂直于射到它上面的质子。
1 证明 对可列不交并封闭的代数是σ代数.证:只需证1i i A +∞=∈F 。
先证:对可列不交并封闭的代数也对可列并封闭; 事实上,设F 为代数, i A ,1,2,i =,是F 上的可列个集合。
则11i i i i A B ∞∞===∑;其中1111,,2,3,...i cc i i B A B A A A i -===显然,,1,2,...i B i =是F 上的可列不交集列,由题设,1i i B ∞=∈∑F ,从而1i i A ∞=∈F ,。
由于F 为代数,故ciA ∈ F ,1,2,i =,从而1c i i A ∞=∈F ,,再由F 为代数,则1cc i i A ∞=⎛⎫∈ ⎪⎝⎭F ,,即1i i A +∞=∈F 。
证毕。
2 设C 为Ω上的集类,A ⊂Ω,令{|}A A B B ⋂=⋂∈C C ,记()A A σ⋂C 表示A ⋂C 生成的σ代数,则()()A A A σσ⋂=⋂C C ,此结论可推广至单调类和λ类. 3 设(,)ΩF ,(,)E E 和(,)G G 都是可测空间,f 为Ω到E 的关于F 的可测映射,h 为E 到G 的关于E 的可测映射,则h f 为Ω到G 的关于F 的可测映射. 4 (1)设,f g ∈U 可积,如果对于A ∀∈U ,都有AAfd gd μμ=⎰⎰,则f g =,..a s 成立;(2)设μ是σ有限测度,fd μ⎰和gd μ⎰存在,若对于A ∀∈U,都有AAfd gd μμ=⎰⎰,则f g =,..a s 成立.5 证明:设f 为(,,)μΩF上的可测函数,令1/(||)p p pff d μ=<+∞⎰,则存在简单函数列{,1}n f n ≥,使得lim 0n pn f f→+∞-=.6 设123(,),(,),(,)ΩΩΩA B C 为三个可测空间,证明()⨯⨯=⨯⨯A B C A B C7 设(,)f t ω满足:(1)1,(,)t R f t ∀∈⋅是(,)ΩF 的可测函数; (2),(,)f ωω∀∈Ω⋅是1R 上的连续函数; 则f 是乘积空间1(,)R ⨯Ω⨯B F 上的可测函数.8 若在A ∈A 上随机变量X Y =,则(|)(|)A A E X E Y χχ=A A ,..a s 成立. 证:显然,(|)A E X χA 和(|)A E Y χA 都关于A 可测,且B ∀∈A ,(|)(|)(|)(|)A A A BBBAA A BBBE X dP E X dP X dPY dP E Y dP E Y dPχχχχχχ====⎰⎰⎰⎰⎰⎰A A A A由条件期望的唯一性,(|)(|)A A E X E Y χχ=A A 。
北师大版八年级下册数学第一章三角形的证明一.选择题(共12小题)1.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3B.4C.6D.52.(2014•台湾)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.363.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或104.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.25.(2014•甘井子区一模)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为()6.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm7.(2013•西宁)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8.(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°9.(2013•澄江县一模)若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°10.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.811.(2011•成华区二模)如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到A.1B.2C.D.12.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°二.填空题(共6小题)13.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_________.14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.15.(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=_________.16.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=_________.17.(2012•广东模拟)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是_________.18.(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=_________度.三.解答题(共12小题)19.(2014•翔安区质检)如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.20.(2014•长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.21.(2014•顺义区一模)如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.22.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.(2012•重庆模拟)如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.24.(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.25.(2009•大连二模)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.26.(2007•宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.27.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC 分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.28.如图,Rt△ABC中,∠C=90°,AC=6,∠A=30°,BD平分∠ABC交AC于点D,求点D到斜边AB的距离.29.如图,在△ABC中,∠CAB=90°,AB=3,AC=4,AD是∠CAB的平分线,AD交BC于D,求BD的长.30.如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.北师大版八年级下册数学第一章三角形的证明参考答案与试题解析一.选择题(共12小题)1.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3B.4C.6D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.2.(2014•台湾)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.解答:解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.3.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.4.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.(2014•甘井子区一模)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为()A.18cm B.22cm C.24cm D.26cm考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选B.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△ABD的周长=AB+BC是解题的关键.6.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm考点:线段垂直平分线的性质;勾股定理.专题:探究型.分析:连接AD,先由三角形内角和定理求出∠BAC的度数,再由线段垂直平分线的性质可得出∠DAB的度数,根据线段垂直平分线的性质可求出AD的长及∠DAC的度数,最后由直角三角形的性质即可求出AC的长.解答:解:连接AD,∵DE是线段AB的垂直平分线,BD=15,∠B=15°,∴AD=BD=10,∴∠DAB=∠B=15°,∴∠ADC=∠B+∠DAB=15°+15°=30°,∵∠C=90°,∴AC=AD=5cm.故选C.点评:本题考查的是直角三角形的性质及线段垂直平分线的性质,熟知线段垂直平分的性质是解答此题的关键.7.(2013•西宁)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.解答:解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.点评:此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.8.(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°考点:线段垂直平分线的性质.专题:计算题.分析:设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.解答:解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°﹣∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.点评:此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.9.(2013•澄江县一模)若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°考点:等腰三角形的性质.分析:分88°内角是顶角和底角两种情况讨论求解.解答:解:88°是顶角时,等腰三角形的顶角为88°,88°是底角时,顶角为180°﹣2×88°=4°,综上所述,它的顶角是88°或4°.故选C.点评:本题考查了等腰三角形的两底角相等的性质,难点在于要分情况讨论.10.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.11.(2011•成华区二模)如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.考点:角平分线的性质;含30度角的直角三角形;勾股定理.分析:根据直角三角形两锐角互余求出∠ABC=60°,再根据角平分线的定义求出∠ABD=∠DBC=30°,从而得到∠DBC=∠ACB,然后利用等角对等边的性质求出BD的长度,再根据直角三角形30°角所对的直角边等于斜边的一半求出AD,过点D作DE⊥BC于点E,然后根据角平分线上的点到角的两边的距离相等解答即可.解答:解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2.故选B.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,以及等角对等边的性质,小综合题,但难度不大,熟记各性质是解题的关键.12.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.二.填空题(共6小题)13.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.考点:角平分线的性质.专题:几何图形问题.分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.解答:解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.点评:此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是2.考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.15.(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=4:5:6.考点:角平分线的性质.专题:压轴题.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.17.(2012•广东模拟)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是15°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE垂直平分AC,∠A=50°,根据线段垂直平分线的性质,易求得∠ACD的度数,又由AB=AC,可求得∠ACB的度数,继而可求得∠DCB的度数.解答:解:∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,∵AB=AC,∠A=50°,∴∠ACB=∠B==65°,∴∠DCB=∠ACB﹣∠ACD=15°.故答案为:15°.点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用.18.(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=72度.考点:线段垂直平分线的性质;菱形的性质.专题:计算题.分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.解答:解:先连接AP,由四边形ABCD是菱形,∠ADC=72°,可得∠BAD=180°﹣72°=108°,根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,∴∠PAB=∠DAB﹣∠DAP=108°﹣36°=72度.在△BAP中,∠APB=180°﹣∠BAP﹣∠ABP=180°﹣72°﹣36°=72度.由菱形对角线的对称性可得∠CPB=∠APB=72度.点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.三.解答题(共12小题)19.(2014•翔安区质检)如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.考点:线段垂直平分线的性质.分析:先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.解答:解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.20.(2014•长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.考点:等腰三角形的性质.专题:证明题.分析:根据三线合一定理证明CF平分∠ACB,然后根据CF平分∠ACB,根据邻补角的定义即可证得.解答:证明:∵CD=CA,E是AD的中点,∴∠ACE=∠DCE.∵CF平分∠ACB,∴∠ACF=∠BCF.∵∠ACE+∠DCE+∠ACF+∠BCF=180°,∴∠ACE+∠ACF=90°.即∠ECF=90°.∴CE⊥CF.点评:本题考查了等腰三角形的性质,顶角的平分线、底边上的中线和高线、三线合一.21.(2014•顺义区一模)如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.考点:含30度角的直角三角形;相似三角形的判定与性质.专题:计算题.分析:延长DA,CB,交于点E,可得出三角形ABE与三角形CDE相似,由相似得比例,设AB=x,利用30角所对的直角边等于斜边的一半得到AE=2x,利用勾股定理表示出BE,由BC+BE表示出CE,在直角三角形DCE中,利用30度角所对的直角边等于斜边的一半得到2DC=CE,即可求出AB的长.解答:解:延长DA,CB,交于点E,∵∠E=∠E,∠ANE=∠D=90°,∴△ABE∽△CDE,∴=,在Rt△ABE中,∠E=30°,设AB=x,则有AE=2x,根据勾股定理得:BE==x,∴CE=BC+BE=4+x,在Rt△DCE中,∠E=30°,∴CD=CE,即(4+x)=3,解得:x=,则AB=.点评:此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.23.(2012•重庆模拟)如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.考点:直角三角形斜边上的中线.专题:证明题.分析:由于AB是Rt△ABC和Rt△ABD的公共斜边,因此可以AB为媒介,再根据斜边上的中线等于斜边的一半来证CE=ED.解答:证明:在Rt△ABC中,∵E为斜边AB的中点,∴CE=AB.在Rt△ABD中,∵E为斜边AB的中点,∴DE=AB.∴CE=DE.点评:本题考查的是直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半.24.(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.考点:等腰三角形的性质;三角形中位线定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)在等腰△ACD中,CF是顶角∠ACD的平分线,根据等腰三角形三线合一的性质知F是底边AD的中点,由此可证得EF是△ABD的中位线,即可得到EF∥BC的结论;(2)易证得△AEF∽△ABD,根据两个相似三角形的面积比(即相似比的平方),可求出△ABD的面积,而四边形BDFE的面积为△ABD和△AEF的面积差,由此得解.解答:(1)证明:∵在△ACD中,DC=AC,CF平分∠ACD;∴AF=FD,即F是AD的中点;又∵E是AB的中点,∴EF是△ABD的中位线;∴EF∥BC;(2)解:由(1)易证得:△AEF∽△ABD;∴S△AEF:S△ABD=(AE:AB)2=1:4,∴S△ABD=4S△AEF=6,∴S△AEF=1.5.∴S四边形BDFE=S△ABD﹣S△AEF=6﹣1.5=4.5.点评:此题主要考查的是等腰三角形的性质、三角形中位线定理及相似三角形的判定和性质.25.(2009•大连二模)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.考点:直角三角形全等的判定;全等三角形的性质.专题:证明题.分析:此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.解答:证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.点评:本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.26.(2007•宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.考点:等腰三角形的性质;全等三角形的判定与性质.专题:计算题;证明题.分析:根据已知利用SAS判定△ABE≌△CBF,由全等三角形的对应边相等就可得到AE=CF;根据已知利用角之间的关系可求得∠EFC的度数.解答:(1)证明:在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS).∴AE=CF.(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,∴∠CAB=∠ACB=(180°﹣90°)=45°,∠EAB=45°﹣30°=15°.∵△ABE≌△CBF,∴∠EAB=∠FCB=15°.∵BE=BF,∠EBF=90°,∴∠BFE=∠FEB=45°.∴∠EFC=180°﹣90°﹣15°﹣45°=30°.点评:此题主要考查了全等三角形的判定方法及等腰三角形的性质等知识点的掌握情况;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC 分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.考点:角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:几何综合题;压轴题.分析:(1)根据AD是∠EAF的平分线,那么DE=DF,如果证得EA=FA,那么我们就能得出AD是EF的垂直平分线,那么就证得EF⊥AD了.因此证明EA=FA是问题的关键,那么就要先证得三角形AED和AFD全等.这两个三角形中已知的条件有∠EAD=∠FAD,一条公共边,一组直角,因此两三角形全等,那么就可以得出EA=AF了.(2)要求AD的长,在直角三角形AED中,有了DE的值,如果知道了∠ADE或∠EAD的度数,那么就能求出AD了.如果DE∥AC,那么∠EAC=90°,∠EAD=45°,那么在直角三角形AED中就能求出AD的长了.解答:(1)证明:∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)解:∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=.点评:本题考查了全等三角形的判定,角平分线的性质,线段垂直平分线的性质等知识点.本题中利用全等三角形得出线段相等是解题的关键.。
北师大版数学八下第一章三角形的证明复习题---解答题一.解答题1.(2018•绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.2.(2018秋•石景山区期末)如图,△ABC中,AB=AC,AD是BC边上的中线,CE⊥AB于点E.求证:∠CAD=∠BCE.3.(2018秋•永定区期末)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=68°,则∠NMA的度数是度;(2)若AB=10cm,△MBC的周长是18cm.求BC的长度.4.(2018秋•临安区期中)(1)如图1,在△ABC中,AB=AC,点D在AC上,且AD=BD=BC,求∠A的度数;(2)如图2,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE.①若∠EDM=84°,求∠A的度数:②若以E为圆心,ED为半径作弧,与射线DM上没有交点(除D点外),直接写出∠A的取值范围.5.(2018秋•通州区期末)已知:如图,在△ABC中,∠1=∠2,DE∥AC,求证:△ADE是等腰三角形.6.(2018秋•潮阳区期末)如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G)7.(2018秋•江阴市期中)如图,在△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B的路径运动,且速度为每秒2cm,设点P运动的时间为t秒.当t为何值时,△BCP为等腰三角形?8.(2018春•姜堰区期末)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.9.(2017秋•揭西县期末)如图,将一块三角板ABC的直角顶点C放在直尺的一边PQ上,直尺的另一边MN与三角板的两边AC、BC分别交于两点E、D,且AD为∠BAC的平分线,∠B=30°,∠ADE=15°.(1)求∠BDN的度数;(2)求证:CD=CE.10.(2018秋•顺义区期末)已知:如图,在△ABC中,AD平分∠BAC,CE⊥AD于点E,EF∥AB 交AC于点F.求证:△FEC是等腰三角形.11.(2018秋•响水县期末)如图1,在四边形ABCD中,DC∥AB,BD平分∠ABC,CD=4.(1)求BC的长;(2)如图2,若∠ABC=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.请判断△DEF的形状并证明你的结论.12.(2018秋•淮上区期末)如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.13.(2018秋•泰兴市校级月考)(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F.试猜想EF、BE、CF之间有怎样的关系,并说明理由.(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,则刚才的结论还成立吗?请说明理由.14.(2018秋•西城区期末)在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC 的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,求∠BDF的度数;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN=DN,求证:MB=MN.15.(2018秋•黄石港区校级期中)已知:如图,△ABC是等边三角形,BD⊥AC,E是BC延长线上的一点,且∠CED=30°.(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=3,求△ABC的周长.16.(2018秋•鄂尔多斯期中)如图所示,已知△ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.(1)M、N同时运动几秒后,M、N两点重合?(2)M、N同时运动几秒后,可得等边三角形△AMN?(3)M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN,如果存在,请求出此时M、N 运动的时间?17.(2018秋•松北区校级期中)如图1,等边三角形ABC中,点D为AC中点,延长BC至E,使CE=CD;连接ED并延长交AB于点F.(1)求证:BF=3AF;(2)如图2,连接BD,过点F作FH⊥BC,垂足为H,交BD于点G,过点G作BE的平行线,分别交AB、AC、FE于点M、P、N;在不添加任何辅助线的情况下,请直接写出图2中与线段BM 相等的所有线段.18.(2018秋•通州区期末)在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q 关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:P A=PM.19.(2018秋•思明区校级期中)如图,已知D是△ABC的边BC上的一点,CD=AB,∠BDA=∠BAD,AE是△ABD的中线.(1)若∠B=60°,求∠C的值;(2)求证:AD是∠EAC的平分线.20.(2018秋•芜湖期中)如图所示,已知一个面积为S的等边三角形,现将其各边n等分(n为大于2的整数),并以相邻等分点为顶点向外作小等边三角形.(1)当n=5时,共向外作出了个小等边三角形,每个小等边三角形的面积为,这些小等边三角形的面积和为;(用含S的式子表示)(2)当n=k时,共向外作出了个小等边三角形,每个小等边三角形的面积为,这些小等边三角形的面积和为;(用含k和S的式子表示)(3)若大等边三角形的面积为100,则当n=10时,共向外作出了多少个小等边三角形?这些小等边三角形的面积和为多少?21.(2017秋•中江县期末)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.22.(2017秋•吉州区期末)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC 为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当a为多少度时,△AOD是等腰三角形?23.(2018秋•镇原县期末)如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD 相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.24.(2018秋•建湖县期中)如图,∠A=∠D=90°,AB=DE,BF=EC.求证:Rt△ABC≌Rt△DEF.25.(2018春•遵义期中)在直角三角形ABC中,∠C=90°,∠A=30°,AB=24,CD⊥AB于D,求BC和CD的长.26.(2018秋•青山区期中)如图,在Rt△ABC中,∠A=30°,∠ACB=90°,点D为AC中点,点E为AB边上一动点,AE=DE,延长ED交BC的延长线于点F.(1)求证:△BEF是等边三角形;(2)若AB=12,求DE的长.27.(2018春•东明县期中)如图,已知等边△ABC,点D是AB的中点,过点D作DF⊥AC,垂足为点F,过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为4,求BH的长.28.(2018秋•新罗区校级期中)如图,一艘轮船以每小时40海里的速度沿正北方向航行,在A处测得灯塔C在北偏西30°方向上,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向上.当轮船到达灯塔C的正东方向D处时,又航行了多少海里.29.(2018秋•淮上区期末)如图,在△ABC中,∠B=30°,边AB的垂直平分线分别交AB、BC 于D、E两点,连接AE,若AE平分∠BAC,求∠C的度数.30.(2018秋•淮安区期中)如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若△AEG的周长为8,求BC的长.31.(2018秋•垦利区期中)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于点F,若∠F=30°,DE=1,试求EF的长32.(2018春•宿州期中)如图,在△ABC中,∠ACB=90°,D是BC的延长线上一点,EH是BD 的垂直平分线,DE交AC于F,求证:E在AF的垂直平分线上.33.(2017秋•宜宾期末)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.34.(2018秋•长葛市期中)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.35.(2018秋•长春期末)如图所示,在△ABC中:(1)下列操作中,作∠ABC的平分线的正确顺序是(将序号按正确的顺序写在横线上).①分别以点M、N为圆心,大于MN的长为半径作圆弧,在∠ABC内,两弧交于点P;②以点B为圆心,适当长为半径作圆弧,交AB于点M,交BC于N点;③画射线BP,交AC于点D.(2)能说明∠ABD=∠CBD的依据是(填序号).①SSS.②ASA.③AAS.④角平分线上的点到角两边的距离相等.(3)若AB=18,BC=12,S△ABC=120,过点D作DE⊥AB于点E,求DE的长.36.(2018秋•德惠市期末)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,CD=1.5,BD=2.5,求AC的长.37.(2018秋•浦东新区期末)已知:如图,AD∥BC,DB平分∠ADC,CE平分∠BCD,交AB于点E,BD于点O.求证:点O到EB与ED的距离相等.38.(2016秋•宁江区期末)如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.39.(2018秋•老河口市期中)如图,点B,C分别在∠A的两边上,点D是∠A内一点,DE⊥AB,DF⊥AC,垂足分别为E,F,且AB=AC,DE=DF.求证:BD=CD.40.(2018秋•武昌区校级期中)在△ABC中,AE、BF是角平分线,交于O点.(1)如图1,AD是高,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度数.(2)如图2,若OE=OF,AC≠BC,求∠C的度数.(3)如图3,若∠C=90°,BC=8,AC=6,S△CEF=4,求S△AOB.41.(2018秋•江阴市期中)在△ABC中,D是BC边上的点(不与点B、C重合),连结AD.(1)如图1,当点D是BC边上的中点时,S△ABD:S△ACD=;(2)如图2,当AD是∠BAC的平分线时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m,n 的代数式表示)(3)如图3,AD平分∠BAC,延长AD到E,使得AD=DE,连接BE,如果AC=2,AB=4,S△BDE =6,那么S△ABC=.北师大版数学八下第一章三角形的证明复习题---解答题参考答案与试题解析一.解答题1.(2018•绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.2.(2018秋•石景山区期末)如图,△ABC中,AB=AC,AD是BC边上的中线,CE⊥AB于点E.求证:∠CAD=∠BCE.【分析】根据等腰三角形的性质得出∠B=∠ACB,根据等腰三角形底边上的中线与底边上的高互相重合得到AD⊥BC,再根据直角三角形的两个锐角互余和等角的余角相等即可求解.【解答】证明:∵AB=AC,BD=CD(已知),∴∠B=∠ACB(等边对等角),AD⊥BC(等腰三角形底边上的中线与底边上的高互相重合).又∵CE⊥AB(已知),∴∠CAD+∠ACB=90°,∠BCE+∠B=90°(直角三角形的两个锐角互余).∴∠CAD=∠BCE(等角的余角相等).3.(2018秋•永定区期末)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=68°,则∠NMA的度数是46度;(2)若AB=10cm,△MBC的周长是18cm.求BC的长度.【分析】(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解,【解答】解:(1)∵AB=AC,∴∠C=∠ABC=68°,∴∠A=44°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=46°,故答案为:46;(2)∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=10,△MBC的周长是18,∴BC=18﹣10=8.4.(2018秋•临安区期中)(1)如图1,在△ABC中,AB=AC,点D在AC上,且AD=BD=BC,求∠A的度数;(2)如图2,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE.①若∠EDM=84°,求∠A的度数:②若以E为圆心,ED为半径作弧,与射线DM上没有交点(除D点外),直接写出∠A的取值范围.【分析】(1)首先设∠A=x°,然后由等腰三角形的性质,求得∠ABC=∠C=2x°,然后由三角形的内角和定理,得到方程:x+2x+2x=180,解此方程即可求得答案;(2)根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED =∠EDM,然后用∠A表示出∠EDM,计算即可求解;【解答】解:(1)设∠A=x°,∵AD=BD,∴∠ABD=∠A=x°,∴∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠C=∠BDC=2x°,∵AB=AC,∴∠ABC=∠C=2x°,在△ABC中,∠A+∠ABC+∠C=180°,∴x+2x+2x=180,解得:x=36,∴∠A=36°;(2)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得:∠A=21°;②∵以E为圆心,ED为半径作弧,与射线DM上没有交点(除D点外),∴E到射线AM的距离小于DE,∴∠EDM<90°,∴∠A<22.5°,∴∠A的取值范围是0<∠A<22.5°.5.(2018秋•通州区期末)已知:如图,在△ABC中,∠1=∠2,DE∥AC,求证:△ADE是等腰三角形.【分析】欲证明△ADE是等腰三角形,只要证明∠ADE=∠1即可.【解答】证明:∵DE∥AC,∴∠ADE=∠2,∵∠1=∠2,∴∠ADE=∠1,∴EA=ED,即△ADE是等腰三角形.6.(2018秋•潮阳区期末)如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G)【分析】过点D作DG∥AC交BC于点G,根据平行线的性质可得出∠GDF=∠E、∠DGB=∠ACB,结合DF=EF以及∠DFG=∠EFC可证出△GDF≌△CEF(ASA),根据全等三角形的性质可得出GD=CE,结合BD=CE可得出BD=GD,进而可得出∠B=∠DGB=∠ACB,由此即可证出△ABC是等腰三角形.【解答】证明:过点D作DG∥AC交BC于点G,如图所示.∵DG∥AC,∴∠GDF=∠E,∠DGB=∠ACB.在△GDF和△CEF中,,∴△GDF≌△CEF(ASA),∴GD=CE.∵BD=CE,∴BD=GD,∴∠B=∠DGB=∠ACB,∴△ABC是等腰三角形.7.(2018秋•江阴市期中)如图,在△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B的路径运动,且速度为每秒2cm,设点P运动的时间为t秒.当t为何值时,△BCP为等腰三角形?【分析】先根据勾股定理求出AC的长,由于点P是动点,故应分点P在AC上与AB上两种情况进行讨论.【解答】解:∵在△ABC中,∠C=90°,AB=10cm,BC=6cm,∴AC==8cm.当点P在AC上时,CP=CB=6cm,t=3;当点P在AB上时,分三种情况:若BP=BC=6cm,则AP=4cm,t=6;若CP=CB=6cm,作CM⊥AB,∵∠B=∠B,∠BMC=∠BCA,∴△ABC∽△CBM,∴==,即==,∴CM=4.8cm,PM=BM=3.6cm,∴AP=2.8cm,t=5.4.若PC=PB,则∠B=∠BCP,∠A=∠ACP,∴AP=CP=BP=5cm,t=6.5.综上所述,当t=t=3或5.4或6.5或6秒时,△BCP为等腰三角形.8.(2018春•姜堰区期末)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.【分析】(1)根据角平分线的定义得到∠BAE=∠CAE,根据余角的性质得到∠AEB=∠AFD,等量代换即可得到结论;(2)根据线段中点的定义得到BC=2BE=4,根据勾股定理即可得到结论.【解答】解:(1)∵AE平分∠BAC,∴∠BAE=∠CAE,∵BD⊥AC,∴∠ABC=∠ADF=90°,∴∠BAE+∠AEB=∠DAF+∠AFD=90°,∴∠AEB=∠AFD,∵∠BFE=∠AFD,∴∠BEF=∠BFE;(2)∵E是BC中点,BE=2,∴BC=2BE=4,∵∠ABC=90°,AC=5,∴AB==3.9.(2017秋•揭西县期末)如图,将一块三角板ABC的直角顶点C放在直尺的一边PQ上,直尺的另一边MN与三角板的两边AC、BC分别交于两点E、D,且AD为∠BAC的平分线,∠B=30°,∠ADE=15°.(1)求∠BDN的度数;(2)求证:CD=CE.【分析】(1)由直角三角形的两个锐角互余和角平分线的定义得到∠CAD=30°,依据图形直接得到∠CDA=60°,所以有∠CDE=∠CDA﹣∠ADE=45°,故∠BDN=∠CDE=45°;(2)由等角对等边证得结论.【解答】(1)解:在直角三角形ABC中,∠ACB=90°,∠B=30°,∴∠BAC=60°,又AD平分∠BAC,∴∠CAD=30°,又∠ACD=90°,∴∠CDA=60°又∠ADE=15°,∴∠CDE=∠CDA﹣∠ADE=60°﹣15°=45°∴∠BDN=∠CDE=45°;(2)证明:在△CED中,∠ECD=90°,∠CDE=45°∴∠CED=45°∴CD=CE.10.(2018秋•顺义区期末)已知:如图,在△ABC中,AD平分∠BAC,CE⊥AD于点E,EF∥AB 交AC于点F.求证:△FEC是等腰三角形.【分析】利用平行线以及角平分线的定义证明∠2=∠3,再根据等角的余角相等证明∠4=∠5即可解决问题;【解答】证明:如图,∵AD平分∠BAC,∴∠1=∠2,∵EF∥AB,∴∠1=∠3,∴∠2=∠3,∵CE⊥AD于点E,∴∠AEC=90°,∴∠3+∠4=90°,∴∠2+∠5=90°,∴∠4=∠5,∴FE=FC,∴△FEC是等腰三角形.11.(2018秋•响水县期末)如图1,在四边形ABCD中,DC∥AB,BD平分∠ABC,CD=4.(1)求BC的长;(2)如图2,若∠ABC=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.请判断△DEF的形状并证明你的结论.【分析】(1)根据平行线的性质得到∠CDB=∠ABD,等量代换得到∠CDB=∠CBD,根据等腰三角形的判定定理即可得到BC=CD=4;(2)根据等边三角形的性质得到BF=DF,推出EF=BD=DF,根据等边三角形的判定定理即可得到结论.【解答】解:(1)∵DC∥AB,∴∠CDB=∠ABD,∵∠ABD=∠CBD,∴∠CDB=∠CBD,∴BC=CD=4;(2)△DEF是等边三角形,理由:∵BC=CD,CF⊥BD,∴BF=DF,又∵DE⊥AB,∴EF=BD=DF,∵∠BDE=90°﹣∠EBD=90°﹣×60°=60°,∴△DEF是等边三角形.12.(2018秋•淮上区期末)如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.【分析】(1)依据AB=AC,∠BAC=36°,可得∠ABC=72°,再根据BD是∠ABC的平分线,即可得到∠ABD=36°,由∠BAD=∠ABD,可得AD=BD,依据E是AB的中点,即可得到FE⊥AB;(2)依据FE⊥AB,AE=BE,可得FE垂直平分AB,进而得出∠BAF=∠ABF,依据∠ABD=∠BAD,即可得到∠F AD=∠FBD=36°,再根据∠AFC=∠ACB﹣∠CAF=36°,可得∠CAF=∠AFC=36°,进而得到AC=CF.【解答】证明:(1)∵AB=AC,∠BAC=36°,∴∠ABC=72°,又∵BD是∠ABC的平分线,∴∠ABD=36°,∴∠BAD=∠ABD,∴AD=BD,又∵E是AB的中点,∴DE⊥AB,即FE⊥AB;(2)∵FE⊥AB,AE=BE,∴FE垂直平分AB,∴AF=BF,∴∠BAF=∠ABF,又∵∠ABD=∠BAD,∴∠F AD=∠FBD=36°,又∵∠ACB=72°,∴∠AFC=∠ACB﹣∠CAF=36°,∴∠CAF=∠AFC=36°,∴AC=CF,即△ACF为等腰三角形.13.(2018秋•泰兴市校级月考)(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F.试猜想EF、BE、CF之间有怎样的关系,并说明理由.(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,则刚才的结论还成立吗?请说明理由.【分析】(1)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系;(2)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC =∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系.【解答】解:(1)EF=BE+CF,理由:∵BO平分∠ABC,CO平分∠ACB,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF;(2)不成立,理由:∵BO平分∠ABC,CO平分∠ACG,∴∠EBO=∠OBC,∠FCO=∠OCG,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCG,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴EF=OE﹣OF=BE﹣CF.14.(2018秋•西城区期末)在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC 的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,求∠BDF的度数;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN=DN,求证:MB=MN.【分析】(1)分别求出∠ADF,∠ADB,根据∠BDF=∠ADF﹣∠ADB计算即可;(2)①根据要求画出图形即可;②设∠ACM=∠BCM=α,由AB=AC,推出∠ABC=∠ACB=2α,可得∠NAC=∠NCA=α,∠DAN=60°+α,由△ABN≌△ADN(SSS),推出∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∠BAC=60°+2α,在△ABC中,根据∠BAC+∠ACB+∠ABC=180°,构建方程求出α,再证明∠MNB=∠MBN即可解决问题;【解答】(1)解:如图1中,在等边三角形△ACD中,∠CAD=∠ADC=60°,AD=AC.∵E为AC的中点,∴∠ADE=∠ADC=30°,∵AB=AC,∴AD=AB,∵∠BAD=∠BAC+∠CAD=160°,∴∠ADB=∠ABD=10°,∴∠BDF=∠ADF﹣∠ADB=20°.(2)①补全图形,如图所示.②证明:连接AN.∵CM平分∠ACB,∴设∠ACM=∠BCM=α,∵AB=AC,∴∠ABC=∠ACB=2α.在等边三角形△ACD中,∵E为AC的中点,∴DN⊥AC,∴NA=NC,∴∠NAC=∠NCA=α,∴∠DAN=60°+α,在△ABN和△ADN中,∴△ABN≌△ADN(SSS),∴∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∴∠BAC=60°+2α,在△ABC中,∠BAC+∠ACB+∠ABC=180°,∴60°+2α+2α+2 α=180°,∴α=20°,∴∠NBC=∠ABC﹣∠ABN=10°,∴∠MNB=∠NBC+∠NCB=30°,∴∠MNB=∠MBN,∴MB=MN.15.(2018秋•黄石港区校级期中)已知:如图,△ABC是等边三角形,BD⊥AC,E是BC延长线上的一点,且∠CED=30°.(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=3,求△ABC的周长.【分析】(1)根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.(2)由DF的长可求出CD,进而可求出AC的长,则△ABC的周长即可求出.【解答】证明:(1)∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边);(2)过D作DF⊥BE交BE于F,∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=3,∴DC=6,∵AD=CD,∴AC=12,∴△ABC的周长=3AC=36.16.(2018秋•鄂尔多斯期中)如图所示,已知△ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.(1)M、N同时运动几秒后,M、N两点重合?(2)M、N同时运动几秒后,可得等边三角形△AMN?(3)M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN,如果存在,请求出此时M、N 运动的时间?【分析】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多10cm,列出方程求解即可;(2)根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形;(3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB的长,列出方程,可解出未知数的值.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+10=2x,解得:x=10;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=10﹣2t,∵三角形△AMN是等边三角形,∴t=10﹣2t,解得t=,∴点M、N运动秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知10秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN(AAS),∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣10,NB=30﹣2y,CM=NB,y﹣10=30﹣2y,解得:y=.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰△AMN,此时M、N运动的时间为秒.17.(2018秋•松北区校级期中)如图1,等边三角形ABC中,点D为AC中点,延长BC至E,使CE=CD;连接ED并延长交AB于点F.(1)求证:BF=3AF;(2)如图2,连接BD,过点F作FH⊥BC,垂足为H,交BD于点G,过点G作BE的平行线,分别交AB、AC、FE于点M、P、N;在不添加任何辅助线的情况下,请直接写出图2中与线段BM 相等的所有线段.【分析】(1)先证明∠ADF=30°,进一步证明∠AFD=90°,根据30°角的直角三角形的性质即可证得结论;(2)先证明G是BD的中点,进一步证得P是PC的中点,根据平行线的性质即可证得∠MBG=∠MGB=30°,∠PND=∠PDN=30°,证得BM=MG,PC=PD=PN,根据平行线分线段成比例定理证得BM=PC,再有AF=AD=CD,即可证得BM=MG=PC=PD=PN=AF.【解答】(1)证明:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠ACB=60°,∴∠DCE=120°,∵CE=CD,∴∠CDE=∠E=30°,∴∠ADF=∠CDE=30°,∴∠AFD=90°,∴AF=AD,∵AD=DC,∴AF=AC,∴AB=4AF,∴BF=3AF;(2)与线段BM相等的线段有:MG、AF、DP、NP、CP,证明:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠ACB=∠ABC=60°,∵FH⊥BC,∴∠BFH=30°,∵AD=DC,∴∠ABD=∠ABC=30°,∴∠ABD=∠BFH,∴BG=FG,∵∠AFD=90°,∴∠BFD=90°,∴∠BDF=∠DFG=60°,∴FG=DG,∴BG=DG,∵MN∥BE,∴DP=PC,BM=PC,∵∠ABD=∠CBD=30°,∠E=30°∴∠MGB=∠CBD=30°,∠E=∠PND=30°,∵∠CDE=30°,∴BM=MG,PD=PN,∴BM=MG=PC=PD=PN,∵AF=AD,∴AF=CD=PD=PC,∴BM=MG=PC=PD=PN=AF.18.(2018秋•通州区期末)在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q 关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:P A=PM.【分析】(1)根据三角形的外角性质得到∠APC,由等腰三角形的性质即可得到结论;(2)①根据题意补全图形即可;②过点A作AH⊥BC于点H,根据等边三角形的判定和性质解答即可.【解答】解:(1)∵△ABC为等边三角形∴∠B=60°∴∠APC=∠BAP+∠B=80°∵AP=AQ∴∠AQB=∠APC=80°,(2)①补全图形如图所示,②证明:过点A作AH⊥BC于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠P AB=∠QAC,∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM∴∠P AB=∠MAC,AQ=AM∴∠P AM=∠BAC=60°,∴△APM为等边三角形∴P A=PM.19.(2018秋•思明区校级期中)如图,已知D是△ABC的边BC上的一点,CD=AB,∠BDA=∠BAD,AE是△ABD的中线.(1)若∠B=60°,求∠C的值;(2)求证:AD是∠EAC的平分线.【分析】(1)根据已知条件得到∠BAD=∠BDA=60°,于是得到AB=AD,等量代换得到CD=AD,根据等腰三角形的性质得到∠DAC=∠C,推出∠BDA=∠DAC+∠C=2∠C,即可得到结论;(2)证明:延长AE到M,使EM=AE,连接DM,推出△ABE≌△MDE,根据全等三角形的性质得到∠B=∠MDE,AB=DM,根据全等三角形的判定定理得到△MAD≌△CAD,根据全等三角形的性质得到∠MAD=∠CAD于是得到结论.【解答】(1)解:∵∠B=60°,∠BDA=∠BAD,∴∠BAD=∠BDA=60°,∴AB=AD,∵CD=AB,∴CD=AD,∴∠DAC=∠C,∴∠BDA=∠DAC+∠C=2∠C,∵∠BAD=60°,∴∠C=30°;(2)证明:延长AE到M,使EM=AE,连接DM,在△ABE和△MDE中,,∴△ABE≌△MDE,∴∠B=∠MDE,AB=DM,∵∠ADC=∠B+∠BAD=∠MDE+∠BDA=∠ADM,在△MAD与△CAD,,∴△MAD≌△CAD,∴∠MAD=∠CAD,∴AD是∠EAC的平分线.20.(2018秋•芜湖期中)如图所示,已知一个面积为S的等边三角形,现将其各边n等分(n为大于2的整数),并以相邻等分点为顶点向外作小等边三角形.(1)当n=5时,共向外作出了9个小等边三角形,每个小等边三角形的面积为S,这些小等边三角形的面积和为S;(用含S的式子表示)(2)当n=k时,共向外作出了3(k﹣2)个小等边三角形,每个小等边三角形的面积为S,这些小等边三角形的面积和为S;(用含k和S的式子表示)(3)若大等边三角形的面积为100,则当n=10时,共向外作出了多少个小等边三角形?这些小等边三角形的面积和为多少?【分析】结合图形正确数出前面几个具体值,从而发现等边三角形的个数和等分点的个数之间的关系:是n等分点的时候,每条边可以作(n﹣2)个三角形,共有3(n﹣2)个三角形;再根据相似三角形面积的比是边长的比的平方进行计算.【解答】解:(1)当n=5时,共有3×(5﹣2)=9个小等边三角形,∴每个小三角形与大三角形边长的比=,∵大三角形的面积是S,∴每个小三角形的面积为S,这些小等边三角形的面积和为S;(2)由(1)可知,当n=k时,共有3×(k﹣2)=3(k﹣2),每个小等边三角形的面积为S,每个小三角形的面积和为S.故答案为:(1)9,S,S;(2)3(k﹣2),S,S;(3)当S=100,n=10时,3(n﹣2)=3×(10﹣2)=24(个),S=×100=24.即共向外作出了24个小等边三角形,这些小等边三角形的面积和为24.21.(2017秋•中江县期末)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.【分析】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多12cm,列出方程求解即可;(2)根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形;(3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,。
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
证明题:
1. 设下面所考虑的函数都是定义在对称区间()l l ,-上的,证明:
两个偶函数的和是偶函数,两个奇函数的和是奇函数;
证:设)()()(x g x f x F +=,如果)(x f 和)(x g 都是偶函数,则
)()()()()()(x F x g x f x g x f x F =+=-+-=-,
所以)(x F 为偶函数,即两个偶函数的和是偶函数;
如果)(x f 和)(x g 都是奇函数,则
)()()()()()(x F x g x f x g x f x F -=--=-+-=-,
所以)(x F 为奇函数,即两个奇函数的和是奇函数。
2. 设函数)(x f 在区间],[b a 上连续,且a a f <)(,b b f >)(,
证明:存在),(b a ∈ξ,使得ξξ=)(f 。
证:构造辅助函数x x f x F -=)()(,易见)(x F 在],[b a 上连续,且
0)()(<-=a a f a F ,0)()(>-=b b f b F ,
由零点定理知,存在),(b a ∈ξ,使0)()(=-=ξξξf F ,即ξξ=)(f 。
3. 证明方程135=-x x 至少有一个根介于1和2之间。
证:令13)(5--=x x x f ,显然)(x f 在]2,1[上连续,又03)1(<-=f ,025)2(>=f ,
由零点定理知,至少存在一点)2,1(∈ξ,使得:0)(=ξf ,
即方程135=-x x 至少有一个根介于1和2之间。
4. 证明方程0sin 1=++x x 在区间⎪⎭⎫ ⎝
⎛-2,2ππ内至少有一个根。
证:设x x x f sin 1)(++=,则)(x f 在区间⎪⎭⎫ ⎝⎛-
2,2ππ内连续, ∵ 01212<--=⎪⎭⎫ ⎝⎛-ππf ,01212>++=⎪⎭
⎫ ⎝⎛ππf ,
∴ 根据零点定理,至少存在一点⎪⎭⎫ ⎝⎛-∈2,2ππξ,使()0=ξf ,
∴ 方程0sin 1=++x x 在区间⎪⎭⎫
⎝⎛-2,2ππ
内至少有一个根。
5. 证明曲线107324-+-=x x x y 在1=x 与2=x 之间至少与x 轴有一个交点。
证:107324-+-=x x x y 在]2,1[上连续,05)1(<-=y ,08)2(>=y ,
由零点定理知至少存在一点)2,1(∈ξ,使0)(=ξy ,
这说明曲线107324-+-=x x x y 在1=x 与2=x 之间至少与x 轴有一个交点。
6. 证明方程015=++x x 在区间)0,1(-内有且只有一个实根。
证:令1)(5++=x x x f ,因为)(x f 在]0,1[-上连续,
且01)1(<-=-f ,01)0(>=f ,
根据零点定理,)(x f 在]0,1[-内至少有一个零点;
另外,015)(4>+='x x f ,所以)(x f 在]0,1[-内单调增加,
因此,曲线)(x f y =与x 轴至多只有一个交点,
所以,方程015=++x x 在区间)0,1(-内有且只有一个实根。
7. 证明方程013=-+x x 在区间)1,0(内有且只有一个实根。
证:令1)(3-+=x x x f ,因为)(x f 在]1,0[上连续,
且01)0(<-=f ,01)1(>=f ,
根据零点定理,)(x f 在]1,0[内至少有一个零点;
另外,013)(2>+='x x f ,所以)(x f 在]1,0[内单调增加,
因此,曲线)(x f y =与x 轴至多只有一个交点,
所以,方程013=-+x x 在区间)1,0(内有且只有一个实根。
8. 证明方程01423=+-x x 在区间)1,0(内至少有一个实根。
证:令14)(23+-=x x x f ,则)(x f 在]1,0[上连续,又01)0(>=f ,02)1(<-=f ,
由零点定理,存在)1,0(∈ξ,使0)(=ξf ,即:01423=+-ξξ,
所以方程01423=+-x x 在区间)1,0(内至少有一个实根ξ。
判断题:
1. 11
2--=x x y 与1+=x y 是不相同的函数。
( )。
解:∵ 两个函数定义域不同,是不相同的函数。
∴ 取“√”。
2. 如果A x f x x =→)(lim 0
存在,那么函数)(x f 在点0x 处一定有定义。
( )。
解:∵ 极限存在,仅考虑去心邻域,并不保证该点有定义。
∴ 取“×”。